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1 The context

Platform
Platform : heterogeneous and distributed :
– processors with different capabilities ;
– communication links of different characteristics.

Applications
Application made of a very (very) large number of tasks, the tasks can be clustered

into a finite number of types, all tasks of a same type having the same characteristics.

Principle

When we have a very large number of identical tasks to execute, we can imagine
that, after some initiation phase, we will reach a (long) steady-state, before a termination
phase.

If the steady-state is long enough, the initiation and termination phases will be negli-
gible.

2 Routing packets with fixed communication routes

The problem

Problem : sending a set of message flows.

In a communication network, several flow of packets must be dispatched, each packet
flow must be sent from a route to a destination, while following a given path linking the
source to the destination.
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Notations
– (V,A) an oriented graph, representing the communication network.

– A set of nc flows which must be dispatched.

– The k-th flow is denoted (sk, tk, Pk, nk), where
– sk is the source of packets ;
– tk is the destination ;
– Pk is the path to be followed ;
– nk is the number of packets in the flow.

We denote by ak,i the i-th edge in the path Pk.

Hypotheses

– A packet goes through an edge A in a unit of time.

– At a given time, a single packet traverses a given edge.

Objective
We must decide which packet must go through a given edge at a given time, in order

to minimize the overall execution time.

Lower bound on the duration of schedules
We call congestion of edge a ∈ A, and we denote by Ca, the total number of packets

which go through edge a :

Ca =
∑

k | a∈Pk

nk Cmax = max
a
Ca

Cmax is a lower bound on the execution time of any schedule.
C∗ ≥ Cmax

A “fluid” (fractional) resolution of our problem will give us a solution which executes
in a time Cmax.

3 Resolution of the “fluidified” problem

Fluidified (fractional) version : notations
Principle :
– we do not look for an integral solution but for a rational one.

– nk,i(t) (fractional) number of packets waiting at the entrance of the i-th edge of the
k-th path, at time t.

– Tk,i(t) is the overall time used by the edge ak,i for packets of the k-th flow, during
the interval of time [0; t].
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Fluidified (fractional) version : writing the equations

1. Initiating the communications

nk,1(t) = nk − Tk,1(t), for each k

2. Conservation law

nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

3. Resource constraints∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A, ∀t2 ≥ t1 ≥ 0

4. Objective

Minimize Cfrac =

∫ ∞
0

11

(∑
k,i

nk,i(t)

)
dt

Lower bound
– nk,1(t) = nk − Tk,1(t), for each k
– nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

– At any time t,
i∑

j=1

nk,j(t) = nk − Tk,i(t)

– For each edge a :
∑

(k,i)|ak,i=a

i∑
j=1

nk,j(t) =
∑

(k,i)|ak,i=a

nk −
∑

(k,i)|ak,i=a

Tk,i(t) ≥ Ca − t

As long as t < Ca, there are packets in the system.

Therefore, Cfrac ≥ maxaCa = Cmax

A candidate for the solution
For t ≤ Cmax

– Tk,i(t) =
nk

Cmax

t, for each k and i.

– nk,1(t) = nk − Tk,1(t) = nk −
nk

Cmax

t = nk

(
1− t

Cmax

)
, ∀k

– nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

– Tk,i(t) = nk

– nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to show that it is feasible.
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Checking the solution (for t ≤ Cmax)

1. nk,1(t) = nk − Tk,1(t), for each k

Satisfied by definition.

2. nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

Tk,i(t)− Tk,i+1(t) = nk

Cmax
t− nk

Cmax
t = 0 = nk,i+1(t)

3.
∑

(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A,∀t2 ≥ t1 ≥ 0

∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) =
∑

(k,i) | ak,i=a

nk

Cmax

(t2 − t1) =
Ca

Cmax

(t2 − t1) ≤ t2 − t1

4 Building a schedule

Definition of a round

– Ω ≈ duration of a round (will be defined later).

– mk : number of packets of k-th flow distributed in a single round.

mk =

⌈
nkΩ

Cmax

⌉
.

– Da =
∑

(k,i)|ak,i=a 1 = |{k|a ∈ Pk}|

Dmax = max
a
Da ≤ nc

– Period of the schedule : Ω +Dmax.

Schedule

During the time interval [j(Ω +Dmax); (j + 1)(Ω +Dmax)] :

The link a forwards mk packets of the k-th flow if there exists i such that ak,i = a.

The link a remains idle for a duration of :

Ω +Dmax −
∑

(k,i)|ak,i=a

mk

(If less than mk packets are waiting in the entrance of a at time j(Ω + Dmax), a
forwards what is available and remains idle longer.)
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Feasibility of the schedule

∑
(k,i)|ak,i=a

mk =
∑

(k,i)|ak,i=a

⌈
nkΩ

Cmax

⌉

≤
∑

(k,i)|ak,i=a

(
nkΩ

Cmax

+ 1

)
≤ Ca

Cmax

Ω +Da

≤ Ω +Dmax

Behavior of the sources

– Nk,i(t) : number of packets of the k-th flow waiting at the entrance of the i-th edge,
at time t.

