Reclaiming the Energy of a Schedule, Models and Algorithms

Guillaume Aupy, Anne Benoit, Fanny Dufossé and Yves Robert

Ecole Normale Supérieure de Lyon & LIP

4th June 2011

SPAA’11 in San Jose, Ca.
1 Introduction
 - Models
 - Goal

2 Results
 - Continuous speeds
 - V_{DD}-HOPPING
 - Discrete speed models

3 Conclusion
Motivation

- Scheduling = Makespan minimization
 Difficulty of scheduling is to chose the right processor to assign the task to.

- General mapping
 If we are not tight on deadline, why not take our time?
 - Economical + environmental reasons: Energy consumption.
 - Affinities or security reasons: what if the tasks are pre-assigned to a processor?

Goal: “efficiently” use speed scaling
Motivation

- Scheduling — Makespan minimization
 Difficulty of scheduling is to chose the right processor to assign the task to.

- General mapping
 If we are not tight on deadline, why not take our time?
 - Economical + environmental reasons: Energy consumption.
 - Affinities or security reasons: what if the tasks are pre-assigned to a processor?

Goal: “efficiently” use speed scaling
Motivation

- Scheduling = Makespan minimization
 Difficulty of scheduling is to choose the right processor to assign the task to.

- General mapping
 If we are not tight on deadline, why not take our time?
 - Economical + environmental reasons: Energy consumption.
 - Affinities or security reasons: what if the tasks are pre-assigned to a processor?

Goal: “efficiently” use speed scaling
Motivation

- Scheduling = Makespan minimization
 Difficulty of scheduling is to chose the right processor to assign the task to.

- General mapping
 If we are not tight on deadline, why not take our time?
 - Economical + environmental reasons: Energy consumption.
 - Affinities or security reasons: what if the tasks are pre-assigned to a processor?

Goal: “efficiently” use speed scaling
1 Introduction
 - Models
 - Goal

2 Results
 - Continuous speeds
 - VDD-HOPPING
 - Discrete speed models

3 Conclusion
Consider a task graph (directed acyclic graph) to be executed on a set of processors. Assume that the mapping is given.

Useful definition in a task graph

For every task T_i we define

- w_i: its size/work
- s_i: the speed of the processor which has task T_i assigned to.
- t_i: the time when the computation of T_i ends.
- d_i: the time it took to compute task T_i.
- $d_i s_i^3$: the energy consumed on task T_i by the system.
Consider a task graph (directed acyclic graph) to be executed on a set of processors. Assume that the mapping is given.

Useful definition in a task graph

For every task T_i we define

- w_i its size/work
- s_i the speed of the processor which has task T_i assigned to.
- t_i the time when the computation of T_i ends.
- d_i the time it took to compute task T_i.
- $d_i s_i^3$ the energy consumed on task T_i by the system.
Consider a task graph (directed acyclic graph) to be executed on a set of processors. Assume that the mapping is given.

Useful definition in a task graph

For every task T_i we define

- w_i: its size/work
- s_i: the speed of the processor which has task T_i assigned to.
- t_i: the time when the computation of T_i ends.
- d_i: the time it took to compute task T_i.
- $d_i s_i^3$: the energy consumed on task T_i by the system.
Consider a task graph (directed acyclic graph) to be executed on a set of processors. Assume that the mapping is given.

Useful definition in a task graph

For every task T_i we define

- w_i: its size/work
- s_i: the speed of the processor which has task T_i assigned to.
- t_i: the time when the computation of T_i ends.
- d_i: the time it took to compute task T_i.
- $d_i s_i^3$: the energy consumed on task T_i by the system.
Consider a task graph (directed acyclic graph) to be executed on a set of processors. Assume that the mapping is given.

