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Abstract
While grid computing reaches further to geographically separated clusters, data ware-
houses, and disks, it poses demanding requirements on end-to-end performance guar-
antee. Its pre-defined destinations and service criteria ease the performance control;
however, expensive resources and equipments used by grid applications determine that
optimal resource sharing, especially at network access points, is critical. From the re-
source reservation perspective, this article looks at communication resources shared
by grid sites. Two resource request scenarios have been identified, aiming at optimiz-
ing the request accept rate and resource utilization. The optimization problems, proven
NP-complete, are then solved by heuristic algorithms. Simulation results, aside from
showing satisfying results, illustrate the pros and cons of each algorithm.

Keywords: grid computing, communication resource, resource sharing, optimization.

Résumé
Le calcul distribué sur la grille requiert l’utilisation de clusters et de moyens de sto-
ckage distribués géographiquement, ce qui rend toute garantie de performance difficile
à obtenir entre chacun des ces éléments. L’existence de chemins et de critères de ser-
vices prédéfinis facilite quelque peu le contrôle de performance ; cependant, le coût
d’utilisation des équipements et des ressources utilisés par les applications distribuées
sur une telle grille fait que l’optimisation du partage de ressources est essentielle, par-
ticulièrement aux points d’accès du réseau. Nous nous intéressons ici au partage des
ressources de communication par les différents sites de la grille de calcul, pour per-
mettre la réservation de ressources. Nous isolons deux scénarios pour les requêtes,
et cherchons à maximiser le taux d’acceptation des différentes requêtes ainsi que le
taux d’utilisation des ressources de communication. Nous montrons que les différents
problèmes d’optimisation sont NP-complets, et proposons des heuristiques pour les
résoudre. Nous comparons les performances de ces différentes heuristiques par simu-
lation.

Mots-clés: Calcul sur la grille, ressources de communication, partage de ressources, optimisation.
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1 Introduction

Grid computing is a promising technology that brings together geographically distributed resources. Grids
aggregate a large collection of resources(e.g., computing, communication, storage, information, etc.) to
build a very high-performance computing environment for data-intensive or computing-intensive applica-
tions [1].

Grid applications, such as distance visualization, bulk data transfer, and high-end collaborative environ-
ment, have diverse and demanding performance requirements [2]; for instance, the coordinate management
of network, storage, and computing resources, dynamically control over QoS and application behaviors,
and advance resource reservation. Analyses [3] have shown that grids demand broad service quality, such
as guaranteed delivery of huge data files [4], TCP throughput predictability, and data delivery stability.

The underlying communication infrastructure of grids, moreover, is a complex interconnection of LANs
and WANs that introduces potential bottlenecks and varying performance characteristics [5]. For instance,
the interface between LAN and WAN, considering grid sites may generate large flows thought their gigabit
interfaces, introduces resource sharing bottleneck. Herein, provisioning end-to-end services with known
and knowable characteristics of grids, which spans multiple administrative and technological domains, is
critical.

An approach to tackle this problem is network resource reservation [6]. While computational/storage
resource sharing/scheduling has been intensively investigated for grids [7, 8, 9, 10] during the past years,
surfacing, is the idea of incorporating network/communication resource management into grid environ-
ments.

Based on the Grid 5000 project [11], an experimental grid platform gathering 5000 processors over
eight sites geographically distributed in France, this article centers on network resource sharing. The rest
of the article is organized as follows. Section2 gives the system model and defines optimization problems
for network resource sharing. Section3 proves that the optimization problem is NP-complete. Heuristics
and simulation results are given in section4 and section5, respectively. Section6 presents related work.
Finally, the article concludes in section7.

2 System Model and problem definition

Derived from physical configuration of the Grid5000 network, the system model is a collection of LANs
(that is, grid sites) interconnected over a well-provisioned WAN. They are connected through IP routers.
The grid network middleware carries out the network resource reservation task and communicates with
grid applications. The network core is assumed to have ample communication resources [?]. Here, the
aggregated capacity of a LAN is larger than the capacity of its access point (i.e., the router), and the
capacity of the network core is larger than the aggregated capacity of all access points.

