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Abstract

Desktop Grids have become very popular nowadays, with projects that include
hundred of thousands computers. Desktop grid scheduling faces two challenges. First,
the platform is volatile, since users may reclaim their computer at any time, which
makes centralized schedulers inappropriate. Second, desktop grids are likely to be
shared among several users, thus we must be particularly careful to ensure a fair
sharing of the resources.

In this paper, we propose a decentralized scheduler for bag-of-tasks applications
on desktop grids, which ensures a fair and efficient use of the resources. It aims
to provide a similar share of the platform to every application by minimizing their
maximum stretch, using completely decentralized algorithms and protocols. After
presenting our algorithms, we evaluate them through extensive simulations. We
compare our solution to already existing centralized ones under similar conditions,
and show that its performance is close to the best centralized algorithms.
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1 Introduction

Taking advantage of unused cycles of networked computers has emerged as a cheap alter-
native to expensive computing infrastructures. Due to the increasing number of personal
desktop computers connected to the Internet, a tremendous computing power is potentially
at hand. Desktop Grids gathering some of these machines have become widespread thanks
to popular projects, such as Seti@home [19] or Folding@home [20]. Nowadays, projects as
World Community Grid [23] include hundreds of thousands of available computers.

At a smaller scale, software solutions have been proposed to harness idle cycles of
machines in the local area network scale [16]. This allows to use idle desktop computers
located in places like a computer science laboratory or a company, for processing compute-
intensive applications.

The key characteristic of these platforms that strongly limits their performance is
volatility: a machine can be reclaimed by its owner at any time, and thus disappear
from the pool of available resources [13]. This motivates the use of a robust distributed
architecture to manage resources, and the adaptation of peer-to-peer systems to computing
grids is natural [8, 9].

Target applications of these desktop grids are typically embarrassingly parallel. In the
context of computing Grids, a common model for such applications is the bag-of-tasks:
each application is then described as a set of similar tasks, i.e. which have a common data
file size and computing demand [7, 21].

Due to the distributed nature of desktop grids, several concurrent applications, originat-
ing from different users, are likely to compete for the resources. Traditionally, schedulers of
desktop grids aims at minimizing the overall completion time of an application. However,
in a multi-application setting, it is important to maintain some fairness between users: we
do not want to favor an application with a large number of small jobs compared to another
application with fewer larger jobs. Similarly, if applications can be submitted at different
entry points of the distributed system, we do not want that the location of the user impacts
its experienced running time. To discourage users tampering with their application to get
better performance, we must provide a scheduler that gives a fair share of the available
resources to each user. Similar problems have been addressed in computing Grids [7, 14].
However, these schedulers are centralized, and assume perfectly updated information on
the whole platform. In the context of desktop grid, a scheduler needs to be decentralized
and rely only on local information.

In this paper, we propose and evaluate a decentralized scheduler for processing bag-
of-tasks applications on desktop grids. Our study relies on previous work which proposes
a peer-to-peer architecture to distribute tasks provided with deadlines [9]. We also build
upon a previous study on a centralized scheduler for multiple bag-of-tasks applications on
a heterogeneous platform [7].
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2 Related work

2.1 Desktop grid and scheduling

Desktop grids are now widespread, and many platform management software is avail-
able [11]. Among others, BOINC [4] is probably the most common, and uses a classical
client/server architecture. Other types of architecture are also proposed, some of them
inspired by peer-to-peer systems [8].

To cope with node volatility, several mechanisms have been proposed, such as check-
pointing and job migration [3, 5, 24]. These mechanisms allow to efficiently manage com-
puting resources that are likely to be reclaimed by their owners at any time. Similarly,
Kondo et al. [13] emphasize the need for resource selection when processing short-lived
task-parallel application on desktop grids. These studies are complementary to our work,
which focuses on how to share the available resources among several users.

The common scheduling policy in desktop grids is usually FCFS (First Come, First
Served), but more complex strategies have also been proposed. In particular, Al-Azzoni
et al. [2] propose to use linear programming to compute a mapping of applications to the
platform. However, reactivity is achieved at the price of solving a linear program at each
change of the platform, which makes it not very suited to volatile platforms. Besides, only
a centralized scheduler can gather the whole information on the optimization problem.

2.2 Scheduling multiple applications

In the context of classical computing Grids, the problem of scheduling multiple applications
have already been studied. As far as fairness is concerned, the most suited metric seems
to be the maximum stretch, or slowdown [14]. The stretch of an application is defined as
the ratio of its response time under the concurrent scheduling policy over its response time
in dedicated mode, i.e., when it is the only application executed on the platform. The
objective is then to minimize the maximum stretch of any application, thereby enforcing
a fair trade-off between all applications.

Previously, we have studied the minimization of maximum stretch for concurrent appli-
cations in a centralized settings [7]. In particular, our study shows that interleaving tasks
of several concurrent bag-of-tasks applications allows to reach a better performance than
scheduling each application after the other.

2.3 Distributed scheduling

Distributed scheduling has been widely studied in the context of real-time systems, when
tasks have deadline constraints. Among others, Ramamritham et al. [18] propose several
decentralized heuristics to schedule real-time applications in a distributed environments.
More recently, Modi et al. [17] present a distributed algorithm to solve general constraint
optimization problem with a guaranteed convergence.
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However, these studies are dedicated to tasks with deadlines, and stable environments
where complex distributed algorithms can converge. In our large-scale and fault-prone sys-
tem, we cannot hope to reach optimality, and we will rather design fault-tolerant heuristics
inspired by peer-to-peer techniques.