Useful definition in a task graph

For every task T_i we define

- w_i its size/work
- s_i the speed of the processor which has task T_i assigned to.
- t_i the time when the computation of T_i ends.
- d_i the time it took to compute task T_i.
- $d_is_i^3$ the energy consumed on task T_i by the system.
Speed models

- **Continuous:** processors can have arbitrary speeds, from 0 to a maximum value s_{max}, and a processor can change its speed at any time during execution.

- **Discrete:** processors have a set of possible speed values, or modes, denoted as s_1, \ldots, s_m. Speed of a processor constant during the computation of a task, but it can change from task to task.

- **Vdd-Hopping:** a processor can run at different speeds as in the previous model, but it can also change its speed during a computation.

- **Incremental:** The different modes are spread regularly between $s_1 = s_{min}$ and $s_m = s_{max}$, instead of being arbitrarily chosen. ($s_i = s_{min} + i \times \delta$)
Speed models

- **Continuous**: processors can have arbitrary speeds, from 0 to a maximum value s_{max}, and a processor can change its speed at any time during execution.

Gauss Fact

When Gauss wife asked him ”How much do you love me?”, he quantified it with an irrational number. Unfortunately a computer will never be as good as Gauss.

- **Discrete**: processors have a set of possible speed values, or modes, denoted as s_1, \ldots, s_m. Speed of a processor constant during the computation of a task, but it can change from task to task.

- **Vdd-Hopping**: a processor can run at different speeds as in the previous model, but it can also change its speed during a computation.
Speed models

- **Continuous**: processors can have arbitrary speeds, from 0 to a maximum value s_{max}, and a processor can change its speed at any time during execution.

- **Discrete**: processors have a set of possible speed values, or modes, denoted as $s_1, ..., s_m$. Speed of a processor constant during the computation of a task, but it can change from task to task.

- **Vdd-Hopping**: a processor can run at different speeds as in the previous model, but it can also change its speed during a computation.

- **Incremental**: The different modes are spread regularly between $s_1 = s_{min}$ and $s_m = s_{max}$, instead of being arbitrarily chosen. ($s_i = s_{min} + i \times \delta$)
Speed models

- **CONTINUOUS**: processors can have arbitrary speeds, from 0 to a maximum value s_{max}, and a processor can change its speed at any time during execution.

- **DISCRETE**: processors have a set of possible speed values, or modes, denoted as $s_1, ..., s_m$. Speed of a processor constant during the computation of a task, but it can change from task to task.

- **VDD-HOPPING**: a processor can run at different speeds as in the previous model, but it can also change its speed during a computation.

- **INCREMENTAL**: The different modes are spread regularly between $s_1 = s_{\text{min}}$ and $s_m = s_{\text{max}}$, instead of being arbitrarily chosen. ($s_i = s_{\text{min}} + i \times \delta$)
Speed models

- **Continuous**: processors can have arbitrary speeds, from 0 to a maximum value s_{max}, and a processor can change its speed at any time during execution.

- **Discrete**: processors have a set of possible speed values, or modes, denoted as s_1, \ldots, s_m. Speed of a processor constant during the computation of a task, but it can change from task to task.

- **VDD-Hopping**: a processor can run at different speeds as in the previous model, but it can also change its speed during a computation.

- **Incremental**: The different modes are spread regularly between $s_1 = s_{\text{min}}$ and $s_m = s_{\text{max}}$, instead of being arbitrarily chosen. ($s_i = s_{\text{min}} + i \times \delta$)
Consider this DAG, with $s_{max} = 6$. Suppose deadline is $D = 1.5$.

![Diagram of the example DAG]

Figure: Execution graph for the example.
Example

- **CONTINUOUS**: \((s_{\text{max}} = 6)\) \(E_{\text{opt}}^{(c)} \simeq 109.6\). With the CONTINUOUS model, the optimal speeds are non-rational values, and we obtain

\[
s_1 = \frac{2}{3} (3 + 35^{1/3}) \simeq 4.18; \quad s_2 = s_1 \times \frac{2}{35^{1/3}} \simeq 2.56; \quad s_3 = s_4 = s_1 \times \frac{3}{35^{1/3}} \simeq 3.83.
\]

- **DISCRETE**: \((s_1 = 2, s_2 = 5, s_3 = 6)\) \(E_{\text{opt}}^{(d)} = 170\).

