# Iterative algorithms (on the impact of network models)

Frédéric Vivien

#### e-mail: Frederic.Vivien@ens-lyon.fr

16 octobre 2006

(日) (四) (문) (문) (문)

## Outline

#### 1 The problem

- Pully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)

5 Non dedicated platforms

#### 6 Conclusion

### Outline

#### 1 The problem

- 2 Fully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)

5 Non dedicated platforms

#### 6 Conclusion

#### New sources of problems

• Heterogeneity of processors (computational power, memory, etc.)

- Heterogeneity of communications links.
- Irregularity of interconnection network.
- Non dedicated platforms.

#### • A set of data (typically, a matrix)

э

• A set of data (typically, a matrix)

ъ

• Structure of the algorithms:

- A set of data (typically, a matrix)
- Structure of the algorithms:
  - Each processor performs a computation on its chunk of data

- A set of data (typically, a matrix)
- Structure of the algorithms:
  - Each processor performs a computation on its chunk of data
  - Each processor exchange the "border" of its chunk of data with its neighbor processors

- A set of data (typically, a matrix)
- Structure of the algorithms:
  - Each processor performs a computation on its chunk of data
  - Each processor exchange the "border" of its chunk of data with its neighbor processors

We go back at Step 1

- A set of data (typically, a matrix)
- Structure of the algorithms:
  - Each processor performs a computation on its chunk of data
  - Each processor exchange the "border" of its chunk of data with its neighbor processors

We go back at Step 1

**Question**: how can we efficiently execute such an algorithm on such a platform?

#### The questions

- Which processors should be used ?
- What amount of data should we give them ?

• How do we cut the set of data ?



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで





• Unidimensional cutting into vertical slices





- Unidimensional cutting into vertical slices
- Consequences:

• Data: a 2-D array



- Unidimensional cutting into vertical slices
- Consequences:
  - Borders and neighbors are easily defined

• Data: a 2-D array



- Unidimensional cutting into vertical slices
- Consequences:
  - Borders and neighbors are easily defined
  - 2 Constant volume of data exchanged between neighbors:  $D_c$

• Data: a 2-D array

| $P_1$ | $P_2$ | $P_4$ | $P_3$ |
|-------|-------|-------|-------|
|-------|-------|-------|-------|



- Unidimensional cutting into vertical slices
- Consequences:
  - Borders and neighbors are easily defined
  - 2 Constant volume of data exchanged between neighbors:  $D_c$
  - Processors are virtually organized into a ring



• Processors:  $P_1, ..., P_p$ 

#### Notations

- Processors:  $P_1$ , ...,  $P_p$
- Processor  $P_i$  executes a unit task in a time  $w_i$

- Processors:  $P_1$ , ...,  $P_p$
- Processor  $P_i$  executes a unit task in a time  $w_i$
- Overall amount of work D<sub>w</sub>;
  Share of P<sub>i</sub>: α<sub>i</sub>.D<sub>w</sub> processed in a time α<sub>i</sub>.D<sub>w</sub>.w<sub>i</sub> (α<sub>i</sub> ≥ 0, Σ<sub>j</sub> α<sub>j</sub> = 1)

- Processors:  $P_1$ , ...,  $P_p$
- Processor  $P_i$  executes a unit task in a time  $w_i$
- Overall amount of work  $D_w$ ; Share of  $P_i$ :  $\alpha_i.D_w$  processed in a time  $\alpha_i.D_w.w_i$  $(\alpha_i \ge 0, \sum_j \alpha_j = 1)$
- Cost of a unit-size communication from  $P_i$  to  $P_j$ :  $c_{i,j}$

- Processors:  $P_1$ , ...,  $P_p$
- Processor  $P_i$  executes a unit task in a time  $w_i$
- Overall amount of work  $D_w$ ; Share of  $P_i$ :  $\alpha_i.D_w$  processed in a time  $\alpha_i.D_w.w_i$  $(\alpha_i \ge 0, \sum_j \alpha_j = 1)$
- Cost of a unit-size communication from  $P_i$  to  $P_j$ :  $c_{i,j}$
- Cost of a sending from  $P_i$  to its successor in the ring:  $D_c.c_{i,succ(i)}$

#### Communications: 1-port model

A processor can:

- send at most one message at any time;
- receive at most one message at any time;
- send and receive a message simultaneously.