Closer to our problem, Viswanathan et al. [22] proposed a distributed scheduling strat-
egy for computing grid. However, a centralized entity is used to gather the information on
the platform and the applications.

In earlier work, we have compared centralized and decentralized strategies for scheduling
bag-of-tasks applications in computing grids [6], however in this study, applications were
supposed to be available at the same time on a given master node, whereas applications
are likely to be issued at any time and any place in a desktop grid.

3 Problem description

In this section, we formally define the problem we target. Our goal is to design a fully
decentralized scheduling architecture for bag-of-tasks applications, oriented to desktop grid
platforms. Our main objective while scheduling tasks of concurrent applications is to ensure
fairness among users.

3.1 Application model

Each application Ai consists of a set of ni tasks with computing demand ai, measured in
millions of flops. Let wi = niai be the overall computing size of the application. Each
application Ai has a release time ri, corresponding to the time when the request for its
processing is issued, and a finish time Ci, when the last task of this application terminates.

When scheduling multiple applications, as far as fairness is concerned, the most suited
metric seems to be the maximum stretch, or slowdown [14]. The stretch of an application
is defined as the ratio of its response time under the concurrent scheduling policy (Ci− ri)
over its response time in dedicated mode, i.e., when it is the only application executed on
the platform. The objective is then to minimize the maximum stretch of any application,
thereby enforcing a fair trade-off between all applications.

In a distributed context, it is hard to evaluate the response time of an application
in dedicated platform (needed to compute the stretch), since we do not even know the
overall number of nodes. If we would know what is the aggregated computing speed sagg of
the whole platform, then we could approximate this response time as wi/sagg, assuming a
perfect distribution of the application on the computing node. The stretch for application
Ai would then be (Ci − ri)/(wi/sagg).

In practice, we do not known the value of sagg, but we assume that it does not vary much,
and that its variations should not be taken into account when computing the slowdown of
each application. Thus, we assume that the aggregated speed has a constant value, and
we approximate the stretch with (Ci − ri)/wi.
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3.2 Platform model

The platform model which we are using is inherited from the framework described in [9].
Nodes are organized in a network overlay based on a balanced binary tree, where every
leaf node is a processing node, and every internal node is a routing node. The actual
implementation of such overlay is not detailed in this paper, since significant work is
already done on this subject [1, 12, 15]. These solutions propose tree-based peer-to-peer
overlays with good scalability and fault-tolerance properties. Each machine taking part
of the computation acts simultaneously as a processing node and a routing node of the
overlay. The computational speed of a computing (leaf) node of the overlay is denoted by
su, measured in millions of flops per second.

3.3 Scheduling on the overlay

We use the tree structure of the overlay both for gathering information on the platform
and for scheduling. The information of the platform availability is aggregated from the
leaf nodes to the root node, as detailed below in Section 5.

When an application is released, the corresponding request, containing all necessary
information on the application, is received by some machine the system. The routing node
of this machine processes the request based on the information it holds on the platform.
The routing node can either decide to process the application locally in its own subtree, if
the application is small enough and will not cause a large load imbalance, or it can decide
to forward the application to its father in the overlay, which now faces the same choice.
When finally, a node (possibly the root node) takes the decision to schedule the application
in its subtree, it splits the application and allocates a number of its tasks to each of its
children. Then, the children must take the same decision, until the tasks reach the leaf
nodes. The leaf node inserts the incoming tasks into their task queue, and processes them.

In the following, we first present the local scheduling policy, used by the leaf node to
order their task queue (Section 4). Then we explain how the availability of the platform
is gathered along the tree (Section 5), and finally we describe the global scheduling policy
(Section 6).

4 Local scheduler

Each execution node has a local scheduler which decides the processing order of tasks
allocated to this node. The local scheduler has the same objective as the whole platform:
minimizing the maximal stretch among all applications. We rely on a relation between
stretch and deadlines:

Si =
di − ri

wi

=⇒ di = ri + Siwi (1)

Given a value S for this maximum stretch, we can thus compute a deadline for all the
tasks of every application. Then, we can schedule all tasks using and Earliest Deadline
First (EDF) policy, as detailed in Alkgorithm 1: if the deadlines are achievable, the EDF
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policy finds a suitable schedule. Finally, we apply a binary search to find the minimal
possible value for the stretch: for a given stretch value, we compute the deadlines with the
previous formula, and apply the EDF policy; if the deadlines are met, we start again with
a smaller stretch values; if they are not met, we increase the stretch value. Algorithm 2
details this binary search.

Desktop Grid environments are particularly error prone. Thus, fault-tolerance is a
required capacity of algorithms dedicated to such platforms. In the context of the local
scheduling, if a failed node had any task in its queue, they are aborted. At this moment,
we just resubmit tasks when they are detected to have failed. This affects the stretch of
the applications involved since they last longer than expected. On the other hand, as it
is empirically shown in Section 7, having some tasks from all or part of the applications
resubmitted gives the scheduler the opportunity to recalculate their stretch and achieve
more similar values between different applications.