- **INCREMENTAL**: \((\delta = 2, s_{\text{min}} = 2, s_{\text{max}} = 6)\) \(E_{\text{opt}}^{(i)} = 128\).

- **VDD-HOPPING**: \((s_1 = 2, s_2 = 5, s_3 = 6)\) \(E_{\text{opt}}^{(v)} = 144\).
Example

- **Continuous**: \((s_{\text{max}} = 6)\) \(E_{\text{opt}}^{(c)} \approx 109.6\).

- **Discrete**: \((s_1 = 2, s_2 = 5, s_3 = 6)\) \(E_{\text{opt}}^{(d)} = 170\).
 For the **Discrete** model, if we execute all tasks at speed \(s_2^{(d)} = 5\), we obtain an energy \(E = 8 \times 5^2 = 200\). A better solution is obtained with \(s_1 = s_3^{(d)} = 6, s_2 = s_3 = s_1^{(d)} = 2\) and \(s_4 = s_2^{(d)} = 5\), which turns out to be optimal.

- **Incremental**: \((\delta = 2, s_{\text{min}} = 2, s_{\text{max}} = 6)\) \(E_{\text{opt}}^{(i)} = 128\).

- **Vdd-Hopping**: \((s_1 = 2, s_2 = 5, s_3 = 6)\) \(E_{\text{opt}}^{(v)} = 144\).
Example

- **Continuous**: \((s_{\text{max}} = 6)\) \(E^{(c)}_{\text{opt}} \approx 109.6\).
- **Discrete**: \((s_1 = 2, s_2 = 5, s_3 = 6)\) \(E^{(d)}_{\text{opt}} = 170\).
- **Incremental**: \((\delta = 2, s_{\text{min}} = 2, s_{\text{max}} = 6)\) \(E^{(i)}_{\text{opt}} = 128\).

 For the **Incremental** model, the reasoning is similar to the **Discrete** case, and the optimal solution is obtained by an exhaustive search: all tasks should be executed at speed \(s^{(i)}_2 = 4\).

- **Vdd-Hopping**: \((s_1 = 2, s_2 = 5, s_3 = 6)\) \(E^{(v)}_{\text{opt}} = 144\).
Example

- **Continuous**: \(s_{max} = 6 \) \(E_{opt}^{(c)} \approx 109.6 \).
- **Discrete**: \(s_1 = 2, s_2 = 5, s_3 = 6 \) \(E_{opt}^{(d)} = 170 \).
- **Incremental**: \(\delta = 2, s_{min} = 2, s_{max} = 6 \) \(E_{opt}^{(i)} = 128 \).
- **Vdd-Hopping**: \(s_1 = 2, s_2 = 5, s_3 = 6 \) \(E_{opt}^{(v)} = 144 \).

With the Vdd-Hopping model, we set \(s_1 = s_2^{(d)} = 5 \); for the other tasks, we run part of the time at speed \(s_2^{(d)} = 5 \), and part of the time at speed \(s_1^{(d)} = 2 \) in order to use the idle time and lower the energy consumption.
Example

- **Continuous**: \((s_{\text{max}} = 6) \Rightarrow E_{\text{opt}}^{(c)} \approx 109.6.\)
- **Discrete**: \((s_1 = 2, s_2 = 5, s_3 = 6) \Rightarrow E_{\text{opt}}^{(d)} = 170.\)
- **Incremental**: \((\delta = 2, s_{\text{min}} = 2, s_{\text{max}} = 6) \Rightarrow E_{\text{opt}}^{(i)} = 128.\)
- **Vdd-Hopping**: \((s_1 = 2, s_2 = 5, s_3 = 6) \Rightarrow E_{\text{opt}}^{(v)} = 144.\)
Plan

1. Introduction
 - Models
 - Goal

2. Results
 - Continuous speeds
 - \texttt{VDD-HOPPING}
 - Discrete speed models

3. Conclusion
Energy-Performance-oriented objective

- Constraint on Deadline
- Minimize Energy Consumption:

Today’s talk: comparison of all speed models in this regard.

