Steady-State Scheduling

Loris Marchal
November 14, 2012

1 The context

Platform
Platform : heterogeneous and distributed :
— processors with different capabilities ;
— communication links of different characteristics.

Applications
Application made of a very (very) large number of tasks, the tasks can be clustered
into a finite number of types, all tasks of a same type having the same characteristics.

Principle

When we have a very large number of identical tasks to execute, we can imagine
that, after some initiation phase, we will reach a (long) steady-state, before a termination
phase.

If the steady-state is long enough, the initiation and termination phases will be negli-
gible.

2 Routing packets with fixed communication routes
The problem
Problem : sending a set of message flows.

In a communication network, several flow of packets must be dispatched, each packet
flow must be sent from a route to a destination, while following a given path linking the
source to the destination.

Notations
— (V, A) an oriented graph, representing the communication network.

— A set of n. flows which must be dispatched.

— The k-th flow is denoted (s, tx, Pk,), where
— 8, is the source of packets ;
ty is the destination ;
P, is the path to be followed ;
ny is the number of packets in the flow.
We denote by ay; the i-th edge in the path P

Hypotheses
— A packet goes through an edge A in a unit of time.

— At a given time, a single packet traverses a given edge.

Objective
We must decide which packet must go through a given edge at a given time, in order
to minimize the overall execution time.

Lower bound on the duration of schedules
We call congestion of edge a € A, and we denote by C,, the total number of packets
which go through edge a :

C, = E Ny Chax = max C,,
a
k | aEPk
Chax 18 a lower bound on the execution time of any schedule.

C* Z Cmax

A “fluid” (fractional) resolution of our problem will give us a solution which executes
in a time Cpax.

3 Resolution of the “fluidified” problem

Fluidified (fractional) version : notations
Principle :
— we do not look for an integral solution but for a rational one.

— ng,4(t) (fractional) number of packets waiting at the entrance of the i-th edge of the
k-th path, at time t.

— Ty:(t) is the overall time used by the edge ay; for packets of the k-th flow, during
the interval of time [0;¢].

Fluidified (fractional) version : writing the equations

1. Initiating the communications

nga(t) = ng — T (1), for each k

2. Conservation law

Nh,it1(t) = T i(t) — Thiva (1), for each k

3. Resource constraints

> Thilts) = Trilt) <ty —t1,Ya € AV, > 11 >0

(k) | ak,i=a

4. Objective

MINIMIZE Chae = / 1 <Z nk,i(t)> dt
0 ki

Lower bound

— nga(t) = nk — Tia(2), for each k
— N1 (1) = Tri(t) — Thiva(t), for each k
— At any time ¢, an,j(t) =ng — Ty.i(t)

=1

(kji)lag,i=a j=1 (kji)|ak,i=a (ki)|ak,i=a
As long as t < C,, there are packets in the system.

Therefore, Chae > max, C; = Chax

A candidate for the solution

For t < Cppax

n
— Tri(t) = C—kt, for each k and i.

T t
g (t) = ng — Tra(t) = ng — t=ny(1—
nk,l() ng k,l() ng o g (Cmax)

— ng;(t) =0, for each k and i > 2.
For t > Cax
— Tk,i(t) = Ny
- nm(t) =0

For each edge a : Z i:n;w-(t) = Z ng — Z Tyi(t) > Co—t

vk

This solution is a schedule of makespan C\,.. We still have to show that it is feasible.

3

Checking the solution (for ¢ < C.y)

L nga(t) = nk — Tia(t), for each k
Satisfied by definition.

2. g1 (t) = Tii(t) — Thiga (1), for each k
T].m(t) - Tk,i+1 (t) = an t— &t =0= Nki+1 (t)

max

3. Z T]m(fg) — Tkﬂ;(tl) <ty — tl,‘v’a € A,Vtg >t >0

(k) | api=a

Ca
Z Tyi(te) — Tri(t) = Z i (to —t1) = c (to —t1) <ty —1ty

(ki) | agi=a (k) | ari=a

4 Building a schedule

Definition of a round
— Q & duration of a round (will be defined later).

— my : number of packets of k-th flow distributed in a single round.

— nkQ
ke Cmax ‘

— Do = Z(k,i)mk,,:a 1 = |{kla € Py}|

Dmax = maXDa < ne
a

— Period of the schedule : Q 4+ D,ax.

Schedule
During the time interval [j(2 + Duax); (J + 1)(Q + Diax)] :
The link a forwards my, packets of the k-th flow if there exists ¢ such that a;,; = a.

The link a remains idle for a duration of :

Q"'Dmax_ Z my

(k,i)|ag,i=a

(If less than my packets are waiting in the entrance of a at time j(2 + Dpax), @
forwards what is available and remains idle longer.)

Feasibility of the schedule

> m-

(k,i)|ag,i=a

Behavior of the sources

at time t.

D

nkQ
. Crnax
(k,i)|ak,i=a

< > (&

(k,i)|ak,i=a

< Ca Q+ D,

max

SQ_'_DHI&X

a1 sends my, packets during [0, 2 + Dyjax]-
N1 (2 + Diax) = ng — my,

)

Ny..i(t) : number of packets of the k-th flow waiting at the entrance of the i-th edge,

— ag, sends my, packets during [+ Diax, 2(€2 + Diax)]-
Nk’1(2(Q + Dmax)) = Ng — ka

WeletT:{

Nia(T) <ny —

Propagation delay

Cmax
=] (@4 D)

r <
— n —
Q+Dmax g

my

— ag, sends my, packets during [0, 2 4+ Dyyayl.