### Objective

 $\textcircled{0} \hspace{0.1 cm} \text{Select} \hspace{0.1 cm} q \hspace{0.1 cm} \text{processors} \hspace{0.1 cm} \text{among} \hspace{0.1 cm} p$ 

イロト イ押ト イヨト イヨト

э

Order them into a ring

## Objective

- O Select q processors among p
- Order them into a ring
- O Distribute the data among them

= n<0</p>

## Objective

- **(**) Select q processors among p
- Order them into a ring
- Oistribute the data among them

So as to minimize:

$$\max_{1 \le i \le p} \mathbb{I}\{i\}[\alpha_i . D_w . w_i + D_c . (c_{i, \mathsf{pred}(i)} + c_{i, \mathsf{succ}(i)})]$$

Where  $\mathbb{I}\{i\}[x] = x$  if  $P_i$  participates in the computation, and 0 otherwise

### Outline

#### The problem

- 2 Fully homogeneous network
- **3** Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms

#### 6 Conclusion

## Special hypotheses

- There exists a communication link between any two processors
- All links have the same capacity (∃c, ∀i, j c<sub>i,j</sub> = c)



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで



• Either the most powerful processor performs all the work, or all the processors participate



- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously



- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously  $\alpha_i.D_w$  rational values ???

#### Consequences

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously  $\alpha_i.D_w$  rational values ???  $(\exists \tau, \quad \alpha_i.D_w.w_i = \tau, \text{ so } 1 = \sum_i \frac{\tau}{D_w.w_i})$

#### Consequences

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously  $\alpha_i.D_w$  rational values ???  $(\exists \tau, \quad \alpha_i.D_w.w_i = \tau, \text{ so } 1 = \sum_i \frac{\tau}{D_w.w_i})$

• Time of the optimal solution:

$$T_{\mathsf{step}} = \min\left\{D_w.w_{\min}, D_w.\frac{1}{\sum_i \frac{1}{w_i}} + 2.D_c.c\right\}$$

### Outline

#### The problem

- 2 Fully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)

5 Non dedicated platforms

#### 6 Conclusion

## Special hypothesis

#### • There exists a communication link between any two processors



∃ <\0<</p>
## All the processors participate: study (1)



All processors end simultaneously

・ロト ・四ト ・ヨト ・ヨト

₹ 9Q@

# All the processors participate: study (2)

• All processors end simultaneously

$$T_{\mathsf{step}} = \alpha_i . D_w . w_i + D_c . (c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)})$$

э

# All the processors participate: study (2)

#### • All processors end simultaneously

$$T_{\text{step}} = \alpha_i . D_w . w_i + D_c . (c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)})$$

$$\bullet \sum_{i=1}^p \alpha_i = 1 \quad \Rightarrow \quad \sum_{i=1}^p \frac{T_{\text{step}} - D_c . (c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)})}{D_w . w_i} = 1.$$
Thus

$$\frac{T_{\text{step}}}{D_w.w_{\text{cumul}}} = 1 + \frac{D_c}{D_w}\sum_{i=1}^p \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$
 where  $w_{\text{cumul}} = \frac{1}{\sum_i \frac{1}{w_i}}$ 

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 … のへで

$$\frac{T_{\text{step}}}{D_w.w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$\frac{T_{\text{step}}}{D_w.w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$T_{\mathsf{step}}$$
 is minimal when  $\sum_{i=1}^p \frac{c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}}{w_i}$  is minimal

$$\frac{T_{\text{step}}}{D_w \cdot w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$T_{\mathsf{step}}$$
 is minimal when  $\sum_{i=1}^p \frac{c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}}{w_i}$  is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the edge from  $P_i$  to  $P_j$  has a weight of  $d_{i,j} = \frac{c_{i,j}}{w_i} + \frac{c_{j,i}}{w_j}$ 

$$\frac{T_{\text{step}}}{D_w \cdot w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$T_{\mathsf{step}}$$
 is minimal when  $\sum_{i=1}^p \frac{c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}}{w_i}$  is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the edge from  $P_i$  to  $P_j$  has a weight of  $d_{i,j} = \frac{c_{i,j}}{w_i} + \frac{c_{j,i}}{w_j}$ 