Given a set of resource requests, one can separate grid sites into ingress and egress points: where the
traffic requires to enter the network from, is the ingress point, and where the traffic requires to leave the
network from, is the egress point. These points at the network edge, as depicted in Fig. 1, are where
resource sharing bottlenecks present.

2.1 Resource requests

Resource requests, corresponding to different application scenarios, can be long-lived or short-lived. The
difference is that short-lived requests have time windows specified, as detailed below.

Given the notation as follows:

• a set of requestsR = {r1, r2, . . . , rK}, with bw(r) as the bandwidth demanded by requestr ∈ R.

• a set of ingress pointsI = {i1, i2, . . . , iM}, with Bin(i) as the capacity (i.e., bandwidth) of ingress
point i ∈ I.

• a set of egress pointsE = {e1, e2, . . . , eN}, with Bout(e) as the capacity (i.e., bandwidth) of egress
pointe ∈ E .
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Figure 1: The system model that shows ingress and egress points of a network as potential bottlenecks.

For each requestr ∈ R, resource sharing constraints are stated as:

∀i ∈ I,
∑

r∈R,ingress(r)=i

bw(r) 6 Bin(i)

∀e ∈ E ,
∑

r∈R,egress(r)=e

bw(r) 6 Bout(e) (1)

whereingress(r) ∈ I andegress(r) ∈ E are the ingress and egress point of requestr, respectively.
For short-lived requests, more parameters are introduced as:

• each requestr ∈ R has a starting timets(r) and a finishing timetf (r). The time window of request
r is then[ts(r), tf (r)].

• Each requestr ∈ R has its volumevol(r) specified either in Bytes or other meaningful units.
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Figure 2: Short-lived requests interleaving with transmission windows.

An example of short-lived requests is depicted as in Fig.2. It is formed on three dimensions, that
is, ingress point, egress point, and time axis. The request starting and finishing times in the time axis are
where resource assignment gets adjusted.
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If requestr is accepted at timeσ(r) = t, both points ofingress(r) andegress(r) devote a fraction of
their capacity, that is,bw(r), to requestr from timet to timeτ(t) = t + vol(r)

bw(r) . Obviously, the scheduled
window of [σ(r), τ(r)] must be included in the time window of[ts(r), tf (r)] for all requestsr ∈ R, that
is,

∀r ∈ R, ts(r) 6 σ(r) < τ(r) 6 tf (r)

Applying to the short-lived requests with scheduled time window[σ(r), τ(r)], the resource constraints (1)
are now restated as:

∀t, ∀i ∈ I,
∑

r∈R, ingress(r)=i,
σ(r)6t<τ(r)

bw(r) 6 Bin(i)

∀t, ∀e ∈ E ,
∑

r∈R, egress(r)=e,
σ(r)6t<τ(r)

bw(r) 6 Bout(e) (2)

2.2 Optimization objectives

To formulate the optimization problem,xk is defined as a boolean variable; it is equal to1 if and only if
requestrk is accepted. Provided with different types of requests and constraints specified in subsection2.1,
two optimization objectives are given as below:

M AX -REQUESTS Under the constraints in (1) or (2), one may maximize the ratio of the number of
accepted requests to that of total requests. The objective function, referred to as MAX -REQUESTS, is:

MAXIMIZE

K∑
k=1

xk

We summarize this into the following linear program:

MAXIMIZE
∑K

k=1 xk,
UNDER THE CONSTRAINTS

(3a) ∀i ∈ I,
∑

rk∈R,ingress(rk)=i

xk.bw(rk) 6 Bin(i)

(3b) ∀e ∈ E ,
∑

rk∈R,egress(rk)=e

xk.bw(rk) 6 Bout(e)

(3)

RESOURCE-UTIL Under the same constraints, one may maximize the resource utilization ratio, that is,
the ratio of granted resources to total resources. The objective function, referred to as RESOURCE-UTIL ,
is:

MAXIMIZE

∑K
k=1 xk.bw(rk)

1
2

(∑M
i=1 B scaled

in (i) +
∑N

e=1 B scaled
out (e)

) ,

where the numerator
∑K

k=1 xk.bw(rk) is the total bandwidth that has been assigned to requests. Since one
bandwidth request is counted twice, that is, at both ingress and egress points, a factor of1/2 is used to
"stretch" the utilization value to1.

