Steady-State Scheduling

Loris Marchal

1 The context

Platform

Platform: heterogeneous and distributed:
– processors with different capabilities;
– communication links of different characteristics.

Applications

Application made of a very (very) large number of tasks, the tasks can be clustered into a finite number of types, all tasks of a same type having the same characteristics.

Principle

When we have a very large number of identical tasks to execute, we can imagine that, after some initiation phase, we will reach a (long) steady-state, before a termination phase.

If the steady-state is long enough, the initiation and termination phases will be negligible.

2 Routing packets with fixed communication routes

The problem

Problem: sending a set of message flows.

In a communication network, several flow of packets must be dispatched, each packet flow must be sent from a route to a destination, while following a given path linking the source to the destination.
Notations
- \((V, A)\) an oriented graph, representing the communication network.
- A set of \(n_c\) flows which must be dispatched.
- The \(k\)-th flow is denoted \((s_k, t_k, P_k, n_k)\), where
 - \(s_k\) is the source of packets;
 - \(t_k\) is the destination;
 - \(P_k\) is the path to be followed;
 - \(n_k\) is the number of packets in the flow.

 We denote by \(a_{k,i}\) the \(i\)-th edge in the path \(P_k\).

Hypotheses
- A packet goes through an edge \(A\) in a unit of time.
- At a given time, a single packet traverses a given edge.

Objective
We must decide which packet must go through a given edge at a given time, in order to minimize the overall execution time.

Lower bound on the duration of schedules
We call congestion of edge \(a \in A\), and we denote by \(C_a\), the total number of packets which go through edge \(a\) :

\[
C_a = \sum_{k \mid a \in P_k} n_k \quad C_{\text{max}} = \max_a C_a
\]

\(C_{\text{max}}\) is a lower bound on the execution time of any schedule.

\[C^* \geq C_{\text{max}}\]

A “fluid” (fractional) resolution of our problem will give us a solution which executes in a time \(C_{\text{max}}\).

3 Resolution of the “fluidified” problem

Fluidified (fractional) version : notations
Principle :
- we do not look for an integral solution but for a rational one.
- \(n_{k,i}(t)\) (fractional) number of packets waiting at the entrance of the \(i\)-th edge of the \(k\)-th path, at time \(t\).
- \(T_{k,i}(t)\) is the overall time used by the edge \(a_{k,i}\) for packets of the \(k\)-th flow, during the interval of time \([0; t]\).
Fluidified (fractional) version : writing the equations

1. Initiating the communications

\[n_{k,1}(t) = n_k - T_{k,1}(t), \quad \text{for each } k \]

2. Conservation law

\[n_{k,i+1}(t) = T_{k,i}(t) - T_{k,i+1}(t), \quad \text{for each } k \]

3. Resource constraints

\[\sum_{(k,i) \mid a_{k,i}=a} T_{k,i}(t_2) - T_{k,i}(t_1) \leq t_2 - t_1, \forall a \in A, \forall t_2 \geq t_1 \geq 0 \]

4. Objective

\[\text{MINIMIZE } C_{\text{frac}} = \int_0^\infty \mathbb{1} \left(\sum_{k,i} n_{k,i}(t) \right) dt \]

Lower bound

- \[n_{k,1}(t) = n_k - T_{k,1}(t), \quad \text{for each } k \]
- \[n_{k,i+1}(t) = T_{k,i}(t) - T_{k,i+1}(t), \quad \text{for each } k \]
- At any time \(t \), \[\sum_{j=1}^i n_{k,j}(t) = n_k - T_{k,i}(t) \]
- For each edge \(a \) : \[\sum_{(k,i) \mid a_{k,i}=a} \sum_{j=1}^i n_{k,j}(t) = \sum_{(k,i) \mid a_{k,i}=a} n_k - \sum_{(k,i) \mid a_{k,i}=a} T_{k,i}(t) \geq C_a - t \]

As long as \(t < C_a \), there are packets in the system.

Therefore, \(C_{\text{frac}} \geq \max_a C_a = C_{\text{max}} \)

A candidate for the solution

For \(t \leq C_{\text{max}} \)

- \[T_{k,i}(t) = \frac{n_k}{C_{\text{max}}} t, \quad \text{for each } k \text{ and } i. \]
- \[n_{k,1}(t) = n_k - T_{k,1}(t) = n_k - \frac{n_k}{C_{\text{max}}} t = n_k \left(1 - \frac{t}{C_{\text{max}}} \right), \quad \forall k \]
- \[n_{k,i}(t) = 0, \quad \text{for each } k \text{ and } i \geq 2. \]

For \(t \geq C_{\text{max}} \)

- \[T_{k,i}(t) = n_k \]
- \[n_{k,1}(t) = 0 \]
- \[n_{k,i}(t) = 0 \]

This solution is a schedule of makespan \(C_{\text{max}} \). We still have to show that it is feasible.
Checking the solution (for $t \leq C_{\text{max}}$)

1. $n_{k,1}(t) = n_k - T_{k,1}(t)$, for each k
 Satisfied by definition.