– ak,1 sends mk packets during [0,Ω +Dmax].
Nk,1(Ω +Dmax) = nk −mk

– ak,1 sends mk packets during [Ω +Dmax, 2(Ω +Dmax)].
Nk,1(2(Ω +Dmax)) = nk − 2mk

– We let T =

⌈
Cmax

Ω

⌉
(Ω +Dmax)

Nk,1(T ) ≤ nk −
T

Ω +Dmax

mk ≤ nk −
nkΩ

Cmax

Cmax

Ω
= 0

Propagation delay
– ak,1 sends mk packets during [0,Ω +Dmax].
Nk,1(Ω +Dmax) = nk −mk Nk,2(Ω +Dmax) = mk

Nk,i≥3(Ω +Dmax) = 0

– ak,1 sends mk packets during [Ω +Dmax, 2(Ω +Dmax)].
Nk,1(2(Ω +Dmax)) = nk − 2mk Nk,2(2(Ω +Dmax)) = mk

Nk,3(2(Ω +Dmax)) = mk Nk,i≥4(2(Ω +Dmax)) = 0

– The delay between the time a packet traverses the first edge of the path Pk and the
time it traverses its last edge is, at worst :

(|Pk| − 1)(Ω +Dmax)
We let L = maxk |Pk|.
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Makespan of the schedule

Ctotal ≤ T + (L− 1)(Ω +Dmax)

=

⌈
Cmax

Ω

⌉
(Ω +Dmax) + (L− 1)(Ω +Dmax)

≤
(
Cmax

Ω
+ 1

)
(Ω +Dmax) + (L− 1)(Ω +Dmax)

= Cmax + LDmax +
DmaxCmax

Ω
+ LΩ

The lower bound is minimized by Ω =

√
DmaxCmax

L

Ctotal ≤ Cmax + 2
√
CmaxDmaxL+DmaxL

Asymptotic optimality

Cmax ≤ C∗ ≤ Ctotal ≤ Cmax + 2
√
CmaxDmaxL+DmaxL

1 ≤ Ctotal

Cmax

≤ 1 + 2

√
DmaxL

Cmax

+
DmaxL

Cmax

With Ω =

√
DmaxCmax

L

Resources needed

∑
(k,i)|ak,i=a,k≥2

mk ≤
∑

(k,i)|ak,i=a,k≥2

(
nk

Cmax

√
DmaxCmax

L
+ 1

)

≤
√
DmaxCmax

L
+Dmax

Conclusion
– We forget the initiation and termination phases
– Rational resolution of the steady-state
– Round whose size is the square-root of the solution :

– Each round “loses” a constant amount of time
– The sum of the waisted times increases less quickly than the schedule
– Buffers of size the square-root of the solution
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Principles
– focus on steady-state, forget transient phase
– optimize throughput during central steady-state
– in this article : trade-off between the loss in steady-state, and the loss in initialization

and clean-up phases (period length = square root of optimal makespan)
– other solution : get optimal steady-state schedules
– as soon as the number of packets is large, the solution is asymptotically optimal :

Cmax

Copt
max

−−−→
n→∞

1

5 Steady-state scheduling for a similar problem

– Let’s get a more realistic network model :
– Given topology (graph)
– Sending a unit-size message from Pi to Pj takes a time ci,j (edge weight). For a

message of size S, it will take S × ci,j. Note that we might have ci,j 6= cj,i.
– Each processor can send (and receive) a single message at a time (bidirectional

one-port model).
– During a communication of size S from Pi to Pj starting at time t (i.e., during

[t, t+ Sci,j] :
– Pi cannot start another sending operation
– Pj cannot start another reception
– Pj cannot forward the message, or start a computation depending of this mes-

sage

We consider here a new problem : Scatter
– scatter : one source processor sends a distinct message to a set of target processors
– series of scatter : similar to scatter big messages using pipelining

Notations for average (fractional) numbers
– n(Pi → Pj, k) : average number of messages of type k (that is, targeting Pk) send

through edge (i, j) during one time unit
– s(Pi → Pj) : average occupation time of edge (i, j) during one time unit

Constraints
– one-port : outgoing messages, incoming message
– relation between n and s
– conservation law
– throughput definition

We get a linear program. Note that all valid solution can be described as n and s,
and must follow the linear program. Hence the throughput of an optimal solution of the
linear program is a lower bound on the achievable throughput.

From a solution of the linear program to a real solution :
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– Rational numbers : compute the lowest common multiple (lcm) of all numbers of
messages, and multiply all quantities by this number
– lcm polynomial in the input parameters of the linear program
– potentially large period, may be shorten using approximate solution

– One-port model : from local constraint to a valid global schedule (example from the
JPDC article)
– graphs of communication (split a node in receiver/sender)
– one-port model : a valid pattern is a matching in this graph
– algorithm to decompose the graph in a weighted sum of matching, such that the

sum of the weight is no more than the weight of a node in the graph
– extract matchings to organize communications (if needed, avoid splitting mes-

sages by multiplying by lcm again)
– Initialization and clean-up phases :

– Initialization : the source processors first sends all needed messages to everybody,
OR compute the first activation of communications using a graph traversal...

– Clean-up : similar.

Asymptotic optimality
– Every valid schedule has a throughput lower than ρ∗, throughput of an optimal

solution of the linear program
– Let Ti be the time needed for initialization and clean-up (Ti constant in the number

of messages send).
– Throughput for a time T : T+Ti

T
ρ∗

– Asymptotically optimal

Conclusion
– Benefits :

– Simplicity (description : one period)
– Efficiency (asymptotic optimality)
– Adaptability ? (measure bandwidth during one period, change the schedule for

the next one
– Drawbacks :

– Complexity (statically allocate specific path to each packet)
– Bad performance for small batches
– Need for large buffers
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