Furthermore, defined as

B scaled
in (i) = min

(
Bin(i),

∑
r∈R,ingress(r)=i

bw(r)
)

and
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B scaled
out (e) = min

(
Bout(e),

∑
r∈R,egress(r)=e

bw(r)
)
,

B scaled
in (i) andB scaled

out (e) are adopted to rule out the possibility where one access point has no requests at
all; thus, the capacity of this point shall be excluded when calculating resource utilization.

3 Problem Complexity

Since the linear program (3) involves integer (boolean) variables there is little hope that an optimal solu-
tion could be computed in polynomial time. Indeed, both optimization problems MAX -REQUESTSand
RESOURCE-UTIL turn out to be NP-complete, as shown in the rest of the section.

The decision problem associated to the MAX -REQUESTSproblem is the following:

Definition 1 (M AX -REQUESTS-DEC). Given a problem-platform pair(R, I, E) and a boundZ on the
number of request to satisfy, is there a solution to the linear program3 such that

∑K
k=1 xk > Z?

Theorem 1. MAX -REQUESTS-DEC is NP-complete.

Proof. Clearly, MAX -REQUESTS-DEC belongs to NP; we prove its completeness by reduction from 2-
PARTITION, a well-known NP-complete problem [12]. Consider an instanceB1 of 2-PARTITION: given
n integers{a1, a2, . . . , an}, is there a subsetI of indices such that

∑
i∈I ai =

∑
i/∈I ai? LetS =

∑n
i=1 ai

and assume, without loss of generality, that1 6 ai 6 S/2 for 1 6 i 6 n. We build the following instance
B2 of MAX -REQUESTS-DEC:

• There areK = 2n requests inR, andbw(rk) = bw(rk+n) = ak for 1 6 k 6 n.

• There areM = 2 ingress points andN = n egress points. For ingress points we letBin(i1) =
Bin(i2) = S/2. For egress points we letBout(ek) = ak, 1 6 k 6 n.

• We letingress(rk) = i1, ingress(rk+n) = i2, andegress(rk) = egress(rk+n) = ek for 1 6 k 6 n.

• Finally, we letZ = n. In other words, we aim at satisfying half of the requests.

The size ofB2 is polynomial (and even linear) in the sizeB1. We have to show thatB1 has a solution if
and only ifB2 has a solution.

Assume first thatB1 has a solution. LetI be the subset of{1, 2, . . . , n} such that
∑

i∈I ai =
∑

i/∈I ai =
S/2. We claim that we can satisfy the|I| requestsrk, k ∈ I together with then−|I| requestsrk+n, k /∈ I,
thereby achieving the desired boundZ = n. Indeed, we schedule the first|I| request from ingress pointi1,
and the remainingn−|I| ones fromi2, without exceeding their capacityBin(i1) = Bin(i2) = S/2. Egress
point ek is used either for requestrk if k ∈ I, or for requestrk+n if k /∈ I; in either case,Bout(ek) = ak

is equal to the requested bandwidth for the request.
Conversely, assume now thatB2 has a solution. LetI be the set if indicesk such thatrk is satisfied

and1 6 k 6 n. Similarly, letJ be the set of indices such thatrk+n is satisfied and1 6 k 6 n. Because
the capacity of egress pointek is Bout(ek) = ak, I andJ must be disjoint: if they shared an index, the
capacity of the corresponding egress point would need to be twice larger than it is. Because the bound
Z = n is achieved, we have|I| + |J | > n. We deduce thatI andJ form a partition of{1, 2, . . . , n}.
We have

∑
k∈I ak 6 S/2 because the capacity of ingress pointi1 is not exceeded, and

∑
k∈J ak 6 S/2

because the capacity of ingress pointi2 is not exceeded. ButI ∪ J = {1, 2, . . . , n} and
∑n

k=1 = S, hence∑
k∈I ak =

∑
k/∈I ak = S/2. We have found a solution toB1.