2. $n_{k,i+1}(t) = T_{k,i}(t) - T_{k,i+1}(t)$, for each k
 $T_{k,i}(t) - T_{k,i+1}(t) = \frac{n_k}{C_{\text{max}}}t - \frac{n_k}{C_{\text{max}}}t = 0 = n_{k,i+1}(t)$

3. $\sum_{(k,i) \mid a_{k,i} = a} T_{k,i}(t_2) - T_{k,i}(t_1) \leq t_2 - t_1, \forall a \in A, \forall t_2 \geq t_1 \geq 0$

$$\sum_{(k,i) \mid a_{k,i} = a} T_{k,i}(t_2) - T_{k,i}(t_1) = \sum_{(k,i) \mid a_{k,i} = a} \frac{n_k}{C_{\text{max}}}(t_2 - t_1) = \frac{C_a}{C_{\text{max}}}(t_2 - t_1) \leq t_2 - t_1$$

4 Building a schedule

Definition of a round

- $\Omega \approx$ duration of a round (will be defined later).
- m_k : number of packets of k-th flow distributed in a single round.

$$m_k = \left\lceil \frac{n_k \Omega}{C_{\text{max}}} \right\rceil.$$

- $D_a = \sum_{(k,i) \mid a_{k,i} = a} 1 = |\{k \mid a \in P_k\}|$

$$D_{\text{max}} = \max_a D_a \leq n_c$$

- Period of the schedule : $\Omega + D_{\text{max}}$.

Schedule

During the time interval $[j(\Omega + D_{\text{max}}); (j + 1)(\Omega + D_{\text{max}})]$:

The link a forwards m_k packets of the k-th flow if there exists i such that $a_{k,i} = a$.

The link a remains idle for a duration of :

$$\Omega + D_{\text{max}} - \sum_{(k,i) \mid a_{k,i} = a} m_k$$

(If less than m_k packets are waiting in the entrance of a at time $j(\Omega + D_{\text{max}})$, a forwards what is available and remains idle longer.)
Feasibility of the schedule

\[\sum_{(k,i)|a_{k,i}=a} m_k = \sum_{(k,i)|a_{k,i}=a} \left\lfloor \frac{n_k \Omega}{C_{\text{max}}} \right\rfloor \leq \sum_{(k,i)|a_{k,i}=a} \left(\frac{n_k \Omega}{C_{\text{max}}} + 1 \right) \leq \frac{C_{\text{a}}}{C_{\text{max}}} \Omega + D_{\text{a}} \leq \Omega + D_{\text{max}} \]

Behavior of the sources

- \(N_{k,i}(t) \) : number of packets of the \(k \)-th flow waiting at the entrance of the \(i \)-th edge, at time \(t \).

- \(a_{k,1} \) sends \(m_k \) packets during \([0, \Omega + D_{\text{max}}]\).
 \(N_{k,1}(\Omega + D_{\text{max}}) = n_k - m_k \)

- \(a_{k,1} \) sends \(m_k \) packets during \([\Omega + D_{\text{max}}, 2(\Omega + D_{\text{max}})]\).
 \(N_{k,1}(2(\Omega + D_{\text{max}})) = n_k - 2m_k \)

- We let \(T = \left\lfloor \frac{C_{\text{max}}}{\Omega} \right\rfloor (\Omega + D_{\text{max}}) \)
 \(N_{k,1}(T) \leq n_k - \frac{T}{\Omega + D_{\text{max}}} m_k \leq n_k - \frac{n_k \Omega C_{\text{max}}}{\Omega} = 0 \)

Propagation delay

- \(a_{k,1} \) sends \(m_k \) packets during \([0, \Omega + D_{\text{max}}]\).
 \(N_{k,1}(\Omega + D_{\text{max}}) = n_k - m_k \)
 \(N_{k,i \geq 3}(\Omega + D_{\text{max}}) = 0 \)

- \(a_{k,1} \) sends \(m_k \) packets during \([\Omega + D_{\text{max}}, 2(\Omega + D_{\text{max}})]\).
 \(N_{k,1}(2(\Omega + D_{\text{max}})) = n_k - 2m_k \)
 \(N_{k,3}(2(\Omega + D_{\text{max}})) = m_k \)

- The delay between the time a packet traverses the first edge of the path \(P_k \) and the time it traverses its last edge is, at worst :
 \((|P_k| - 1)(\Omega + D_{\text{max}}) \)

We let \(L = \max_k |P_k| \).
Makespan of the schedule

\[C_{\text{total}} \leq T + (L - 1)(\Omega + D_{\text{max}}) \]

\[= \left\lceil \frac{C_{\text{max}}}{\Omega} \right\rceil (\Omega + D_{\text{max}}) + (L - 1)(\Omega + D_{\text{max}}) \]

\[\leq \left(\frac{C_{\text{max}}}{\Omega} + 1 \right) (\Omega + D_{\text{max}}) + (L - 1)(\Omega + D_{\text{max}}) \]

\[= C_{\text{max}} + LD_{\text{max}} + \frac{D_{\text{max}}C_{\text{max}}}{\Omega} + L\Omega \]