Algorithm 1: Algorithm meetDeadlines(Q).

Input: Q is a task queue.
Output: Whether all tasks in Q meet their deadlines.
e = currentTime
Order tasks by non-decreasing deadlines: d1 ≤ d2 ≤ · · ·
forall tasks in Q do

e = e+ ai/su

if e > di then return false
return true

5 Platform’s availability

In this section, we detail the process that gathers information about the state of the
platform, and communicates it to distant nodes, so that each node can be able to efficiently
schedule an application. The state of the platform is based on the availability of nodes to
receive new tasks. Each computing node builds an availability summary, which states how
many new tasks it can receive. This availability summary is then gathered by the routing
node of the tree, until it reaches the root node. This availability summary is designed both
to provide complete availability on the platform, and to induce a limited communication
overhead.

5.1 Computing the availability of nodes

In order for the global scheduler to correctly allocate tasks to the platform, each computing
node must provide an availability summary which described its capacity to process tasks
from new applications. The availability of a node consists in the number of tasks of a new
application that this node is able to process. Of course, this number of tasks both depends
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Algorithm 2: Algorithm for function maxStretch(Q, ε).

Input: Q is the task queue, ε is the error tolerance.
Output: Optimal maximum stretch that makes all applications meet deadlines.
Smin = 0, Smax = 1
for i = 1 to |Q| do di = ri + Smax · wi

Sort applications by increasing deadlines di.
while meetDeadlines(Q) is false do

Smin = Smax

Smax = 2Smax

for i = 1 to |Q| do di = ri + Smax · wi

while Smax − Smin > ε do
Smid = (Smax + Smin)/2
for i = 1 to |Q| do di = ri + Smid · wi

if meetDeadlines(Q) then
Smax = Smid

else
Smin = Smid

return Smax

on the target maximum stretch and on the application itself. Formally, for a given target
stretch S, and assuming that the new application will be released at time rnew, is made of
tasks of length anew, and has total size wnew, we compute n(S, r, w, a), the maximal number
of tasks that the local computing node can handle locally.
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  A5A4 A3A1 A2 

d1 d2 d3 dnew d5d4

h(S, rnew, wnew)

time r

Figure 1: Example task queue. Tasks from applications A1 through A3 are processed as
soon as possible, while applications A4 and A5 are processed as late as possible. The
available computation in the gap between them is h(S, rnew, wnew).

We briefly describe the evaluation of this function through the example depicted in
Figure 1. The complete algorithm to compute n is available in the companion research
report [10]. Given a tuple (S, rnew, wnew, anew), that is, assuming that a new application
Anew with tasks of size anew, and total size wnew will be released at time rnew, we have to
evaluate the number of such tasks which can be processed while ensuring a stretch at most
S. The first step is to construct the task queue that it expects to have at time rnew: it
discard from its actual task queue the tasks that will be processed at time r (the shaded
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tasks in Figure 1). Then, we compute the deadline that each remaining application Ai

would have with stretch S, using Equation (1). The deadline dnew of the new application
Anew is also computed, and all deadlines are sorted in a non-decreasing order, since the
tasks are going to be scheduled using an EDF policy. In the example of Figure 1, dnew

lies between d3 and d4. The earliest starting time for the tasks of Anew is after tasks of
A1, A2, and A3 (that is all tasks with di < dk) have been computed. Similarly, the latest
completion time for the tasks of Anew must ensure that tasks of A4 and A5 (that is all tasks
with di > dk) will not miss their deadlines, and also that deadline dnew is not exceeded.
This allows to compute the duration of the time slot that can be devoted to Anew, denoted
by h(S, rnew, wnew). Then, the number of atomic tasks that can be processed by the node
is given by:

n(S, rnew, wnew, anew) =

⌊
h(S, rnew, wnew)

anew

⌋
(2)

Algorithm 3 computes the function h(S, rnew, wnew). It first calculates the deadline di

of every application in the queue with stretch S, and dnew for a potentially new application
of parameters rnew and wnew. Then the queue is sorted in EDF order, and the algorithm
first computes the latest starting time xi of each application Ai such that no application
Aj with j ≥ i misses its deadline. For any combination of parameters which makes any
application miss its deadline, the function returns 0 (the stretch is not achievable). Then,
the amount of computation (number of flops) available between rnew and dnew is calculated.
For sake of simplicity, we assume that applications are ordered by non-decreasing value of
di (di ≤ di+1), and that the remaining number of tasks for application Ai is Nu

i .

Algorithm 3: Algorithm for function h(S, rnew, wnew).

