
Divisible load theory

Loris Marchal, material from Frédéric Vivien

1 Summary of the first lecture

– Key assumption : work is divisible in rational quantities
– Renders many problems tractable
– Underlying idea : since the number of tasks is large, rounding to integer values after

computing optimal schedule is negligible

– A schedule is described by :
– the set of participating processor,
– the order of the sending operations,
– the quantity of work sent to each processor

– Basic problem : star network, linear costs, one-round,
– All workers participate
– Send work to workers with largest bandwidth first
– All workers terminate at the same time : we are able to compute the amount of

work done by each worker

Many possible generalizations.

2 Adaptation to tree-shaped platforms

– Each single level tree can be replaced by a single node, with total computing capacity
W , with w =

∑
αi, where α is the solution of the previous linear program

– Constructive solution for the tree :

1. Traverse the tree from bottom to top, replacing each single-level node by a
equivalent processor

2. Solve the star problem obtained

3. Traverse the tree from top to bottom, undo each transformation, order the
children, and distribute the load.

– Global solution : order the children by non-decreasing bandwidth, and then write
the complete linear program.
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3 Multi-round algorithms

3.1 Discussion

One round vs. multi-round
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Intuition : Start with small rounds, then increase chunk sizes.
Problem with current model : leads to an absurd solution with infinite number of

infinitely small messages.
– Either change the model in order to allow simultaneous communication and com-

putation on the same data
– Or add latency to the communication the model

Notations
– A set P1, ..., Pp of processors
– P1 is the master processor : initially, it holds all the data.
– The overall amount of work : Wtotal.
– Processor Pi receives an amount of work αiWtotal with

∑
i ni = Wtotal with αiWtotal ∈

Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi : wi.
Computation time on Pi : niwi.

– Time needed to send a message of size αi P1 to Pi : Li + ci × αi.
One-port model : P1 sends and receives a single message at a time.

Complexity

One round, ∀i, ci = 0 Given Wtotal, p workers, (Pi)1≤i≤p, (Li)1≤i≤p, and a rational
number T ≥ 0, and assuming that bandwidths are infinite, is it possible to compute all
Wtotal load units within T time units ?

Theorem: The problem with one-round and infinite bandwidths is NP-complete.

What is the complexity of the general problem with finite bandwidths and several
rounds ?
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The general problem is NP-hard, but does not appear to be in NP (no polynomial
bound on the number of activations).

3.2 Resolution with fixed sequence

Fixed activation sequence

Hypotheses

1. Number of activations : Nact ;

2. Whether Pi is the processor used during activation j : χ
(j)
i

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k ≤ Nact,∀l :

(
k∑

j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

)
+

Nact∑
j=k

χ
(j)
l α

(j)
l wl ≤ T

∀i, j : α
(j)
i ≥ 0

(1)

Can be solved in polynomial time.

Fixed number of activations

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k ≤ Nact,∀l :

(
k∑

j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

)
+

Nact∑
j=k

χ
(j)
l α

(j)
l wl ≤ T

∀k ≤ Nact :

p∑
i=1

χ
(k)
i ≤ 1

∀i, j : χ
(j)
i ∈ {0, 1}

∀i, j : α
(j)
i ≥ 0

(2)

Exact but exponential

Can lead to branch-and-bound algorithms
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3.3 Uniform multi-round (UMR)

In a round : all workers have same computa-
tion time

Geometrical increase of rounds size

No idle time in communications :

α
(j)
i wi =

p∑
k=1

(Lk + α
(j+1)
k ck).

Heuristic processor selection : by decreasing
bandwidths

No guarantee...
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3.4 Periodic schedule
Tp
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How to choose Tp ? Which resources to select ?

Without overlap
Equations
– Divide total execution time T into k periods of duration Tp.
– I ⊂ {1, . . . , p} participating processors.
– Bandwidth limitation : ∑

i∈I

(Li + αici) ≤ Tp.

– No overlap :
∀i ∈ I, Li + αi(ci + wi) ≤ Tp.

Normalization
– βi average number of tasks processed by Pi during one time unit.
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– Linear program :
Maximize

∑p
i=1 βi{

∀i ∈ I, βi(ci + wi) ≤ 1− Li

Tp∑
i∈I βici ≤ 1−

∑
i∈I Li

Tp

.

– Easier version (more constrained) :
– change second member of first constraints
– sum in last constraint concerns all processors

Maximize
∑p

i=1 xi{
∀1 ≤ i ≤ p, xi(ci + wi) ≤ 1−

∑p
i=1 Li

Tp∑p
i=1 xici ≤ 1−

∑p
i=1 Li

Tp

.

Bandwidth-centric solution
– Sort : c1 ≤ c2 ≤ . . . ≤ cp.
– Let q be the largest index so that

∑q
i=1

ci
ci+wi

≤ 1.

– If q < p, ε = 1−
∑q

i=1
ci

ci+wi
.

– Optimal solution to relaxed program :

∀1 ≤ i ≤ q, xi =
1−

∑p
i=1 Li

Tp

ci + wi
and (if q < p) :

xq+1 =

(
1−

∑p
i=1 Li

Tp

)(
ε

cq+1

)
,

and xq+2 = xq+3 = . . . = xp = 0.

Asymptotic optimality
– Let Tp =

√
T ∗max and αi = xiTp for all i.

– Then T ≤ T ∗max +O(
√
T ∗max).

– Closed-form expressions for resource selection and task assignment provided by the
algorithm.

With overlap
Key points
– Still sort resources according to the ci.

– Greedily select resources until the sum of the ratios ci
wi

(
instead of ci

ci+wi

)
exceeds

1.

4 With bounded memory

Divisible load scheduling with bounded memory
– Assume the memory is bounded on each worker
– Problem is NP-complete with affine costs (reduction from 3-partition)
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