Proposition 1. The decision problem associated toRESOURCE-UTIL is NP-complete.

Proof. For the sake of brevity, we do not formally state the decision problem associated to RESOURCE-
UTIL , but the definition should be obvious. To prove the proposition, we use the previous reduction: it can
easily be checked that we achieve a full utilization of each resource (both ingress and egress points) if and
only if there is a solution to the 2-PARTITION original instance.
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There are two sources of heterogeneity in the MAX -REQUESTSproblem: the capacitiesBin(i) and
Bout(e) of the ingress/egress points may be different, as well as the bandwidthsbw(r) demanded by
the requests. To fully assess the complexity of the problem, it is interesting to ask whether the MAX -
REQUESTS-DEC problem remains NP-complete in the case of an uniform network (all ingress/egress ca-
pacities are equal)? if yes, does it remain NP-complete for an uniform network and uniform requests (all
request bandwidths are equal)? The answers to these questions are given in the following proposition:

Proposition 2. For an uniform network (Bin(i) = B for all i ∈ I andBout(e) = B for all e ∈ E), MAX -
REQUESTS-DEC remains NP-complete. But for an uniform network and uniform requests (bw(r) = b for
all r ∈ R), the optimal solution ofMAX -REQUESTScan be computed in a polynomial time.

Proof. For the first part of the proposition, we start by observing that the restriction of MAX -REQUESTS-
DEC still belongs to NP. For the completeness, we use a reduction from 2-PARTITION-EQUAL, a well-
known NP-complete variation of 2-PARTITION [12]. Consider an instanceB1 of 2-PARTITION-EQUAL:
givenn integers{a1, a2, . . . , an}, wheren is even, is there a subsetI of n/2 indices such that

∑
i∈I ai =∑

i/∈I ai? So in this variation of 2-PARTITION, the two subsets with equal sum must have had the same
cardinal.

Let S =
∑n

i=1 ai and assume (without loss of generality) that1 6 ai 6 S/2 for 1 6 i 6 n. We
construct an instanceB2 which has some similarities with the one used in the proof of Theorem1:

1. First we scale the integersai as
a′i ← ai + S

and we computeS′ =
∑n

i=1 a′i = (n+1)S. The rationale behind this scaling is that
∑

i∈I a′i = S′/2
can only occur if the setI has cardinaln/2.

2. We keep the two ingress pointsi1 andi2 with the same capacityB = S′/2. We augment the capacity
of then egress pointse1, . . . , en so thatBout(ek) = 2S + 1 = B for 1 6 k 6 n. We keep the same
set of2n requests (with the new valuea′k for the bandwidth ofrk andrn+k, 1 6 k 6 n).

3. We addn new ingress pointsi3, . . . , in+2, all of capacityB = S′/2, andn new requestsr2n+k,
1 6 k 6 n. The intuitive idea is that there will be a new request from each new ingress point to
each egress point, which will saturate its bandwidth if accepted together with another old request.
Formally,

ingress(r2n+k) = ik+2, egress(r2n+k) = ek, bw(r2n+k) = 2S + 1− a′k

Finally we letZ = 2n, i.e., we ask whether it is possible to accept2n requests. We now have a uniform
network, and we can reproduce the main ideas of the proof of Theorem1. The main trick is that egressek

cannot accept both requestsrk andrn+k, because2a′k > 2(1 + S) > B. Hence only one of them can be
accepted, and this will be possible only if there is a solution to 2-PARTITION-EQUAL.

For the second part of the proposition, consider an instance of MAX -REQUESTSwith an uniform
network (Bin(i) = B for all i ∈ I andBout(e) = B for all e ∈ E) and uniform requests (bw(r) = b for
all r ∈ R). Without loss of generality, we can assume thatb evenly dividesB andB, and thus, after proper
scaling, thatb = 1. We claim that the solution of the linear program (3) can be computed in polynomial
time. Indeed, the constraints (1) and (1) now writeAX 6 C, where:

• A is a matrix of size(N + M)×K. There areN rows for the ingress points, followed byM rows
for the egress points. There is a column for each requestrk ∈ R. In fact,A is a sub-matrix of the
incidence matrix of the complete bipartite graph connecting the set of ingress points to the set of
egress points.