Input: S is the desired stretch, rnew is the release date of the new application, wnew

is its size.
Output: number of flops available for the new application.
for i = 1 to n do di = ri + S · wi

dnew = rnew + S · wnew

Order tasks by non-decreasing deadlines: d1 ≤ d2 ≤ · · ·
xn = dn −Nu

n · an/su

for i = n− 1 to 1 do
xi = min(di, xi+1)−Nu

i · ai/su

if x1 < current time then return 0 (at least one application misses its deadline)
Get k so that dk−1 < dnew ≤ dk

ek = rnew +
∑k−1

i=1 N
u
i ai/su

return (min(dnew, xk)− ek)su

Deadline constraints are checked with the use of x1. If the first application is forced
to start before the current time, then it means that one or more applications are missing
their deadline with the selected stretch S. Then, the position of the new application in
the queue is calculated. The result is the number of flops that can be executed between
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the moment at which the previous application is going to finish, and the deadline of the
new application or the last moment at which next application must start, whichever comes
first. Call ek the moment at which application k − 1 in the queue is expected to finish, it
can be calculated by adding the remaining execution time of the k− 1 first applications to
r. Then, if the new application would be at position k in the queue we have:

h(S, r, w) = (min(dnew, xk)− ek)su (3)

5.2 Availability summary

One of the main part of routing nodes consists in dividing a set of tasks from a new
application to send a subset of these tasks to each of its sub-branches (we recall that
routing nodes are organized on a tree-based overlay). In order to decide how to split a set
of tasks, the routing nodes must know how many tasks can be processed by each subtree
rooted at each of its children, and how the stretch of the nodes in that subtree is going to
be affected by the new application. This information is provided by the local schedulers
through the availability function, and aggregated at each level of the tree as a summary of
the availability of the nodes of each branch.

The availability function n provided by each execution node is not directly suited for
the aggregation. For this reason, it is summarized in a four-dimensional matrix, called
availability summary which contains samples of this function: each cell of the matrix,
identified by a tuple (S(i), r(j), w(k), a(l)), contains a conservative approximation of the
function for these parameters. A routing node receives a similar matrix (for the same
selected values of the parameters) from each of its children. In order to report a global
availability summary to its father, it simply aggregates all the received matrices by adding
them. By doing so, when a new application is released, the resulting matrix provides the
number of tasks that can be sent to that node, with a guaranteed maximum stretch.

In order to extract the correct information from the availability matrix, routing nodes
look for the cells associated to the parameters ri, wi, ai contained in each request. How-
ever, not every combination of parameters can be taken into account when creating the
availability matrix, due to space limitations. These parameters are discretized into a set
of selected values. Thus, whenever a new application arrives, the cells used in the division
process are those identified by the nearest values to the application parameters. What is
more, since the availability summary contains only samples of the original function, we a
priori do not know what happens between two selected values of the parameters. In order
to better understand the behavior of the n function based on the availability summary,
and to be able to get guaranteed interpolated availability between the selected values for
the parameters, we carefully study the evolution of n for each parameter. This also helps
us to decide which is the best selected values for parameters S(i), r(j), w(k) and a(l). In
the rest of this section, we will abbreviate n(S, r, w, a) by n(S) when the other parameters
(r, w and a) are fixed, and similarly for the h function defined in Section 4 or other pa-
rameters. Note that we study the evolution of the n function on a given computing node
Pu (with speed su). Then, when the availability of several subtrees are aggregated into a
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single summary, we simply add n functions coming from each subtree. The properties on
this function exhibited below concern its monotonicity for various parameters, so they are
naturally conserved by the aggregation.

5.2.1 Evolution of n with task size a

From Equation 2, it is clear that n(a), evolves as a descending staircase with increasing
values of a. These steps can be calculated as:

n(a) =

{
i, a ∈

(
h(S,r,w)

i+1
, h(S,r,w)

i

]
∀i ∈ N

0, a > h(S, r, w)

It can be seen that more precision is needed for smaller values of a. For this reason,
the values a(i) will be taken from a geometric succession a(i) = bi. b can be empirically
determined, but for now we will use b = 2. The execution nodes will eventually decide
for which of these values they provide information, because it is useless to calculate the
function n for tasks with a length under or over certain limits. For example, a task with
ai = 216 would need around one minute to execute on a node with su = 210, which given
the nature of the platform seems to be a suitable minimum value.

5.2.2 Evolution of n with application size w

For the other three parameters, the evolution of function h will be studied first. First of
all, we will prove that the larger the new application, the more time it will be devoted on
node Pu, which is expressed by the following proposition:

Proposition 1. h(w) is monotonically non-decreasing.

Proof. As it can be deduced from Equation (1), fixed r and S, the deadline of a new
application is a linear function of w, let call it d(w) = S ·w+ r. Due to the EDF ordering,
applications are sorted by non-decreasing deadlines. Let us assume that applications are
numbered such that di−1 < di ∀i, then the new application will maintain its position k in

the application queue as long as d(w) ∈ (dk−1, dk], which means w ∈
(

dk−1−r
S

, dk−r
S

]
.

Given w so that d(w) ∈ (dk−1, dk], from Equation (3) we have h(w) = (min(d(w), xk)−
ek) · su. As w increases, the first situation is d(w) < xk and then h(w) is a linear function
of d(w) with slope su, so it is a linear function of w with slope S · su. Afterward, when
d(w) ≥ xk, h(w) has constant value (xk − ek) · su. An example of both situations can
be seen in Figure 2. In conclusion, h(w) is monotonically non-decreasing in the interval(

dk−1−r
S

, dk−r
S

]
for every k. In the special case where k = 1, d0 makes no sense and can

be replaced in the deduction by r. In the special case where the new application will be
executed after the n applications in the queue, so k = n + 1, dn+1 makes no sense and

xn+1 =∞, thus the function h(w) is a linear function in the interval
(

dn−r
S
,∞

]
with slope

S · su.
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Ak−1

ek dk−1 xk dk

Ak

h(w)

d(w)

d′ d′′

Figure 2: At d(w) = d′, h(w) = (d(w)− ek)su. At d(w) = d′′, h(w) = (xk − ek)su.