We assume the mapping is already fixed.
Optimization goal

Energy-Performance-oriented objective

- Constraint on Deadline: \(t_i \leq D \) for each \(T_i \in V \)
- Minimize Energy Consumption: \(\sum_{i=1}^{n} w_i \times s_i^2 \)

Today’s talk: comparison of all speed models in this regard.

We assume the mapping is already fixed.
Energy-Performance-oriented objective

- Constraint on Deadline: \(t_i \leq D \) for each \(T_i \in V \)
- Minimize Energy Consumption: \(\sum_{i=1}^{n} w_i \times s_i^2 \)

Today’s talk: comparison of all speed models in this regard.

We assume the mapping is already fixed.
The problem of minimizing energy when the scheduled is already fixed on p processors is:

- **Continuous:** Polynomial for some special graphs, geometric optimization in the general case.
- **Discrete:** NP-complete (reduction from 2-partition). We give an approximation.
- **Incremental:** NP-complete (reduction from 2-partition). We give an approximation.
- **Vdd-Hopping:** Polynomial (linear programming).
The problem of minimizing energy when the scheduled is already fixed on p processors is:

- **Continuous**: Polynomial for some special graphs, geometric optimization in the general case.
- **Discrete**: NP-complete (reduction from 2-partition). We give an approximation.
- **Incremental**: NP-complete (reduction from 2-partition). We give an approximation.
- **VDD-Hopping**: Polynomial (linear programming).
The problem of minimizing energy when the scheduled is already fixed on p processors is:

- **Continuous**: Polynomial for some special graphs, geometric optimization in the general case.
- **Discrete**: NP-complete (reduction from 2-partition). We give an approximation.
- **Incremental**: NP-complete (reduction from 2-partition). We give an approximation.
- **Vdd-Hopping**: Polynomial (linear programming).
The problem of minimizing energy when the scheduled is already fixed on p processors is:

- **Continuous**: Polynomial for some special graphs, geometric optimization in the general case.
- **Discrete**: NP-complete (reduction from 2-partition). We give an approximation.
- **Incremental**: NP-complete (reduction from 2-partition). We give an approximation.
- **Vdd-Hopping**: Polynomial (linear programming).
The problem of minimizing energy when the schedule is already fixed on \(p \) processors is:

- **Continuous**: Polynomial for some special graphs, geometric optimization in the general case.
- **Discrete**: NP-complete (reduction from 2-partition). We give an approximation.
- **Incremental**: NP-complete (reduction from 2-partition). We give an approximation.
- **Vdd-Hopping**: Polynomial (linear programming).
Plan

1. Introduction
 - Models
 - Goal

2. Results
 - Continuous speeds
 - \textsc{Vdd-Hopping}
 - Discrete speed models

3. Conclusion
General problem: geometric programming

Reminder

For each task T_i we define

- w_i its size/work
- s_i the speed of the processor which has task T_i assigned to.
- t_i the time when the computation of T_i ends.

Objective function

Minimize $\sum_{i=1}^{n} s_i^2 \times w_i$
subject to

(i) $t_i + \frac{w_j}{s_j} \leq t_j$ for each $(T_i, T_j) \in E$ (1)
(ii) $t_i \leq D$ for each $T_i \in V$
Results for continuous speeds

- \texttt{MinEnergy}(G,D) can be solved in polynomial time when \(G \) is a tree
- \texttt{MinEnergy}(G,D) can be solved in polynomial time when \(G \) is a series-parallel graph (assuming \(s_{\text{max}} = +\infty \))
Results for continuous speeds