• X is a vector of sizeK, its k-th component isxk

• C is a vector of sizeN +M , whose firstN components are equal toB and whose lastM components
are equal toB.
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Because the incidence matrix of a bipartite graph is totally unimodular (Theorem 5.24 in [13], the integer
linear program (3) can be solved in polynomial time (Theorem 5.19 in [13]). This completes the proof.

Since the problems have been proven to be NP-complete, heuristics are pursued to solve the problem
defined in Section2. Different approaches are taken, as explained in Section4 and Section5, respectively.
The simulation results are also given, as a means of studying and comparing the performance of different
heuristics.

4 Polynomial heuristics and simulations for long-lived requests

Three polynomial heuristics are proposed for both optimization objectives MAX -REQUESTSand RESOURCE-
UTIL .

4.1 Growing the set of accepted requests

Based on classical greedy algorithm where requests are accepted until there are no more available resources,
MAX REQ-SIMPLE sorts requests by bandwidth in a non-decreasing order (ties are broken arbitrarily). A
request is accepted if and only if its requested bandwidth does not exceed the available capacity of both
ingress and egress points. See Algorithm1, whereA is the set of accepted requests.

MAXREQ-SIMPLE (R, I, E)
SortedRequests ← requestsrk ∈ R sorted by non-decreasing value ofbw(rk ) A← ∅
for each requestr ∈ SortedRequests do

if bw(r) 6 min(Bin(ingress(r)),Bout(egress(r))) then
A ← A∪ {r}
Bin(ingress(r))← Bin(ingress(r))− bw(r)
Bout(egress(r))← Bout(egress(r))− bw(r)

return A

Algorithm 1: The simple greedy algorithm MAX REQ-SIMPLE

MAX REQ-REFINED refines the previous procedure, by accepting the request that leaves the maxi-
mum amount of resources to others. Take requestrk as an example. Leti = ingress(rk), and let
alloc_ingress(i) be bandwidth of pointi which has been taken by accepted requests (initiallyalloc_ingress(i) =
0). By calculating the utilization ratio of ingress pointi, that is,alloc_ingress(i)+bw(k)

Bin(i) , and that of the cor-
responding egress point, the request that minimizes this ratio is accepted. See Algorithm2, whereA is the
set of accepted requests.

4.2 Peeling off the set of original requests

Starting from the whole set of requests (i.e., the set of accepted requestsA = R), MAX USEPEELING

"peels off" certain requests until a solution meeting all resource constraints is found. Given the set of

requests, an occupancy ratio defined asratio(i) =
P

r∈A,ingress(r)=i bw(r)

Bin(i) is calculated for all access points.
If all ratios are smaller than1, all requests are accepted. Otherwise, among requests whose ingress and
egress points both have their occupancy ratio bigger than1, the one that helps decrease the ratio the most is
peeled off; requests, either of whose ingress or egress points has a ratio bigger than1, are scanned through
in a similar manner. This heuristic is detailed in Algorithm3.

4.3 Simulation settings

It is assumed that there are 50 ingress and egress points, respectively. The capacity of each point is ran-
domly chosen as either 1Gb/s or 10Gb/s. Requests may occur between any pair of different points, and its
bandwidth request is randomly chosen from a set of values:{10MB/s, 20MB/s, . . . , 90MB/s, 100MB/s,
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MAXREQ-REFINED (R, I, E)
A← ∅
continue ← true
for each ingress pointi ∈ I do

alloc_ingress(i)← 0
for each egress pointe ∈ E do

alloc_egress(e)← 0
while (R 6= ∅) andcontinue do

for each requestr ∈ R do
cost(r)← max(alloc_ingress(ingress(r))+bw(k)

Bin(ingress(r)) , alloc_egress(egress(r))+bw(k)
Bout (egress(r))