Finally, when d(w) reaches the deadline dk of some other application, we have xk < dk

and thus xk < d(w), so h(w) = (xk − ek) · su, as explained before. Now, if we add and
substract the size of application Ak:

h(w) = (xk − ek) · su =
(
xk +

Nu
k ak

su

− ek −
Nu

k ak

su

)
· su

ek +
Nu

k ak

su
trivially equals to ek+1, and from definition of xk in Algorithm 3 we have:

xk = min(dk, xk+1)−
Nu

k ak

su

⇒ xk +
Nu

k ak

su

= min(dk, xk+1)

To sum up, with d(w) = dk,

h(w) = (min(dk, xk+1)− ek+1)su

≤ (min(d′, xk+1)− ek+1)su, ∀d′ ∈ (dk, dk+1]

So, the maximum value of h(w) with w in interval k is lower than or equal to any value of
h(w) in interval k+1, and thus h(w) is monotonically non-decreasing in all its domain.

Being h(w) monotonically non-decreasing means that n(w) is also non-decreasing. This
result is important in order to compute the correct value of n(S, r, w, a) for each cell of the
matrix in an availability summary. For the cells with parameter w = w(i), the stored value
must be the number of tasks that the node is available to execute for a new application
with parameter w ∈ [w(i), w(i+1)). Being the function n(w) non-decreasing, this number
can be obtained just by sampling the function with w = w(i).

For the actual values of w(i), the same geometric succession as for a(i) is used, since wi

is a multiple of ai for all applications Ai. This also guarantees that the ratio between the
actual value of w and the one used in the matrix is at most b.
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5.2.3 Evolution of n with stretch S

For the stretch parameter, we derive similar results as for w:

Proposition 2. h(S) is monotonically non-decreasing.

Proof. Modifying the value of S modifies the deadline of all the applications in a node,
so the order of their execution may change. In fact, two applications will exchange their
position in the queue when their deadlines become equal:

di = dj ⇔ ri + Si,jwi = rj + Si,jwj ⇔ Si,j =
rj − ri

wi − wj

Si,j only makes sense when it is positive. If it is not, then applications i and j do never
exchange positions. Assuming that applications are ordered by its release date, so that
ri < rj ⇔ i < j, then it is trivial that Si,j > 0 ⇔ wi > wj. That is, applications i and j
exchange positions only if wi is greater than wj. When S < Si,j application Ai will execute
before Aj, and when S > Si,j they will execute in reverse order.

Again, the available computation for the new application when it occupies position
k in the queue is h(S) = (min(d(S), xk(S)) − ek)su. It is trivial to see that, when two
applications before position k exchange positions, ek does not change, as it is the sum
of the remaining time of the k − 1 first applications in the queue. The same is true for
xk, it does not change when two applications exchange positions after position k. From
Algorithm 3 we have:

xk = min(dk, xk+1)−
Nu

k ak

su

Supposed that application Ai is at position k and application Aj is at position k + 1,
when S = Si,j we have di = dj and thus xk has the same value no matter in which order
application Ai and Aj are:

xk = min(di,min(dj, xk+2)−
Nu

j aj

su

)− Nu
i ai

su

= min(di,min(di, xk+2)−
Nu

j aj

su

)− Nu
i ai

su

= min(di, xk+2)−
Nu

j aj

su

− Nu
i ai

su

= min(di, xk+2)−
Nu

i ai

su

−
Nu

j aj

su

= min(di,min(di, xk+2)−
Nu

i ai

su

)−
Nu

j aj

su

= min(dj,min(di, xk+2)−
Nu

i ai

su

)−
Nu

j aj

su
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So, the only values of the stretch which influence the available computation for the new
application are:

Si =
r − ri

wi − w
When S = 0, the new application will be the last in the queue. As it increases, it will

advance in the queue over each application with wi > w when it arrives at Si. For simplicity
in notation, we assume that ∀i Si > 0 and Si > Sj ⇔ i < j . Thus, when S ∈ (Sk, Sk−1],
the new application would be in the k position of the queue, with applications A1, . . . , Ak−1

before it and Ak, . . . , An after it.
When S is at the beginning of the interval, the new application would have just

exchanged position with application Ak, so d(S) ≥ xk(S) and h(S) = (xk(S) − ek)su.
xk(S) is a piecewise function where each segment is a linear function which depends on
di, k ≤ i ≤ n, so its slope is one of wi, k ≤ i ≤ n. Thus, the minimum slope of xk(S) is
mini=k nwi > w. xk(S) grows faster than d(S), which slope is w, so for certain value of
S we have d(S) < xk(S), and then h(S) = (d(S) − ek)su = (r + Sw − ek)su is a linear
function of slope wsu.

