
Divisible load theory

Loris Marchal, material from Frédéric Vivien

1 Summary of the first lecture

– Key assumption : work is divisible in rational quantities
– Renders many problems tractable
– Underlying idea : since the number of tasks is large, rounding to integer values after

computing optimal schedule is negligible

– A schedule is described by :
– the set of participating processor,
– the order of the sending operations,
– the quantity of work sent to each processor

– Basic problem : star network, linear costs, one-round,
– All workers participate
– Send work to workers with largest bandwidth first
– All workers terminate at the same time : we are able to compute the amount of

work done by each worker

Many possible generalizations.

2 Adaptation to tree-shaped platforms

– Each single level tree can be replaced by a single node, with total computing capacity
W , with w =

∑
αi, where α is the solution of the previous linear program

– Constructive solution for the tree :

1. Traverse the tree from bottom to top, replacing each single-level node by a
equivalent processor

2. Solve the star problem obtained

3. Traverse the tree from top to bottom, undo each transformation, order the
children, and distribute the load.

– Global solution : order the children by non-decreasing bandwidth, and then write
the complete linear program.

1



3 Multi-round algorithms

3.1 Discussion

One round vs. multi-round

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α1g α2g αpg

Pp

P2

P1

Network

One round
; long idle-times

R0 R1 Rk

Pp

P2

P1

Network

Multi-round
Efficient when Wtotal large

Intuition : Start with small rounds, then increase chunk sizes.
Problem with current model : leads to an absurd solution with infinite number of

infinitely small messages.
– Either change the model in order to allow simultaneous communication and com-

putation on the same data
– Or add latency to the communication the model

Notations
– A set P1, ..., Pp of processors
– P1 is the master processor : initially, it holds all the data.
– The overall amount of work : Wtotal.
– Processor Pi receives an amount of work αiWtotal with

∑
i ni = Wtotal with αiWtotal ∈

Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi : wi.
Computation time on Pi : niwi.

– Time needed to send a message of size αi P1 to Pi : Li + ci × αi.
One-port model : P1 sends and receives a single message at a time.

Complexity

One round, ∀i, ci = 0 Given Wtotal, p workers, (Pi)1≤i≤p, (Li)1≤i≤p, and a rational
number T ≥ 0, and assuming that bandwidths are infinite, is it possible to compute all
Wtotal load units within T time units ?

Theorem: The problem with one-round and infinite bandwidths is NP-complete.

What is the complexity of the general problem with finite bandwidths and several
rounds ?

2



The general problem is NP-hard, but does not appear to be in NP (no polynomial
bound on the number of activations).

3.2 Resolution with fixed sequence

Fixed activation sequence

Hypotheses

1. Number of activations : Nact ;

2. Whether Pi is the processor used during activation j : χ
(j)
i

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k ≤ Nact,∀l :

(
k∑

j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

)
+

Nact∑
j=k

χ
(j)
l α

(j)
l wl ≤ T

∀i, j : α
(j)
i ≥ 0

(1)

Can be solved in polynomial time.

Fixed number of activations

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k ≤ Nact,∀l :

(
k∑

j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

)
+

Nact∑
j=k

χ
(j)
l α

(j)
l wl ≤ T

∀k ≤ Nact :

p∑
i=1

χ
(k)
i ≤ 1

∀i, j : χ
(j)
i ∈ {0, 1}

∀i, j : α
(j)
i ≥ 0

(2)

Exact but exponential

Can lead to branch-and-bound algorithms

3



3.3 Uniform multi-round (UMR)

In a round : all workers have same computa-
tion time

Geometrical increase of rounds size

No idle time in communications :

α
(j)
i wi =

p∑
k=1

(Lk + α
(j+1)
k ck).

Heuristic processor selection : by decreasing
bandwidths

No guarantee...

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

.

.

.

.

.

.

Transfer

Compute

Transfer

Compute

Transfer

Compute

Worker 1

Worker 2

round j

TA

time

Transfer
Worker i

round j + 2round j + 1

TB T
C

Li

Worker p

α
(j+1)
1 ciα

(j)
1 ci

α
(j)
1 w1

α
(j)
i ci

Compute

α
(j)
p cp

α
(j)
i wi = α

(j)
1 w1

α
(j+1)
i ci

α
(j+1)
p cp

α
(j)
p wp = α

(j)
1 w1

3.4 Periodic schedule
Tp

Ln αncn Ln αncn Ln αncn

..
.

α1w1

α2w2

α3w3

αnwn

α1c1
α1w1

α2w2

α3w3

αnwn

α1w1

α2w2

α3w3

αnwn

α1c1 α1c1

L2 L2 L2α2c2 α2c2 α2c2

L3 L3 L3α3c3 α3c3 α3c3

L1 L1 L1

Compute

Transfer

Compute

Transfer

Compute

Transfer

Compute

Transfer

How to choose Tp ? Which resources to select ?

Without overlap
Equations
– Divide total execution time T into k periods of duration Tp.
– I ⊂ {1, . . . , p} participating processors.
– Bandwidth limitation : ∑

i∈I

(Li + αici) ≤ Tp.

– No overlap :
∀i ∈ I, Li + αi(ci + wi) ≤ Tp.

Normalization
– βi average number of tasks processed by Pi during one time unit.

4



– Linear program :
Maximize

∑p
i=1 βi{

∀i ∈ I, βi(ci + wi) ≤ 1− Li

Tp∑
i∈I βici ≤ 1−

∑
i∈I Li

Tp

.

– Easier version (more constrained) :
– change second member of first constraints
– sum in last constraint concerns all processors

Maximize
∑p

i=1 xi{
∀1 ≤ i ≤ p, xi(ci + wi) ≤ 1−

∑p
i=1 Li

Tp∑p
i=1 xici ≤ 1−

∑p
i=1 Li

Tp

.

Bandwidth-centric solution
– Sort : c1 ≤ c2 ≤ . . . ≤ cp.
– Let q be the largest index so that

∑q
i=1

ci
ci+wi

≤ 1.

– If q < p, ε = 1−
∑q

i=1
ci

ci+wi
.

– Optimal solution to relaxed program :

∀1 ≤ i ≤ q, xi =
1−

∑p
i=1 Li

Tp

ci + wi
and (if q < p) :

xq+1 =

(
1−

∑p
i=1 Li

Tp

)(
ε

cq+1

)
,

and xq+2 = xq+3 = . . . = xp = 0.

Asymptotic optimality
– Let Tp =

√
T ∗max and αi = xiTp for all i.

– Then T ≤ T ∗max +O(
√
T ∗max).

– Closed-form expressions for resource selection and task assignment provided by the
algorithm.

With overlap
Key points
– Still sort resources according to the ci.

– Greedily select resources until the sum of the ratios ci
wi

(
instead of ci

ci+wi

)
exceeds

1.

4 With bounded memory

Divisible load scheduling with bounded memory
– Assume the memory is bounded on each worker
– Problem is NP-complete with affine costs (reduction from 3-partition)

5


	1 Summary of the first lecture
	2 Adaptation to tree-shaped platforms
	3 Multi-round algorithms
	3.1 Discussion
	3.2 Resolution with fixed sequence
	3.3 Uniform multi-round (UMR)
	3.4 Periodic schedule

	4 With bounded memory