)
selectrmin such thatcost(rmin) 6 cost(r) for all r ∈ E
if (cost(rmin) > 1) then

continue ← false
else
R ← R \ {r}
A ← A ∪ {r}
alloc_ingress(ingress(r))← alloc_ingress(ingress(r)) + bw(r)
alloc_egress(egress(r))← alloc_egress(egress(r)) + bw(r)

return A

Algorithm 2: The refined greedy algorithm MAX REQ-REFINED

200MB/s, . . . , 900MB/s, 1000MB/s}. The number of requests is determined by the system load, which is
defined as the ratio of the sum of demanded bandwidth and the sum of available bandwidth in the system:

load =

∑
r∈R

bw(r)

1
2

(∑
i∈I

Bin(i) +
∑
e∈E

Bout(e)

)
In the simulation, we consider both over-loaded scenarios, with load close to 200%, and cases where

the load is very low (down to 20%).

4.4 Simulation results and discussion

The simulation results for long-lived requests are illustrated in Figure3.
Obviously, MAX REQ-SIMPLE and MAX REQ-REFINED, aiming at accepting as many requests as pos-

sible, outperforms MAX USEPEELING with respect to the accept rate. And MAX USEPEELING achieves
better utilization ratio because it targets at optimizing the resource utilization. The original purposes of
these heuristics have been met.

One may argue that none of the strategies reaches 100% acceptance rate or utilization ratio. The reason
is that randomly generated requests in the article are not uniformly distributed among access points. It
is not rare that certain point are heavily loaded, and certain points are not. The plotted accept rate and
utilization ratio, which are more than 50%, are actually rather satisfying.

5 Polynomial heuristics and simulations for short-lived requests

As illustrated in subsection2.1, if requestr with time window[ts(r), tf (r)] is accepted at timeσ(r) = t, a

fraction of system capacity, that is,bw(r), is scheduled to requestr from timet to timeτ(t) = t + vol(r)
bw(r) .

Assume that time constraints are rigid, that is,σ(r) = ts(r) andτ(r) = tf (r). Requests are then accepted
or rejected as they are.
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Figure 3: Comparison of the heuristics for long-lived requests.
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MAXUSEPEELING (R, I, E)
A←R
SaturatedIngresses← {i ∈ I such thatratio(i) > 1}
SaturatedEgresses← {e ∈ E such thatratio(e) > 1}
while SaturatedIngresses 6= ∅ or SaturatedEgresses 6= ∅ do

{first, look for a request between two saturated points}
E ← {r ∈ A with ingress(r) ∈ SaturatedIngresses andegress(r) ∈ SaturatedEgresses}
if E is not emptythen

find the requestr0 in E with the maximum value
of max{ratio(ingress(r0)), ratio(egress(r0))}

else
{choose the most saturated (ingress or egress) point}
find p ∈ I ∗ ∪ E∗ such thatratio(p) = max{maxi∈I ratio(i),maxe∈E ratio(e)}
find the requestr0 such that:
• ingress(r0) = p or egress(r0) = p
• andbw(r0) is maximum

{now suppress this request and update the system}
suppress the requestr0 fromA
if ingress(r0) ∈ SaturatedIngresses andratio(ingress(r0)) 6 1 then

suppressingress(r0) from SaturatedIngresses
if egress(r0) ∈ SaturatedEgresses andratio(egress(r0)) 6 1 then

suppressegress(r0) from SaturatedEgresses

Algorithm 3: The MAX USEPEELING heuristic. We recall the thatratio is the ratio between the demanded

bandwidth on a given point over its capacity:ratio(i) =
P

r∈A, ingress(r)=i bw(r)

Bin(i) for an ingress pointi, and

ratio(e) =
P

r∈A, egress(r)=e bw(r)

Bout (e)
for an egress pointe.

Note that, sharing the same complexity characteristics with long-lived ones, resource sharing optimiza-
tion for short-lived requests is also NP-complete.

5.1 FIFO

Scheduling requests in a “first come first serve” manner, the FIFO heuristic accepts requests in the order of
their starting times. If several requests happen to have the same starting time, the request demanding the
smallest bandwidth is scheduled first.