The lower bound is minimized by \(\Omega = \sqrt{\frac{D_{\text{max}}C_{\text{max}}}{L}} \)

\[C_{\text{total}} \leq C_{\text{max}} + 2\sqrt{C_{\text{max}}D_{\text{max}}L} + D_{\text{max}}L \]

Asymptotic optimality

\[C_{\text{max}} \leq C^* \leq C_{\text{total}} \leq C_{\text{max}} + 2\sqrt{C_{\text{max}}D_{\text{max}}L} + D_{\text{max}}L \]

\[1 \leq \frac{C_{\text{total}}}{C_{\text{max}}} \leq 1 + 2\sqrt{\frac{D_{\text{max}}L}{C_{\text{max}}} + \frac{D_{\text{max}}L}{C_{\text{max}}}^{\Omega}} \]

With \(\Omega = \sqrt{\frac{D_{\text{max}}C_{\text{max}}}{L}} \)

Resources needed

\[\sum_{(k,i)|a_{k,i}=a,k\geq2} m_k \leq \sum_{(k,i)|a_{k,i}=a,k\geq2} \left(\frac{n_k}{C_{\text{max}}} \sqrt{\frac{D_{\text{max}}C_{\text{max}}}{L}} + 1 \right) \]

\[\leq \sqrt{\frac{D_{\text{max}}C_{\text{max}}}{L}} + D_{\text{max}} \]

Conclusion

– We forget the initiation and termination phases
– Rational resolution of the steady-state
– Round whose size is the square-root of the solution :
 – Each round “loses” a constant amount of time
 – The sum of the waisted times increases less quickly than the schedule
– Buffers of size the square-root of the solution
Principles
– focus on steady-state, forget transient phase
– optimize throughput during central steady-state
– in this article: trade-off between the loss in steady-state, and the loss in initialization and clean-up phases (period length = square root of optimal makespan)
– other solution: get optimal steady-state schedules
– as soon as the number of packets is large, the solution is asymptotically optimal:
\[
\frac{C_{\text{max}}}{C_{\text{opt}}} \xrightarrow{n \to \infty} 1
\]

5 Steady-state scheduling for a similar problem
– Let’s get a more realistic network model:
 – Given topology (graph)
 – Sending a unit-size message from \(P_i \) to \(P_j \) takes a time \(c_{i,j} \) (edge weight). For a message of size \(S \), it will take \(S \times c_{i,j} \). Note that we might have \(c_{i,j} \neq c_{j,i} \).
 – Each processor can send (and receive) a single message at a time (bidirectional one-port model).
 – During a communication of size \(S \) from \(P_i \) to \(P_j \) starting at time \(t \) (i.e., during \([t, t + Sc_{i,j}]\)):
 – \(P_i \) cannot start another sending operation
 – \(P_j \) cannot start another reception
 – \(P_j \) cannot forward the message, or start a computation depending of this message

We consider here a new problem: Scatter
– scatter: one source processor sends a distinct message to a set of target processors
– series of scatter: similar to scatter big messages using pipelining

Notations for average (fractional) numbers
– \(n(P_i \rightarrow P_j, k) \): average number of messages of type \(k \) (that is, targeting \(P_k \)) send through edge \((i, j)\) during one time unit
– \(s(P_i \rightarrow P_j) \): average occupation time of edge \((i, j)\) during one time unit

Constraints
– one-port: outgoing messages, incoming message
– relation between \(n \) and \(s \)
– conservation law
– throughput definition

We get a linear program. Note that all valid solution can be described as \(n \) and \(s \), and must follow the linear program. Hence the throughput of an optimal solution of the linear program is a lower bound on the achievable throughput.

From a solution of the linear program to a real solution:

- Rational numbers: compute the lowest common multiple (lcm) of all numbers of messages, and multiply all quantities by this number
- lcm polynomial in the input parameters of the linear program
- potentially large period, may be shortened using approximate solution
- One-port model: from local constraint to a valid global schedule (example from the JPDC article)
 - graphs of communication (split a node in receiver/sender)
 - one-port model: a valid pattern is a matching in this graph
 - algorithm to decompose the graph in a weighted sum of matching, such that the sum of the weight is no more than the weight of a node in the graph
 - extract matchings to organize communications (if needed, avoid splitting messages by multiplying by lcm again)
- Initialization and clean-up phases:
 - Initialization: the source processors first send all needed messages to everybody, or compute the first activation of communications using a graph traversal...
 - Clean-up: similar.

Asymptotic optimality
- Every valid schedule has a throughput lower than ρ^*, throughput of an optimal solution of the linear program
- Let T_i be the time needed for initialization and clean-up (T_i constant in the number of messages send).
- Throughput for a time $T : T + T_i / T \rho^*$
- Asymptotically optimal

Conclusion
- Benefits:
 - Simplicity (description: one period)
 - Efficiency (asymptotic optimality)
 - Adaptability? (measure bandwidth during one period, change the schedule for the next one)
- Drawbacks:
 - Complexity (statically allocate specific path to each packet)
 - Bad performance for small batches
 - Need for large buffers