So function h(S) when S ∈ (Sk, Sk−1] consists of two linear segments, the first with
slope greater than wsu and the next with a slope wsu. It is trivially continuous when
d(S) = xk(S), so we conclude that h(S) is monotonically increasing in interval (Sk, Sk−1].
When S ∈ (0, Sn], the new application is the last one so xk makes no sense and the slope
of h(S) is wsu in all the interval. When S > S1, the new application is not advancing in
the queue any more, so h(S) grows forever with slope wsu once d(S) < x1(S). Also, it is
worth noting that h(S) is zero while ek > min(d(S), xk(S)).

Now we study the situation when S = Sk. In that situation d(S) = dk(S), so xk(S) ≤
d(S) ≤ d(S ′), ∀S ′ ∈ (Sk, Sk−1]. Before the exchange, h(S) = (min(d(S), xk+1(S))−ek+1)su.
Again, if we add and substract the size of application Ak:

h(S) = (min(d(S), xk+1(S))− ek+1)su

= (min(dk(S), xk+1(S))− Nu
k ak

su

− ek+1 +
Nu

k ak

su

)su

= (xk(S)− ek)su

≤ (min(d(S ′), xk(S ′))− ek)su, ∀S ′ ∈ (Sk, Sk−1]

So, the maximum value of h(S) with S in interval k is lower than or equal to any
value of h(S) in interval k − 1, and thus h(S) is monotonically non-decreasing in all its
domain.

The maximum value of S can be arbitrarily large, because it may increase as new
applications enter the system. It is only limited by the capacity of the queue at each node.
Theoretical stretch is lower bounded by one, but using our approximation, its minimum
value tends to zero. The selected set of values for S(i) is again a geometric succession,
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but this time b is a real number between 0 and 1. The cells of the matrix with parameter
S = S(i) will provide the number of tasks for a new application that rises the stretch to a
value in the interval (S(i+1), S(i)]. Again, with Proposition 2 the value at each cell is simply
calculated by sampling function n at S = S(i).

Unlike parameters a and w, for which the minimum and maximum values are fixed
during the system runtime, the minimum and maximum values of S for which information
is provided by execution nodes depends on the context. The minimum stretch will be the
one for which any application in the system misses its deadline, and thus the function
n returns 0. The total number of samples values for S will be fixed, which imposes the
maximum value for S(i).

5.2.4 Evolution of n with release time r

Finally, we consider the evolution of function n with respect to parameter r. If we consider
an empty queue at node Pu, we have:

h(r) = (d(r)− r) · su = (S · w + r − r) · su = S · w · su

In an empty queue, the computation available to a new application does not depend
on r. In any other situation, node Pu will not process more tasks for the new application
than when it is totally free, so h will be lower or equal to S · w · su. In Figure 3, it can
be seen that function h is not monotonic with respect to parameter r. In the first case,
available computation increases as r reaches ek. In the second case, when d(r) reaches xk,
available computation will decrease as r increases.

Ak−1

ek

r d(r)

=⇒

a)

Ak−1

ek

r d(r)

Ak

xk

r d(r)

=⇒

b)

Ak

xk

r d(r)

Figure 3: Two situations where (a) h(r) increases as r increases and (b) h(r) decreases as
r increases. Thus h(r) is not monotonic.

Alongside with this lack of monotony, we can question the interest of computing and
aggregating availability summaries for many values of r: if r is too far in the future, it is
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very likely that an updated summary will be received in the meantime. Empirical results
show that the best solution is to use just one value for parameter r, near in the future,
and update the availability information periodically. By doing so, information is always
up to date and no bandwidth is wasted because smaller availability summary matrices are
sent. The right value for parameter r depends on the update period, which impacts the
bandwidth consumption. In our test, we used a period of five minutes, and r is set to a
time ahead of the current time so that the number of minutes is a multiple of five. In this
way, two different matrices created at two different moments will have the same value for
r if they differ in less than five minutes.

5.3 Updating the availability information

The availability information stored at each routing node of the tree may be updated for
two reasons: (1) when the availability of a node in that branch changes, or (2) when a
request is routed by that routing node.

Each time the availability of an execution node changes (for example when a new child
arrives or leaves), it creates a new summary and sends it to its father node. The father
will aggregate it with the ones coming from its other children and report the result to
the next ancestor, until the root node is reached. If this update is performed in such a
reactive way, each change in the leaves would lead to a message going up in the tree, which
would quickly flood the upper levels of the tree with updates. To avoid this situation, an
update rate limitation is set. When update messages are being sent at higher rates, they
are discarded in favor of the newer messages.

A node must update the availability information of its children when it allocates some
tasks to them, in order to avoid routing the next request to the same execution nodes.
However, since the summary reports the availability of a whole subtree, it is difficult to
predict the impact of allocated tasks. We adopt here a conservative approach, so that the
summary matrix always contains a lower bound on the number of tasks the subtree is able
to compute, for given values of the parameters. Assume we have just send N tasks from a
new application with task size anew. Then, we first subtract N to all cells with similar a
value:

n(S, r, w, anew)← n(S, r, w, anew)−N

All other cells are updated in a similar way, to account for the compute time of the new
tasks:

n(S, r, w, anew)← n(S, r, w, a)−
⌈
N · a
anew

⌉
This allows us to (roughly) estimate the new occupation of the subtree, before a real
summary update is received.
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6 Global scheduler

The global scheduling policy strongly relies on the availability information which is ag-
gregated in the tree using the mechanism described in the previous section. The routing
nodes perform the functionality of the global scheduler in a decentralized fashion: they
receive an application allocation request at rnew, which contains the values Nnew, anew and
wnew for a new application Anew, and route it throughout the tree to the execution nodes,
trying to maintain the global maximum stretch as low as possible.