5.2 Time window decomposition

With rigid time windows, pre-defined starting and finishing times are used as reference points for resource
scheduling. As depicted in Figure4, these time points naturally form time intervals within which no
request starts or stops; thus heuristics for long-lived requests in Section4 can be applied. Given intervals
[t0, t1], [t1, t2], . . . , [ti−1, iN ], therefore, for eachti, there exists a requestr such thatts(r) = ti or tf (r) =
ti. The greedy strategies proposed in Section4 are then applied to each time-interval, with two situations
explained in the following paragraphs.

For a request that spreads over multiple time intervals, first, if it gets rejected in its first time interval, it
will be discarded permanently; second, if it gets accepted in its first time interval, it shall be granted certain
priority when competing with other requests in its future time intervals.

Taking the duration of a request and the scheduling decisions in previous time intervals into consid-
eration, apriority factor is used to represents the importance of scheduling requestr on a given time-
interval. Assume requests in time-intervals[t0, t1], [t1, t2],. . . ,[ti−1, ti] have been scheduled, At the interval
of [ti, ti+1], thepriority factor is defined as the sum of the time already allocated to the request (ti− ts(r))
and the duration of the current interval (ti − ti−1) over the total request duration, that is,
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t

r

tf (r)ts(r)
time-intervals:

requests:

Figure 4: Decomposition of requests with time windows.

priority(r, [ti, ti+1]) =
ti+1 − ts(r)
tf (r)− ts(r)

The cost factor defined in the MAX REQ-REFINED heuristic for long-lived requests, is then refined as
follows:

cost(r, [ti, ti+1]) =
bw(r)

bmin × priority(r, [ti, ti+1])

wherebmin = min
{
Bin(ingress(r)),Bout(egress(r))

}
By adopting this cost factor, for requests with the same starting time, a higher priority is given to

requests with smaller duration; it maximizes the accepted number of requests. For requests within the
same time interval, a higher priority is given to requests that have been granted more resources. The
complete heuristic CUMULATED -SLOTS is detailed in Algorithm4.

CUMULATED-SLOTS (R, I, E)
TimeIntervals ← {ts(r), tf (r) for somer ∈ R}
sortTimeIntervals and remove duplicated dates
take the first elementt1 of TimeIntervals
while TimeIntervals is not emptydo

take the first elementt2 of TimeIntervals
{we work on the interval[t1, t2]}
for each ingressi in I do

alloc_ingress(i)← 0
for each ingresse in E do

alloc_egress(e)← 0
ActiveRequests ← {r ∈ R, such thatts(r) 6 t1 andtf (r) > t2}
for each requestr in ActiveRequests do

cost(r)← vol(r)

min
{
Bin(ingress(r)),Bout (egress(r))

}
×(ti+1−ts(r))

sortActiveRequests by non-decreasing value ofcost
for each requestr in ActiveRequests do

if alloc_ingress(ingress(r)) + bw(r) 6 Bin(ingress(r))
andalloc_egress(egress(r)) + bw(r) 6 Bout(egress(r)) then

allocate requestr on interval[t1, t2]
alloc_ingress(ingress(r)) ← alloc_ingress(ingress(r)) +
bw(r)
alloc_egress(egress(r))← alloc_egress(egress(r)) + bw(r)

else
remove requestr from all previous intervals
remove requestr fromR

Algorithm 4: The heuristic for short-lived requests
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Following the same time window decomposition technique, two variants of the previous heuristic, that
is, MIN BW-SLOTS and MIN VOL-SLOTS, are proposed with re-defined cost factorcost(r, [ti, ti+1)] =
bw(r) andcost(r, [ti, ti+1)] = vol(r), respectively.

5.3 Simulation settings

Again, we are willing to test our heuristics and compare their performances by simulation. The framework
of these simulations is close the one for long-lived requests, but have some particularities.

The platform is now composed of 10 ingress and 10 egress point, with the same capacity of 1GB/s.
Ingress/egress points and bandwidth of the requests are generated as previously. Some new parameters of
the requests still have to be instantiated:

• The volume is randomly chosen between 100GB and 1TB. As the possible bandwidths go from
10MB/s to 1GB/s, the duration of the requests may vary from a couple of minutes to about one day.

• Starting times are chosen according to a Poisson law. To reach a meaningful load of the platform,
the parameter of this law can vary from 20 to 80 seconds.

