Reclaiming the Energy of a Schedule, Models and Algorithms

Guillaume Aupy, Anne Benoit, Fanny Dufossé and Yves Robert

Ecole Normale Supérieure de Lyon & LIP

4th June 2011

SPAA'11 in San Jose, Ca.

<ロト (四) (三) (三) (三)

200

æ

Contents

- Models
- Goal

2 Results

- Continuous speeds
- VDD-HOPPING
- Discrete speed models

3 Conclusion

э

Motivation

- Scheduling = Makespan minimization Difficulty of scheduling is to chose the right processor to assign the task to.
- General mapping If we are not tight on deadline, why not take our time?
 - Economical + environmental reasons: Energy consumption.
 - Affinities or security reasons: what if the tasks are pre-assigned to a processor?

Motivation

- Scheduling Makespan minimization Difficulty of scheduling is to shose the right processor to assign the task to.
- General mapping If we are not tight on deadline, why not take our time?
 - Economical + environmental reasons: Energy consumption.
 - Affinities or security reasons: what if the tasks are pre-assigned to a processor?

Motivation

 Scheduling — Makespan minimization Difficulty of scheduling is to shose the right processor to assign the task to.

• General mapping

If we are not tight on deadline, why not take our time?

- Economical + environmental reasons: Energy consumption.
- Affinities or security reasons: what if the tasks are pre-assigned to a processor?

Motivation

 Scheduling — Makespan minimization Difficulty of scheduling is to shose the right processor to assign the task to.

• General mapping

If we are not tight on deadline, why not take our time?

- Economical + environmental reasons: Energy consumption.
- Affinities or security reasons: what if the tasks are pre-assigned to a processor?

Models Goal

Plan

Goal

2 Results

- Continuous speeds
- VDD-HOPPING
- Discrete speed models

3 Conclusion

æ

□→ < □→</p>

Models Goal

Task graph model

Consider a task graph (directed acyclic graph) to be executed on a set of processors. Assume that the mapping is given.

Useful definition in a task graph

- *w_i* its size/work
- s_i the speed of the processor which has task T_i assigned to.
- t_i the time when the computation of T_i ends.
- d_i the time it took to compute task T_i .
- $d_i s_i^3$ the energy consumed on task T_i by the system.

Models Goal

Task graph model

Consider a task graph (directed acyclic graph) to be executed on a set of processors. Assume that the mapping is given.

Useful definition in a task graph

- w; its size/work
- s_i the speed of the processor which has task T_i assigned to.
- t_i the time when the computation of T_i ends.
- d_i the time it took to compute task T_i .
- $d_i s_i^3$ the energy consumed on task T_i by the system.

Models Goal

Task graph model

Consider a task graph (directed acyclic graph) to be executed on a set of processors. Assume that the mapping is given.

Useful definition in a task graph

- w_i its size/work
- s_i the speed of the processor which has task T_i assigned to.
- t_i the time when the computation of T_i ends.
- d_i the time it took to compute task T_i .
- $d_i s_i^3$ the energy consumed on task T_i by the system.

Models Goal

Task graph model

Consider a task graph (directed acyclic graph) to be executed on a set of processors. Assume that the mapping is given.

Useful definition in a task graph

For every task T_i we define

- w_i its size/work
- s_i the speed of the processor which has task T_i assigned to.
- t_i the time when the computation of T_i ends.
- d_i the time it took to compute task T_i .

• $d_i s_i^3$ the energy consumed on task T_i by the system.

Models Goal

Task graph model

Consider a task graph (directed acyclic graph) to be executed on a set of processors. Assume that the mapping is given.

Useful definition in a task graph

- *w_i* its size/work
- s_i the speed of the processor which has task T_i assigned to.
- t_i the time when the computation of T_i ends.
- d_i the time it took to compute task T_i .
- $d_i s_i^3$ the energy consumed on task T_i by the system.