When a branch nodes receives a request for the allocation of a new application, it uses
the availability summaries of its children to calculate the minimum stretch that can be
achieved by using the resources in its own subtree, using a binary search among the stretch
samples, as detailed in Algorithm 4. Specifically, the algorithm looks for the minimum
sample value S(i) such that its own availability summary guarantees that all Nnew tasks of
the new application can be processed locally with stretch S(i).

Algorithm 4: Algorithm to compute the minimum local stretch

Input: availability summary n(j) for each child j
Let S(k) be the smallest sample value for the stretch, and S(l) the largest one
while k 6= l do

mid = d(l + k)/2e
if
∑

j n
(j)
new

(
S(mid)

)
≥ Nnew then

k = mid
else

l = mid− 1

return S(k)

The new application can thus be scheduled locally in the subtree, but all applications in
this subtree will see their stretch increase to S(i), which might be large. In some cases, this
would lead to an unacceptable load imbalance in the platform. To prevent such situations,
another information is used: the minimum stretch. The minimum stretch of the platform
is periodically aggregated from the leaf nodes to the root node, and then spread from the
root to all other nodes. Since we simply compute and transfer a minimum value, its size
is negligible, and this information may be included in any other update messages.

Once the minimum local stretch S(i) is computed, we accept this local solution if and
only if S(i) ≤ B × Smin, for a given bound B. Otherwise, the entire request is sent to the
father to look for a better allocation. This implements a tradeoff between performance
and load-balancing, so that small applications will remain local, and large applications can
go up the tree until they induce an acceptable slowdown. If parameter B is close to one,
most requests would need to go up the tree until enough execution nodes are at sight; if it
is larger, the ratio between the maximum and the minimum stretch in the whole platform
may be large, and the allocation less fair.

Once a routing node finds a suitable value for the minimum stretch on its local subtree,
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the tasks in the request are ready to be split among the children. This is done following the
values of n(S) in the availability summary of each child: child j gets a share of the total
number of tasks proportional to its availability n(j)(S). A new request is then sent to each
child, with the characteristics of the application, and the number of tasks it is in charge
of. This request is treated as previously, except that it cannot be rejected and forwarded
to its father.

When a routing node fails, the information on the availability of its subtree is lost.
As we pointed out in section 3.2, we assume that our scheduler is based on a tree-based
network overlay which already guarantees a high probability of reaching a stable state
when a node fails, by reconstructing and balancing the tree. Usually, the tree overlay
will recover by replacing the failed node by another one and performing some balancing
operations, like in [12]. While some routing nodes may change their positions, the sets
of execution nodes that lay under their branches are maintained. Thus, the availability
summaries must be recalculated only in such nodes, and possibly in the ancestor nodes up
to the root. The cost of this process is not higher than the cost of a normal update, so the
impact of such a the failure on the global scheduling is mostly limited by the time needed
to recover the overlay. During the update of availability summaries, some applications
might be scheduled using improper information, however this effect is mitigated if we rely
on an overlay which only performs local moves to balance the tree.

7 Experimental evaluation

Our proposal has been implemented in a platform simulator in order to test and validate
its performance. Using simulations allows us to conduct reproducible experiments, so as to
compare performance of several schedulers on the same scenarios. Our simulations do not
only provide performance measurements of the decentralized scheduler, but also several
results on the impact of its algorithms and protocols on the network and computational
resources of the platform. As we show, these results demonstrate the benefits of adopting
a decentralized scheduler in a desktop grid platform over its centralized counterpart.

7.1 Simulation settings

Simulations have been performed on networks including between 50 and 1000 nodes, where
execution nodes have a computing power in the interval [1000, 3000] with steps of 200, in
millions of instructions per second. The network is fully connected, i.e., there is a link
between any two nodes, with a mean link delay of 50 milliseconds and link bandwidth of
1 megabit per second. This scenario represents a desktop grid of home computers with
a modest Internet connection, with different sizes. Workload is generated as a Poisson
process, with a mean inter-arrival time of 10 seconds. With that time, applications arrive
while others are still being executed. The number of tasks per application is ten times the
size of the network, with a random variation of ±20%.

Our decentralized scheduler is tested with and without failures. They occur in each
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node as a Poisson process of rate one failure each four hours. Failures are instantaneous, so
that nodes recover immediatelly, but with reset state. A failed node retains no availability
summaries from its children, and all the tasks that were waiting in its queue are aborted.
The tree is supposed to recover automatically.

Along with the simulation of our decentralized scheduler, two centralized schedulers
have also been tested with the same set of applications and under the same conditions.
Both simulate an online centralized scheduler with perfect information about the execution
nodes. The first one tries to minimize the maximum stretch, as in the decentralized version;
we call it MinCent for short. The second one implements a typical FCFS centralized
scheduler, similar to the one used by other popular desktop grid platforms, and thus is
not expected to achieve very good fairness among applications. The comparison of our
decentralized scheduler against both centralized models is interesting because it shows
the inevitable performance loss by the use of decentralized information compared to the
global scheduling algorithms, and the performance gain compared to classical schedulers
not focusing fairness.