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 9 Q Q</p>

NP-complete problem

$$\begin{array}{l} \text{MINIMIZE } \sum_{i=1}^{p} \sum_{j=1}^{p} d_{i,j} . x_{i,j}, \\ \text{SATISFYING THE (IN)EQUATIONS} \\ \left\{ \begin{array}{ll} (1) \ \sum_{j=1}^{p} x_{i,j} = 1 & 1 \leq i \leq p \\ (2) \ \sum_{i=1}^{p} x_{i,j} = 1 & 1 \leq j \leq p \\ (3) \ x_{i,j} \in \{0,1\} & 1 \leq i,j \leq p \\ (4) \ u_{i} - u_{j} + p . x_{i,j} \leq p - 1 & 2 \leq i,j \leq p, i \neq j \\ (5) \ u_{i} \text{ integer}, u_{i} \geq 0 & 2 \leq i \leq p \end{array} \right. \end{array}$$

 $x_{i,j} = 1$  if, and only if, the edge from  $P_i$  to  $P_j$  is used

#### Best ring made of q processors

MINIMIZE T SATISFYING THE (IN)EQUATIONS

| (1) $x_{i,j} \in \{0,1\}$<br>(2) $\sum_{j=1}^{p} x_{i,j} \leq 1$                                                                                                                | $1 \le i, j \le p$                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $\begin{array}{ll} (2) & \sum_{i=1}^{p} x_{i,j} \geq 1 \\ (3) & \sum_{i=1}^{p} \sum_{j=1}^{p} x_{i,j} = q \\ (4) & \sum_{i=1}^{p} x_{i,j} = \sum_{i=1}^{p} x_{j,i} \end{array}$ | $1 \le j \le p$ $1 \le j \le p$                                                                  |
| (5) $\sum_{i=1}^{p} \alpha_i = 1$<br>(6) $\alpha_i \le \sum_{j=1}^{p} x_{i,j}$                                                                                                  | $1 \leq i \leq p$                                                                                |
| (7) $\alpha_{i.}w_{i} + \frac{p_{c}}{D_{w}} \sum_{j=1}^{p} (x_{i,j}c_{i,j} + x_{j,i}c_{j,i}) \leq T$<br>(8) $\sum_{i=1}^{p} y_{i} = 1$                                          | $1 \le i \le p$                                                                                  |
| $ \begin{array}{l} (9) & -p.y_i - p.y_j + u_i - u_j + q.x_{i,j} \leq q-1 \\ (10) & y_i \in \{0,1\} \\ (11) & u_i \text{ integer}, u_i \geq 0 \end{array} $                      | $\begin{array}{l} 1 \leq i,j \leq p, i \neq j \\ 1 \leq i \leq p \\ 1 \leq i \leq p \end{array}$ |

## Linear programming

• Problems with rational variables: can be solved in polynomial time (in the size of the problem).

## Linear programming

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
- Problems with integer variables: solved in exponential time in the worst case.

# Linear programming

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
- Problems with integer variables: solved in exponential time in the worst case.

• No relaxation in rationals seems possible here...

# **All processors participate.** One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

General case.



General case.

Exhaustive search: feasible until a dozen of processors...

#### General case.

- Exhaustive search: feasible until a dozen of processors...
- Greedy heuristic: initially we take the best pair of processors; for a given ring we try to insert any unused processor in between any pair of neighbor processors in the ring...

# Outline

#### The problem

- 2 Fully homogeneous network
- **3** Heterogeneous network (complete)
- 4 Heterogeneous network (general case)

5 Non dedicated platforms

#### 6 Conclusion



#### Heterogeneous platform

 $\begin{array}{ccc} P_1 & P_2 \\ \bullet & & \bullet \\ \bullet & & \bullet \\ \bullet & & \bullet \\ P_3 & P_4 \end{array}$ 

Virtual ring

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで





Heterogeneous platform

Virtual ring

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで





Heterogeneous platform

Virtual ring

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Heterogeneous platform

Virtual ring

We must take communication link sharing into account.