Models Goal

Speed models

- CONTINUOUS: processors can have arbitrary speeds, from 0 to a maximum value s_{max} , and a processor can change its speed at any time during execution.
- **DISCRETE**: processors have a set of possible speed values, or modes, denoted as $s_1, ..., s_m$. Speed of a processor constant during the computation of a task, but it can change from task to task.
- VDD-HOPPING: a processor can run at different speeds as in the previous model, but it can also change its speed during a computation.
- INCREMENTAL: The different modes are spread regularly between $s_1 = s_{min}$ and $s_m = s_{max}$, instead of being arbitrarily chosen. ($s_i = s_{min} + i \times \delta$)

< □ > < 同 > < 回 >

Models Goal

Speed models

• CONTINUOUS: processors can have arbitrary speeds, from 0 to a maximum value s_{max} , and a processor can change its speed at any time during execution.

Gauss Fact

When Gauss wife asked him "How much do you love me?", he quantified it with an irrational number. Unfortunately a computer will never be as good as Gauss.

- DISCRETE: processors have a set of possible speed values, or modes, denoted as $s_1, ..., s_m$. Speed of a processor constant during the computation of a task, but it can change from task to task.
- VDD-HOPPING: a processor can run at different speeds as in the previous model, but it can also change its apeed during æ ಾ⊲ce

Models Goal

Speed models

- CONTINUOUS: processors can have arbitrary speeds, from 0 to a maximum value s_{max} , and a processor can change its speed at any time during execution.
- DISCRETE: processors have a set of possible speed values, or modes, denoted as $s_1, ..., s_m$. Speed of a processor constant during the computation of a task, but it can change from task to task.
- VDD-HOPPING: a processor can run at different speeds as in the previous model, but it can also change its speed during a computation.
- INCREMENTAL: The different modes are spread regularly between $s_1 = s_{min}$ and $s_m = s_{max}$, instead of being arbitrarily chosen. ($s_i = s_{min} + i \times \delta$)

(日)

Models Goal

Speed models

- CONTINUOUS: processors can have arbitrary speeds, from 0 to a maximum value s_{max} , and a processor can change its speed at any time during execution.
- DISCRETE: processors have a set of possible speed values, or modes, denoted as $s_1, ..., s_m$. Speed of a processor constant during the computation of a task, but it can change from task to task.
- VDD-HOPPING: a processor can run at different speeds as in the previous model, but it can also change its speed during a computation.
- INCREMENTAL: The different modes are spread regularly between $s_1 = s_{min}$ and $s_m = s_{max}$, instead of being arbitrarily chosen. ($s_i = s_{min} + i \times \delta$)

< ロ > < 同 > < 三 > <

Models Goal

Speed models

- CONTINUOUS: processors can have arbitrary speeds, from 0 to a maximum value s_{max} , and a processor can change its speed at any time during execution.
- DISCRETE: processors have a set of possible speed values, or modes, denoted as $s_1, ..., s_m$. Speed of a processor constant during the computation of a task, but it can change from task to task.
- VDD-HOPPING: a processor can run at different speeds as in the previous model, but it can also change its speed during a computation.
- INCREMENTAL: The different modes are spread regularly between $s_1 = s_{min}$ and $s_m = s_{max}$, instead of being arbitrarily chosen. ($s_i = s_{min} + i \times \delta$)

<ロト < 同ト < 三ト

Consider this DAG, with $s_{max} = 6$. Suppose deadline is D = 1.5.

Figure: Execution graph for the example.