7.2 Simulation results

In order to compare the performance of the different schedulers, we issued several sim-
ulations for various network sizes, with one hundred applications each, registering the
maximum stretch and calculating the mean value for each network size. Figure 4(a) plots
this values for the decentralized and FCFS schedulers, relative to the values obtained with
MinCent, against network size. As it can be seen, with one thousand nodes, the per-
formance lost in the decentralized scheduler without failures is still under 25%. As the
number of nodes increases, the performance is slightly reduced, because in a higher tree,
the information used by the upper levels is less detailed. In the scenario with failures, the
performance is noticiably reduced, as expected, but still better than the one achieved by
the FCFS centralized scheduler. As expected, the classic scheduling policy behaves much
worse in terms of fairness, providing a maximum stretch almost twice higher under the
same conditions.

On the other hand, the appearance of failures has the side effect of reducing the differ-
ence between the stretch of different applications, actually providing better fairness. For
instance, for a network of one thousand nodes, the stretch of the applications without fail-
ures was in the interval [220 · 10−8, 10876 · 10−8], while in the case of failures it was in the
interval [10303·10−8, 12533·10−8]. We deduce that this is due to the fact that the scheduler
is able to further adjust the stretch of the applications with the resubmitted tasks.

The good performance ratio against the centralized scheduler with minimum stretch
objective shown in the previous results is due partly to the dynamic and fast update of
availability information throughout the tree when tasks arrive or finish at the execution
nodes. Having up-to-date availability information is decisive for the global scheduler effi-
ciency. Figure 4(b) shows the maximum update time needed for different network sizes,
with an update rate of 10000 bytes per second. As it can be seen, for the network of one
thousand nodes, a change in the local scheduler of any execution node can be propagated
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Figure 4: Experimental results.

Update rate (Bps) 2500 5000 10000 20000 40000

Max. update time 12.3 6.61 3.68 2.33 1.81
Mean link usage 2.41% 3.78% 4.28% 5% 5.84%
Peak link usage 11.41% 16.43% 24.88% 40.45% 72.63%

Table 1: Update time and link bandwidth usage for different update rate limits in a network
of 1000 nodes.

in less than four seconds. As expected, higher network sizes make the distribution of the
update time shift to higher values. Even though, the difference is very little due to the
logarithmic increase of the tree height.

With higher update rate limits, shorter times can be achieved, nearly in inverse propor-
tion. However, the update rate limit is a critical parameter since we have recorded in the
simulation test that update messages represent more than 95% of the traffic, due to the
size of an availability summary, so it must be increased carefully when better reactivity is
needed. Table 1 presents update time, mean and peak link bandwidth usage for different
update rate limits in a network of 1000 nodes. While mean link usage is quite low in every
case, peak usage rapidly increases. From a general point of view, mean usage shows that
the traffic generated by the platform protocols to schedule the submitted applications is
very low, even at the root node of the tree. However, traffic peaks may be to intrusive for
a desktop grid. Since the corresponding gain in update time is small, we consider the value
of 10000 bytes per second adequate for the kind of links used in the simulation.

The asymmetry of the tree causes higher levels to cope with higher peak bandwidth
usage than lower ones. However, the increase at each level is not constant, since after a
certain level the update rate limit avoids peak usage to continue growing. For instance,
with an update rate limit of 10000 bytes per second in a network of 1000 nodes, the peak
bandwidth usage was between 24.5% and 25% in any level over the third lowest one.
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Moreover, although not used in the scheduling algorithm, the traffic generated by task
data transfers has been measured and compared to the traffic generated by the platform
protocols. We use a task data size of 512 kilobytes, low enough to represent an application
which transmission time does not affect scheduling, and we assume that repositories where
data is stored are not limited in bandwidth. Under these conditions, on each node, the
average data traffic is still 10 times larger than the traffic generated by the platform
protocols.

8 Conclusions and future work

In this paper, we have focused on the problem of scheduling concurrent bag-of-tasks appli-
cations on desktop grids. We have proposed a decentralized scheduling algorithm, which
makes it particularly convenient for large-scale distributed environments. The objective
of our scheduler is to ensure fairness among applications, by minimizing the maximum
slowdown, or stretch, of all applications.

Through extensive simulation tests, we have compared this scheduler to an online cen-
tralized version that also minimizes the maximum stretch, but need a perfect knowledge
of the platform, and to a classical FCFS scheduler, which is commonly used on desktop
grids. We prove that the performance loss compared to the centralized scheduler is rea-
sonable (below 25%), and that the achieved fairness is much better than with FCFS, even
under frequent node failure. We also carefully studied the resource usage of our algorithm,
which proves to use a significantly small quantity of network resources at each node of the
platform. Moreover, the CPU consumption at each node of the platform of our approach
is very low, due to the simplicity of the proposed algorithms. Thus, our decentralized
algorithms has a very low overhead together with a great flexibility and robustness, which
makes it very suited for desktop grid platforms.

Our future works include simulations to study the adaptation of our scheduler to
communication-intensive applications, by taking file size into account when allocating tasks
onto the platform. We also intend to improve our scheduler with more complex overlays
proposed for peer-to-peer platforms.
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