
Lecture 2: Scheduling on Parallel Machines

Loris Marchal

October 17, 2012

Parallel environment (alpha in Graham’s notation):
• P parallel identical
• Q uniform machines: each machine has a given speed speed i, and all jobs have a

size sizej, the processing time is given by sizej/speed i

• R unrelated machines: the processing time of job j on machine i is given by pi,j,
without any other constraints

Sometimes the number of processors is fixed: for example, P2, F2, or Pm.

1 Minimizing makespan on identical machines: P ||Cmax

Even this simple parallel scheduling problem is NP-complete. There are straightforward
reductions from classical NP-Complete problems:
• Partition: Given n integers ai whose sum is S, is there a subset I of these numbers

such that
∑

i∈I ai =
∑

i/∈I ai = S/2 ?
• 3-Partition: Given 3m integers ai whose sum is mB, are there m subsets of 3 ai

each S1, . . . Sm such that ∀k,
∑

i∈Sk
ai = B ? The problem remains NP-complete if

the ai are such that B/4 < ai < B/2.
While Partition is only weakly NP-complete, 3-Partition is unary NP-complete (it remains
NP-complete even if its input is encoded in unary).

A List-Scheduling algorithm is an algorithm that maps tasks to available resources
without introducing idle times if it is not needed. Using m processors, Graham proves
that any list-scheduling algorithm is a 2− 1/m-approximation algorithm.

Theorem 1. A list-scheduling algorithm is a 2−1/m-approximation algorithm for P ||Cmax.

Proof. Consider the last task k to finish, and t its starting time. Before time t, all ma-
chines were busy (otherwise k would have been started earlier). Thus, the total processing
time of all tasks except k is larger than t×m:∑

i 6=k

pi ≥ m× t

Thus,

t ≤
∑

i pi − pk
m

≤ COPT
max −

pk
m

And

Cmax = t+ pk ≤ COPT
max +

(
1− 1

m

)
pk ≤

(
2− 1

m

)
COPT

max .

1

This bound is tight, which means that the inequality can be an equality in certains
cases. Let us for example consider the problem of processing 3 tasks with running times
1,1,2 on 2 machines. If both task of duration 1 are scheduled first, the makespan will be
3 instead of 2.

We can improve this bound using a specific list-scheduling algorithm. LPT, which
stands for Longest Processing Time first, considers a list of tasks sorted by non-increasing
processing time, and schedule them on the available resources.

Theorem 2. LPT is a (4/3− 1/3m)-approximation algorithm for P ||Cmax.

Proof. Let S be the schedule output by LPT on a given instance of the problem. We
consider l, the last task to finish in S. We shorten the instance to tasks 1, 2, . . . l (with
p1 ≥ p2 ≥ · · · ≥ pn): this does not modify the solution of LPT, but only give some
advantage to the optimal solution. The approximation ratio will only be better. On this
instance, pl is the smallest processing time, noted pmin.

Lemma 1. If pmin > COPT
max /3, then Cmax = COPT

max .

Proof. Assume that pmin > COPT
max /3 and focus on the optimal schedule. Since COPT

max <
3pmin, at most 2 tasks are processed on each machine. We denote by i1 and i2 the tasks
processed on machine i, with pi1 ≥ pi2 . We assume that machines are sorted such that
pi1 ≥ pi′1 for i < i′.

We can assume that pi2 ≤ pi′2 for i < i′ (otherwise we exchange them). We prove that
this schedule is the one given by LPT:
• If LPT gives at most 2 tasks per machine, this is the schedule of LPT.
• If LPT gives 3 tasks to a given machine, let j be the third task put on a machine

with 2 tasks. Since n ≤ 2m, there exists one machine with a task k which is alone
on a machine in LPT but not in OPT. Since LPT put task j on the least loaded
machine, it means that k is longer than 2 other tasks: pk ≥ 2pmin > 2COPT

max /3.
However, in OPT, k is processed with another task on a single machine, whose
running time is thus larger than pk +pmin > COPT

max , which contradicts its optimality.

We now have to consider the case pmin ≤ COPT
max /3. Then, we refine the bound from

the previous proof:

Cmax ≤ COPT
max +

(
1− 1

m

)
pmin ≤

(
4

3
− 1

3m

)
COPT

max .

2 Adding precedence constraints: P |prec|Cmax

We now introduce precedence constraint between tasks:
• precedence constraints: i→ j means that j cannot start before i completes
• often modeled using a Directed Acyclic Graph
• any path of precedence is a lower bound on the optimal makespan
• critical path: (one of) the longest path
• precedence may have special structure:

– prec : arbitrary precedence constraints

2

– intree: (outtree) intree (or outtree) precedences
– chains: chain precedences

The Graham list-scheduling approximation ratio can be adapted in this case.

Theorem 3. A list-scheduling algorithm is a 2−1/m-approximation algorithm for P |prec|Cmax.