Image: A image: A

э

Models Goal

Example

CONTINUOUS: (s_{max} = 6) E^(c)_{opt} ~ 109.6.
With the CONTINUOUS model, the optimal speeds are non rational values, and we obtain

$$s_{1} = \frac{2}{3}(3+35^{1/3}) \simeq 4.18; \quad s_{2} = s_{1} \times \frac{2}{35^{1/3}} \simeq 2.56;$$
$$s_{3} = s_{4} = s_{1} \times \frac{3}{35^{1/3}} \simeq 3.83.$$
$$\bullet \text{ DISCRETE: } (s_{1} = 2, s_{2} = 5, s_{3} = 6) E_{opt}^{(d)} = 170.$$
$$\bullet \text{ INCREMENTAL: } (\delta = 2, s_{min} = 2, s_{max} = 6) E_{opt}^{(i)} = 128.$$

・ (日本)

• VDD-HOPPING: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(v)} = 144.$

Introduction Results Conclusion **Models** Goal

Example

▲ □ ▶ → 三 ▶

- CONTINUOUS: $(s_{max} = 6) E_{opt}^{(c)} \simeq 109.6.$
- **DISCRETE:** $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(d)} = 170$. For the DISCRETE model, if we execute all tasks at speed $s_2^{(d)} = 5$, we obtain an energy $E = 8 \times 5^2 = 200$. A better solution is obtained with $s_1 = s_3^{(d)} = 6$, $s_2 = s_3 = s_1^{(d)} = 2$ and $s_4 = s_2^{(d)} = 5$, which turns out to be optimal.
- INCREMENTAL: $(\delta = 2, s_{min} = 2, s_{max} = 6) E_{opt}^{(i)} = 128.$
- VDD-HOPPING: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(v)} = 144.$

Models Goal

Example

- CONTINUOUS: $(s_{max} = 6) E_{opt}^{(c)} \simeq 109.6.$
- DISCRETE: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(d)} = 170.$
- INCREMENTAL: $(\delta = 2, s_{min} = 2, s_{max} = 6) E_{opt}^{(i)} = 128$. For the INCREMENTAL model, the reasoning is similar to the DISCRETE case, and the optimal solution is obtained by an exhaustive search: all tasks should be executed at speed $s_2^{(i)} = 4$.
- VDD-HOPPING: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(v)} = 144.$

Models Goal

Example

- CONTINUOUS: $(s_{max} = 6) E_{opt}^{(c)} \simeq 109.6.$
- DISCRETE: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(d)} = 170.$
- INCREMENTAL: $(\delta = 2, s_{min} = 2, s_{max} = 6) E_{opt}^{(i)} = 128.$
- VDD-HOPPING: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(v)} = 144$. With the VDD-HOPPING model, we set $s_1 = s_2^{(d)} = 5$; for the other tasks, we run part of the time at speed $s_2^{(d)} = 5$, and part of the time at speed $s_1^{(d)} = 2$ in order to use the idle time and lower the energy consumption.

Introduction Results Conclusion **Models** Goal

Example

- CONTINUOUS: $(s_{max} = 6) E_{opt}^{(c)} \simeq 109.6.$
- DISCRETE: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(d)} = 170.$
- INCREMENTAL: $(\delta = 2, s_{min} = 2, s_{max} = 6) E_{opt}^{(i)} = 128.$
- VDD-HOPPING: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(v)} = 144.$

Models Goal

Plan

• Goal

2 Results

- Continuous speeds
- VDD-HOPPING
- Discrete speed models

3 Conclusion

æ

□→ < □→</p>

Models Goal

Optimization goal

Energy-Performance-oriented objective

- Constraint on Deadline
- Minimize Energy Consumption:

Today's talk: comparison of all speed models in this regard.

We assume the mapping is already fixed.

A D

Models Goal

Optimization goal

Energy-Performance-oriented objective

- Constraint on Deadline $t_i \leq D$ for each $T_i \in V$
- Minimize Energy Consumption: $\sum_{i=1}^{n} w_i \times s_i^2$

Today's talk: comparison of all speed models in this regard.

We assume the mapping is already fixed.

Image: A image: A

Models Goal

Optimization goal

Energy-Performance-oriented objective

- Constraint on Deadline $t_i \leq D$ for each $T_i \in V$
- Minimize Energy Consumption: $\sum_{i=1}^{n} w_i \times s_i^2$

Today's talk: comparison of all speed models in this regard.