As in the long-lived case, we want to compute the load of the platform. We have to change this
definition, so as to take the duration of the requests into account:

load =

∑
r∈R

vol(r)(∑
i∈I

Bin(i)

)
× T

whereT is the total duration of the schedule. However, with this definition, the “clean-up” phase has a
huge importance in the definition of the load, as shown in Figure5. In this graph, representing the sum
of all requested bandwidth over the time, we can consider two phases: a heavy-load phase where lots of
requests are produced, and a “clean-up” phase, where we wait for long requests to terminate. We want to
compare the performances of our strategies in the first phase, so we modify the definition of the termination
timeT used in the computation of the load:

T = max
r∈R

ts(r)−min
r∈R

ts(r).

So the “long tail” of the second phase is not taken into account anymore.
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Figure 5: Variable load for short-lived requests.)
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5.4 Simulation results and discussion

As illustrated in Figure6, first, FIFO shows poor performance on both accept rate and utilization ratio.
The fact that FIFO lets requests block each other indicates that selectively reject is an important step to-
wards good performance. Second,MIN VOL-SLOTS does not perform as well asMIN BW-SLOTS and
CUMULATED -SLOTS. In fact, accepting a request with the minimum volume may not always be a good
decision. If the time window is small, the request will likely take the majority of the bandwidth; this lowers
the value of the accept rate and thus the utilization ratio. Last, CUMULATED -SLOTS andMIN BW-SLOTS

have very close performance. CUMULATED -SLOTS should have good performance because its decision
is made based on both demanded bandwidth and resource reservation in the past; it prevents a request
from being rejected in the late stage of its time window. MINBW-SLOTS accepts the requests with smaller
bandwidth requirements; these requests are unlikely to be rejected later, unless other requests with small
bandwidth demand surges at one point. Under some circumstances, MINBW-SLOTS performs as well as
CUMULATED -SLOTS, even without resource reservation history.

6 Related Work

Admission control mechanisms in IP networks are well-developed [14]. They have been mostly done at
the ingress points of the network edge, or is closely coupled with feasible path search. The work in this
article, however, looks at both access points where the traffic enters and leaves the network. Besides, the
specific network topology studied in this article does not pose significant requirements on routing.

Studying control mechanisms at network edge, this work is in line with the Internet philosophy of
pushing the complexity to the network edge. On the perspective of resource scheduling, it pursues solutions
based on the idea of what enters the network shall be able to leave the network, that is, the idea of avoiding
potential packet drop within the network. This idea of "globally max-min fair" was investigated in Network
Border Patrol [15], a core-stateless congestion avoidance mechanism.

Advance reservation for grids has also been under intensive study. The Globus Architecture for Reser-
vation and Allocation (GARA) provides advance reservations and end-to-end management for QoS on dif-
ferent type of resources (network, storage and computing) [6]. A QoS architecture that combines resource
reservation and application adaptation has been proposed. The work in this article fits in this context, but
further explores the optimization on network resource sharing, based on a specific topology.

The advance reservation problem has also been defined and investigated in [16]. Although both tar-
geting at resource requests with starting and finishing time limits, the work in this article looks at optimal
resource sharing over a network with resource bottlenecks occurring at the edge, rather than investigating
on impacts of the percentage of book-ahead periods and that of malleable reservations on the system.

7 Conclusions

Network resource sharing in grids has been investigated in this article. With bottlenecks presented at the
network edge, network resources are reserved based on the concept of what enters the network shall be able
to leave the network. For both long-lived and short-lived requests, optimization objectives with respect
to request accept rate and resource utilization are pursued. Proven to be NP-complete, the optimization
problems are solved with heuristics. The heuristic algorithms are studied and compared by simulations.

Resource sharing optimization studied in this article can be extended to other similar environments,
for example, community overlay networks. The resource sharing strategies can be carried out either in a
centralized or distributed manner, depending on network management implementations. Future work will
be continued in the direction of reliving tentative hot spots in the network, that is, ingress/egress points that
are heavily demanded, and in the direction of real-time resource reservation.
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