Proof. Let l be the tasks which finishes last and tl its starting time. Let l − 1 be the
predecessor of l which finishes the last one. Because of precedence constraint, we have
tl ≥ tl−1 + pl−1. We construct a series of jobs preceding each other, starting at 1 (which
has no predecessor) such that 1→ 2→ · · · → l − 1→ l. Since this is a precedence path,
COPT

max ≥
∑l

i=1 pi.
We now state the important observation of the proof: between the finish time ti + pi

of one task of this chain and the starting time of the next task ti+1, all machines are busy
(otherwise task i+ 1 would have been started earlier). The same is true between time 0
and t1. The overall amount of work processed during these busy times is:

m(t1 +
l−1∑
i=1

(ti+1 − (ti + pi)) ≤
∑

pi −
l−1∑
i=1

pi ≤ mCOPT
max −

l−1∑
i=1

pi

Thus,

t1 +
l−1∑
i=1

(ti+1 − (ti + pi)) ≤ COPT
max −

1

m

l∑
i=1

pi +
l∑

i=1

pi

tl ≤ COPT
max +

(
1− 1

m

) l−1∑
i=1

pi

Since Cmax = tl + pl, we get the expected result.

3 A 2-approximation algorithm for unrelated ma-

chines: R||Cmax

3.1 Linear Programming formulation and integrality gap

The results stated in this section come from the article “Approximation Algorithms for
Scheduling Unrelated Parallel Machines”, published in 1990 by Lenstra, Shmoys and
Tardos.

The problem R||Cmax is NP-complete as a generalization of P ||Cmax. It can be formu-
lated as an integer program (IP). We use variable xi,j ∈ {0, 1} to describe the schedule:
xi,j = 1 if and only if task i is schedule on machine j. Variable C denotes the makespan:

(IP)

Minimize C under the constraints:

∀i,
∑
j

xi,jpi,j ≤ C

∀j,
∑
i

xi,jpi,j = 1

∀i, j, xi,j ∈ {0, 1}

3

The following straightforward result states that it is equivalent to solve the integer
program or the scheduling problem.

Theorem 4. The value of the objective function in an optimal solution of IP is equal to
the optimal makespan COPT

max .

Solving an integer problem is an NP-complete problem. However, solving a linear
program (where all variables are rational) can be done in polynomial time, and efficient
algorithm exists such as the simplex. We use a relaxation of this integer program as a
basis for a 2-approximation.

(LP)

Minimize C under the constraints:

∀i,
∑
j

yi,jpi,j ≤ C

∀j,
∑
i

yi,jpi,j = 1

∀i, j, 0 ≤ yi,j ≤ 1

The usual way of deriving approximation algorithms based on linear programming
relaxation is the following. Based on the optimal solution of LP, we aim a constructing
a schedule for the original problem. Since the solution of the relaxed problem is usually
not feasible, the performance of the obtained schedule is reduced compared to the LP
relaxation. If we denote by C∗max the value of the objective in the LP relaxation and Cmax

the makespan of the constructed schedule, we hope that we can construct a schedule with
Cmax ≤ αC∗max.

However, as the relaxed linear program does not capture all the constraints of the
original problem, there may exist an instance I for which the ratio COPT

max (i)/C∗max(I) is
large. Thus, as Cmax ≤ COPT

max , we have:

α ≥ Cmax(I)

C∗max(I)
≥ COPT

max (I)

C∗max(I)

Since this is true for all instances, the best approximation that we can expect is lower
bounded:

α ≥ max
instances I

COPT
max (I)

C∗max(I)

This maximum is called the integrality gap of the LP relaxation. In particular in our
problem this gap is an issue: consider the problem of scheduling a single task on m
machines. The running time of the task is m on any machine. The optimal makespan
is COPT

max = m, but in the LP relaxation, it is possible to allocate a fraction 1/m of the
task on each machine, leading to a objective value C∗max = 1. Thus, α = 1 and it is not
possible to derive a constant factor approximation algorithm with this method.

3.2 Approximation algorithm

On of the problem of using the relaxed linear program is that it is oblivious to a very
simple lower bound on the makespan: if task i is processed on machine j, the makespan

4

is not smaller than pi,j. However, we do not know a priori which machine will process
each job.

We use this bound in a different way. Assume on the contrary that we know the
optimal value for the makespan C. Then, we know that a task i can only be processed
on machines j such that pi,j ≤ C. We denote by SC the set of possible mappings with
makespan C:

SC = {(i, j), pi,j ≤ C}.

The following polytope defines the solutions of the relaxed LP with this additional con-
straints for a makespan not larger than C:

(LPC)

∀i,
∑

j,(i,j)∈SC

yi,jpi,j ≤ C

∀j,
∑

i,(i,j)∈SC

yi,jpi,j = 1

∀(i, j) ∈ SC , yi,j ≥ 0

As previously with LP , if C ≥ Cmaxopt, then LPC is feasible. We will show later
that from a feasible solution of LPC , it is possible to build a schedule with makespan
Cmax ≤ 2C.