We assume the mapping is already fixed.

Image: A image: A

Continuous speeds VDD-HOPPING Discrete speed models

Hardness

- CONTINUOUS: Polynomial for some special graphs, geometric optimization in the general case.
- **DISCRETE**: NP-complete (reduction from 2-partition). We give an approximation.
- **INCREMENTAL**: NP-complete (reduction from 2-partition). We give an approximation.
- VDD-HOPPING: Polynomial (linear programming).

Continuous speeds VDD-HOPPING Discrete speed models

Hardness

- **CONTINUOUS**: Polynomial for some special graphs, geometric optimization in the general case.
- **DISCRETE**: NP-complete (reduction from 2-partition). We give an approximation.
- INCREMENTAL: NP-complete (reduction from 2-partition). We give an approximation.
- VDD-HOPPING: Polynomial (linear programming).

Continuous speeds VDD-HOPPING Discrete speed models

- **CONTINUOUS**: Polynomial for some special graphs, geometric optimization in the general case.
- **DISCRETE:** NP-complete (reduction from 2-partition). We give an approximation.
- **INCREMENTAL:** NP-complete (reduction from 2-partition). We give an approximation.
- VDD-HOPPING: Polynomial (linear programming).

Continuous speeds VDD-HOPPING Discrete speed models

- **CONTINUOUS**: Polynomial for some special graphs, geometric optimization in the general case.
- **DISCRETE:** NP-complete (reduction from 2-partition). We give an approximation.
- INCREMENTAL: NP-complete (reduction from 2-partition). We give an approximation.
- VDD-HOPPING: Polynomial (linear programming).

Continuous speeds VDD-HOPPING Discrete speed models

- **CONTINUOUS**: Polynomial for some special graphs, geometric optimization in the general case.
- **DISCRETE:** NP-complete (reduction from 2-partition). We give an approximation.
- INCREMENTAL: NP-complete (reduction from 2-partition). We give an approximation.
- VDD-HOPPING: Polynomial (linear programming).

Continuous speeds VDD-HOPPING Discrete speed models

▲ 同 ▶ → 三 ▶

э

э

Plan

- Models
- Goal

2 Results

- Continuous speeds
- VDD-HOPPING
- Discrete speed models

3 Conclusion

Continuous speeds VDD-HOPPING Discrete speed models

General problem: geometric programming

Reminder

For each task T_i we define

- w_i its size/work
- s_i the speed of the processor which has task T_i assigned to.
- t_i the time when the computation of T_i ends.

Objective function

$$\begin{array}{ll} \text{Minimize} \quad \sum_{i=1}^{n} s_{i}^{2} \times w_{i} \\ \text{subject to (i)} \quad t_{i} + \frac{w_{j}}{s_{j}} \leq t_{j} \text{ for each } (T_{i}, T_{j}) \in E \\ \text{(ii)} \quad t_{i} \leq D \text{ for each } T_{i} \in V \end{array}$$
(1)

Continuous speeds VDD-HOPPING Discrete speed models

▲ 同 ▶ → 三 ▶

Results for continuous speeds

- MINENERGY(G,D) can be solved in polynomial time when G is a tree
- MINENERGY(G,D) can be solved in polynomial time when G is a series-parallel graph (assuming s_{max} = +∞)

Continuous speeds VDD-HOPPING Discrete speed models

▲ 伊 ▶ ▲ 三 ▶

Results for continuous speeds

- MINENERGY(G,D) can be solved in polynomial time when G is a tree
- MINENERGY(G,D) can be solved in polynomial time when G is a series-parallel graph (assuming s_{max} = +∞)

Continuous speeds VDD-HOPPING Discrete speed models

▲ 同 ▶ → 三 ▶

э

э

Plan

- Models
- Goal

2 Results

- Continuous speeds
- VDD-HOPPING
- Discrete speed models

3 Conclusion

Continuous speeds VDD-HOPPING Discrete speed models

Linear program for VDD-HOPPING

Definition

G, n tasks, D deadline;

 $s_1, ..., s_m$ be the set of possible processor speeds;

 t_i is the finishing time of the execution of task T_i ;

 $\alpha_{(i,j)}$ is the *time* spent at speed s_j for executing task T_i . This makes us a total of n(m+1) variables for the system. Note that the total execution time of task T_i is $\sum_{i=1}^{m} \alpha_{(i,i)}$.