- \textbf{MinEnergy}(G,D) can be solved in polynomial time when \(G \) is a tree
- \textbf{MinEnergy}(G,D) can be solved in polynomial time when \(G \) is a series-parallel graph (assuming \(s_{max} = +\infty \))
Plan

1. Introduction
 - Models
 - Goal

2. Results
 - Continuous speeds
 - VDD-HOPPING
 - Discrete speed models

3. Conclusion
Definition

\[G, \ n \text{ tasks}, \ D \text{ deadline}; \]
\[s_1, ..., s_m \text{ be the set of possible processor speeds}; \]
\[t_i \text{ is the finishing time of the execution of task } T_i; \]
\[\alpha(i,j) \text{ is the time spent at speed } s_j \text{ for executing task } T_i; \]

This makes us a total of \(n(m + 1) \) variables for the system.

Note that the total execution time of task \(T_i \) is \(\sum_{j=1}^{m} \alpha(i,j) \).

The objective function is:

\[
\min \left(\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha(i,j) s_j^3 \right)
\]
Linear program for \textbf{Vdd-Hopping}

The constraints are:
\begin{align*}
\forall 1 \leq i \leq n, \ t_i &\leq D: \text{the deadline is not exceeded by any task;} \\
\forall 1 \leq i, i' \leq n \text{ such that } T_i &\rightarrow T_{i'}, t_i + \sum_{j=1}^{m} \alpha(i',j) \leq t_{i'}: \text{a task cannot start before its predecessor has completed its execution;} \\
\forall 1 \leq i \leq n, \ \sum_{j=1}^{m} \alpha(i,j) \times s_j &\geq w_i: \text{task } T_i \text{ is completely executed.} \\
\forall 1 \leq i \leq n, \ t_i &\geq \sum_{j=1}^{m} \alpha(i,j): \text{each task cannot finish until all work is done;} \\
\end{align*}
Plan

1 Introduction
 - Models
 - Goal

2 Results
 - Continuous speeds
 - \textsc{Vdd-Hopping}
 - Discrete speed models

3 Conclusion
Theorem

With the Incremental model (and hence the Discrete model), finding the speed distribution that minimizes the energy consumption while enforcing a deadline \(D \) is NP-complete.

PROOF: Reduction from 2-Partition,

- 1 processor, \(n \) independent tasks of weight \((a_i) \).
- 2 speeds: \(s_1 = 1/2, s_2 = 3/2 \)
- \(D = 2W = \sum_{i=1}^{n} a_i \)
- \(E = W((3/2)^2 + (1/2)^2) \)
Approximation results for Discrete and Incremental.

Proposition (Polynomial-time Approximation algorithms.)

- With the Discrete model, for any integer $K > 0$, the MinEnergy(G,D) problem can be approximated within a factor
 \[
 (1 + \frac{\alpha}{s_1})^2 \times (1 + \frac{1}{K})^2
 \]
 where $\alpha = \max_{1 \leq i < m} \{s_{i+1} - s_i\}$, in a time polynomial in the size of the instance and in K.

- With the Incremental model, the same result holds where $\alpha = \delta \ (s_1 = s_{\text{min}})$.

guillaume.aupy@ens-lyon.fr
Approximation results for Discrete and Incremental.

Proposition (Comparaison to the optimal solution:)

For any integer $\delta > 0$, any instance of $\text{MinEnergy}(G,D)$ with the Continuous model can be approximated within a factor $(1 + \frac{\delta}{s_{\min}})^2$ in the Incremental model with speed increment δ.
The problem of minimizing energy when the schedule is already fixed on p processors is:

Continuous: Polynomial for some special graphs, geometric optimization in the general case.

Discrete and Incremental: NP-complete. However we were able to give an approximation.

Vdd-Hopping: Polynomial (linear programming).

- Bi-criteria Energy/Deadline optimization problem
- Mapping already given.
- Theoretical foundations for a comparative study of energy models.
Thanks for listening. Any questions?