Theorem 5. For a given C, if LPC is feasible, then one can find a schedule with makespan
at most 2C in polynomial time.

We first how to solve the original problem: computing a 2-approximation algorithm
for R||Cmax using this result. The solution is based on a dichotomic search using the
following algorithm:

1. Initialize L = 1 and U = nmaxi,j pi,j
2. While U − L > 1 do

(a) Let C = (L+ U)/2
(b) If LPC then U ← C otherwise L← C.

3. Let C∗ ← U . Note that this is the minimum C∗ for which LPC∗ is feasible. We
build a schedule with makespan at most 2C∗ using Theorem 5.

Theorem 6. This algorithm produces a 2-approximation to R||Cmax in polynomial time.

Proof. The algorithm runs in time log(nmaxi,j pi,j)×T1 +T2 where T1 is the time needed
to solve the linear program and T2 the time needed to build a solution. Since both are
polynomial, the algorithm runs in polynomial time.

Since there exists a solution to IP with objective COPT
max , in particular LPCOPT

max
is

feasible. The algorithm the smallest value C∗ for which LPC∗ is feasible, C∗ ≤ COPT
max and

the produces schedule has a makespan Cmax ≤ 2C∗ ≤ 2COPT
max .

We now move to the construction of a schedule with makspan smaller than 2C from
a solution of LPC .

Proof of Theorem 5. Let v the number of variables in the linear program LPC (v = |SC |).
The linear program has v variables and n+m+v constraints. A vertex of the polyhedron
is defined by v constraints. Thus, there exists a point y∗ in the polytope for which v

5

among the n + m + v constraints are equalities. At most, there are n + m of the last
constraints (yi,j ≥ 0) which are not equalities for y∗, and thus at most n + m non-zero
variables in y∗.

We construct a bipartite graph G representing the non-zero variables: the vertices are
the machines and the tasks, and there is an edge between i and j if and only if y∗i,j > 0. We
assume that G is connected (if G is not connected, we process each connected component
as follows). The number of edges in G is at most n + m while the number of vertices is
n+m. Thus, G is either a tree or a tree plus one edge. In particular, G has at most one
cycle.

We call leaf task a task with degree 1 in G . Not that for each such leaf task i, there
is a unique machine j with y∗i,j ≥ 0 and thus, y∗i,j = 1. Let Tj be the set of leaf tasks
connected to machine j. Note that we have∑

i∈Tj

pi,j =
∑
i∈Tj

y∗i,j ≤ C∗

since y∗ is a point of LPC∗ .
We first delete all these leaf tasks from G. In the remaining graph, all tasks have

degree at least 2. We map the remaining tasks as follows:
1. M ← ∅
2. While G is not a cycle or is not empty, do

(a) Find a machine j with degree 1. Let i be a task connected to j. Map i to i
and supress both vertices in G. If any machine has degree 0, delete it as well.

3. If G is a cycle, find a matching M ′ in the cycle, which maps each task to a unique
machine, and a single task per machine, and M ←M ∪M ′

Note that pruning the graph always ends with an empty graph or a unique cycle. This is
why the graph G originally contains a single cycle. Moreover, since all tasks of degree 1
have been deleted before, the only remaining vertices with degree 1 are machines. When
removing such a machine and the corresponding task, it only affects the degree of other
machines, not tasks. At the end, a single taks has been mapped to each machine in
this step. Thus, the additionnal workload for each machine is smaller than C∗ and the
obtained mapping has makespan smaller than 2C∗.

4 Shop scheduling problems

4.1 Notations for shop and job-shop scheduling

• jobs: J1, . . . , Jm
• processors: P1, . . . , Pm

• job Jj consists in operations J1,j, J2,j, . . . , Jnj ,j

• operation Ji,j takes time pi,j and must be processed by machine µi,j

no precedence precedence chains

arbitrary structure J: job-shop

∀j, nj = m,µi,j = Pi O: open-shop F: flow-shop

6

4.2 List-scheduling for O||Cmax

We prove that any list-scheduling algorithm is a 2-approximation for O||Cmax first, two
simple bounds on the optimal makespan:

• ∀j, OPT ≥
∑m

i=1 pi,j (all operations of each job must be processed)

• ∀i, OPT ≥
∑n

j=1 pi,j (each machine must process all required operations)

Let (M, l) be the pair machine/job which finishes the last one. At any time step
before Cmax, either M is busy processing something or l is busy being processed by some
machine, so:

Cmax ≤
n∑

j=1

PM,j +
m∑
i=1

Pi,l ≤ 2OPT

7

	1 Minimizing makespan on identical machines: P||Cmax
	2 Adding precedence constraints: P|prec|Cmax
	3 A 2-approximation algorithm for unrelated machines: R||Cmax
	3.1 Linear Programming formulation and integrality gap
	3.2 Approximation algorithm

	4 Shop scheduling problems
	4.1 Notations for shop and job-shop scheduling
	4.2 List-scheduling for O||Cmax