The objective function is:

$$\min\left(\sum_{i=1}^{n}\sum_{j=1}^{m}\alpha_{(i,j)}s_{j}^{3}\right)$$

Continuous speeds VDD-HOPPING Discrete speed models

Linear program for VDD-HOPPING

The constraints are:

 $\forall 1 \leq i \leq n, t_i \leq D$: the deadline is not exceeded by any task; $\forall 1 \leq i, i' \leq n$ such that $T_i \rightarrow T_{i'}$, $t_i + \sum_{j=1}^m \alpha_{(i',j)} \leq t_{i'}$: a task cannot start before its predecessor has completed its execution;

 $\forall 1 \leq i \leq n, \sum_{j=1}^{m} \alpha_{(i,j)} \times s_j \geq w_i$: task T_i is completely executed.

 $\forall 1 \leq i \leq n, t_i \geq \sum_{j=1}^m \alpha_{(i,j)}$: each task cannot finish until all work is done;

< /₽ > < ∃ >

Continuous speeds VDD-HOPPING Discrete speed models

▲ 同 ▶ → 三 ▶

э

э

Plan

- Models
- Goal

2 Results

- Continuous speeds
- VDD-HOPPING
- Discrete speed models

3 Conclusion

Continuous speeds VDD-HOPPING Discrete speed models

NP-completeness

Theorem

With the INCREMENTAL model (and hence the DISCRETE model), finding the speed distribution that minimizes the energy consumption while enforcing a deadline D is NP-complete.

PROOF: Reduction from 2-PARTITION,

- 1 processor, *n* independent tasks of weight (a_i) .
- 2 speeds : $s_1 = 1/2$, $s_2 = 3/2$

•
$$D = 2W = \sum_{i=1}^{n} a_i$$

•
$$E = W((3/2)^2 + (1/2)^2)$$

Continuous speeds VDD-HOPPING Discrete speed models

Approximation results for **DISCRETE** and **INCREMENTAL**.

Proposition (Polynomial-time Approximation algorithms.)

• With the DISCRETE model, for any integer K > 0, the MINENERGY(G,D) problem can be approximated within a factor

$$(1+rac{lpha}{s_1})^2 imes(1+rac{1}{K})^2$$

where $\alpha = \max_{1 \le i < m} \{s_{i+1} - s_i\}$, in a time polynomial in the size of the instance and in K.

• With the INCREMENTAL model, the same result holds where $\alpha = \delta$ ($s_1 = s_{min}$).

Continuous speeds VDD-HOPPING Discrete speed models

Approximation results for **DISCRETE** and **INCREMENTAL**.

Proposition (Comparaison to the optimal solution:)

For any integer $\delta > 0$, any instance of MINENERGY(G,D) with the CONTINUOUS model can be approximated within a factor $(1 + \frac{\delta}{s_{min}})^2$ in the INCREMENTAL model with speed increment δ .

The problem of minimizing energy when the scheduled is already fixed on p processors is:

CONTINUOUS: Polynomial for some special graphs, geometric optimization in the general case. DISCRETE and INCREMENTAL: NP-complete. However we

were able to give an approximation.

VDD-HOPPING: Polynomial (linear programming).

- Bi-criteria Energy/Deadline optimization problem
- Mapping already given.
- Theoretical foundations for a comparative study of energy models.

Thanks for listening. Any questions?

æ

<ロト <部ト < 注ト < 注ト