Nk,l(Q + Dmax) =Nk — Mg

Nk,iZS(Q + Dmax) =0

nkQ C(max

Coe 0

Nk,Q(Q + Dmax) =my

— ag, sends my, packets during [+ Diax, 2(€2 + Diax)]-
Nk71(2(Q + Dmax)) = Ng — ka

Nk’g(Q(Q + Dmax» = my

Nk,g(Q(Q + Dmax)) = my
Nk,i24(2(Q + Dmax)) — 0

— The delay between the time a packet traverses the first edge of the path P, and the
time it traverses its last edge is, at worst :

We let L = maxy |Pk|

(lPk| - 1)<Q + Dmax)

Makespan of the schedule

Chotal < T+ (L —1)(2 + Diax)

- {CEW (€ + Dinax) + (L = 1)(2 + Diax)

< (Cga" + 1) (2 + Dpax) + (L — 1) (2 + Dpax)

Dmax max
- Cmax + LDmaX + TC + LQ

Dmax max
The lower bound is minimized by €2 = TC

C1total S Omax + 2 V CmaxDmaxL + DmaxL

Asymptotic optimality

C1max S C* S C’total S C’max + 2 CmaxDmaxL + DmaxL

Resources needed

Z mp S Z (Ny Dmameax+1>

C L
(ki)|ay,i=a,k>2 (kd)|ak,i=a,k>2 fax

Dmaxcmax
— + Dmax

Conclusion
— We forget the initiation and termination phases
— Rational resolution of the steady-state
— Round whose size is the square-root of the solution :
— Each round “loses” a constant amount of time

— The sum of the waisted times increases less quickly than the schedule
— Buffers of size the square-root of the solution

Principles

focus on steady-state, forget transient phase

optimize throughput during central steady-state

in this article : trade-off between the loss in steady-state, and the loss in initialization
and clean-up phases (period length = square root of optimal makespan)

other solution : get optimal steady-state schedules

as soon as the number of packets is large, the solution is asymptotically optimal :

C'I’I'I&X
SLLL SR |

opt
max n—oo

Steady-state scheduling for a similar problem

Let’s get a more realistic network model :

— Given topology (graph)

— Sending a unit-size message from P; to P; takes a time ¢; ; (edge weight). For a
message of size 9, it will take S x ¢; ;. Note that we might have ¢; ; # ¢;;.

— Each processor can send (and receive) a single message at a time (bidirectional
one-port model).

— During a communication of size S from P, to P; starting at time ¢ (i.e., during
[t,t+ Scij] -
— P; cannot start another sending operation
— P; cannot start another reception
— P; cannot forward the message, or start a computation depending of this mes-

sage

We consider here a new problem : Scatter
— scatter : one source processor sends a distinct message to a set of target processors
— series of scatter : similar to scatter big messages using pipelining

Notations for average (fractional) numbers
— n(P; = Pj, k) : average number of messages of type k (that is, targeting Py) send

through edge (i, j) during one time unit

— s(P; — P;) : average occupation time of edge (¢, j) during one time unit

Constraints
— one-port : outgoing messages, incoming message
— relation between n and s
— conservation law
— throughput definition

We get a linear program. Note that all valid solution can be described as n and s,
and must follow the linear program. Hence the throughput of an optimal solution of the
linear program is a lower bound on the achievable throughput.

From a solution of the linear program to a real solution :

— Rational numbers : compute the lowest common multiple (lem) of all numbers of
messages, and multiply all quantities by this number
— lem polynomial in the input parameters of the linear program
— potentially large period, may be shorten using approximate solution
— One-port model : from local constraint to a valid global schedule (example from the
JPDC article)
— graphs of communication (split a node in receiver/sender)
— one-port model : a valid pattern is a matching in this graph
— algorithm to decompose the graph in a weighted sum of matching, such that the
sum of the weight is no more than the weight of a node in the graph
— extract matchings to organize communications (if needed, avoid splitting mes-
sages by multiplying by lem again)
— Initialization and clean-up phases :
— Initialization : the source processors first sends all needed messages to everybody,
OR compute the first activation of communications using a graph traversal...
— Clean-up : similar.

Asymptotic optimality
— Every valid schedule has a throughput lower than p*, throughput of an optimal
solution of the linear program
— Let T; be the time needed for initialization and clean-up (7; constant in the number
of messages send).
Throughput for a time T : %p*
Asymptotically optimal

Conclusion

— Benefits :
— Simplicity (description : one period)
— Efficiency (asymptotic optimality)
— Adaptability 7 (measure bandwidth during one period, change the schedule for

the next one

— Drawbacks :
— Complexity (statically allocate specific path to each packet)
— Bad performance for small batches
— Need for large buffers

	1 The context
	2 Routing packets with fixed communication routes
	3 Resolution of the ``fluidified'' problem
	4 Building a schedule
	5 Steady-state scheduling for a similar problem