#### • A set of communications links: $e_1, ..., e_n$

• A set of communications links:  $e_1$ , ...,  $e_n$ 

• Bandwidth of link  $e_m$ :  $b_{e_m}$ 

- A set of communications links:  $e_1$ , ...,  $e_n$
- Bandwidth of link  $e_m$ :  $b_{e_m}$
- There is a path  $\mathcal{S}_i$  from  $P_i$  to  $P_{\mathsf{succ}(i)}$  in the network

- A set of communications links:  $e_1$ , ...,  $e_n$
- Bandwidth of link  $e_m$ :  $b_{e_m}$
- There is a path  $S_i$  from  $P_i$  to  $P_{\mathsf{succ}(i)}$  in the network
  - $\mathcal{S}_i$  uses a fraction  $s_{i,m}$  of the bandwidth  $b_{e_m}$  of link  $e_m$

- A set of communications links:  $e_1$ , ...,  $e_n$
- Bandwidth of link  $e_m$ :  $b_{e_m}$
- There is a path  $S_i$  from  $P_i$  to  $P_{\mathsf{succ}(i)}$  in the network
  - $\mathcal{S}_i$  uses a fraction  $s_{i,m}$  of the bandwidth  $b_{e_m}$  of link  $e_m$
  - $P_i$  needs a time  $D_c.\frac{1}{\min_{e_m\in \mathcal{S}_i}s_{i,m}}$  to send to its successor a message of size  $D_c$

- A set of communications links:  $e_1$ , ...,  $e_n$
- Bandwidth of link  $e_m$ :  $b_{e_m}$
- There is a path  $S_i$  from  $P_i$  to  $P_{\mathsf{succ}(i)}$  in the network
  - $\mathcal{S}_i$  uses a fraction  $s_{i,m}$  of the bandwidth  $b_{e_m}$  of link  $e_m$
  - $P_i$  needs a time  $D_c. \frac{1}{\min_{e_m \in S_i} s_{i,m}}$  to send to its successor a message of size  $D_c$

• Constraints on the bandwidth of  $e_m$ :  $\sum_{1 \leq i \leq p} s_{i,m} \leq b_{e_m}$ 

- A set of communications links:  $e_1$ , ...,  $e_n$
- Bandwidth of link  $e_m$ :  $b_{e_m}$
- There is a path  $S_i$  from  $P_i$  to  $P_{\mathsf{succ}(i)}$  in the network
  - $\mathcal{S}_i$  uses a fraction  $s_{i,m}$  of the bandwidth  $b_{e_m}$  of link  $e_m$
  - $P_i$  needs a time  $D_c.\frac{1}{\min_{e_m\in \mathcal{S}_i}s_{i,m}}$  to send to its successor a message of size  $D_c$

• Constraints on the bandwidth of  $e_m\colon \sum_{1\leq i\leq p}s_{i,m}\leq b_{e_m}$ 

• Symmetrically, there is a path  $\mathcal{P}_i$  from  $P_i$  to  $P_{\text{pred}(i)}$  in the network, which uses a fraction  $p_{i,m}$  of the bandwidth  $b_{e_m}$  of link  $e_m$ 

# Toy example: choosing the ring



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• 7 processors and 8 bidirectional communications links

#### Toy example: choosing the ring



- 7 processors and 8 bidirectional communications links
- We choose a ring of 5 processors:  $P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P_5$  (we use neither Q, nor R)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで



From  $P_1$  to  $P_2$ , we use the links a and b:  $S_1 = \{a, b\}$ .



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

From  $P_1$  to  $P_2$ , we use the links a and b:  $S_1 = \{a, b\}$ . From  $P_2$  to  $P_1$ , we use the links b, g and h:  $\mathcal{P}_2 = \{b, g, h\}$ .



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

From  $P_1$  to  $P_2$ , we use the links a and b:  $S_1 = \{a, b\}$ . From  $P_2$  to  $P_1$ , we use the links b, g and h:  $\mathcal{P}_2 = \{b, g, h\}$ .

From  $P_1$ : to  $P_2$ ,  $S_1 = \{a, b\}$  and to  $P_5$ ,  $\mathcal{P}_1 = \{h\}$ From  $P_2$ : to  $P_3$ ,  $S_2 = \{c, d\}$  and to  $P_1$ ,  $\mathcal{P}_2 = \{b, g, h\}$ From  $P_3$ : to  $P_4$ ,  $S_3 = \{d, e\}$  and to  $P_2$ ,  $\mathcal{P}_3 = \{d, e, f\}$ From  $P_4$ : to  $P_5$ ,  $S_4 = \{f, b, g\}$  and to  $P_3$ ,  $\mathcal{P}_4 = \{e, d\}$ From  $P_5$ : to  $P_1$ ,  $S_5 = \{h\}$  and to  $P_4$ ,  $\mathcal{P}_5 = \{g, b, f\}$  From  $P_1$  to  $P_2$  we use links a and b:  $c_{1,2} = \frac{1}{\min(s_{1,a},s_{1,b})}$ . From  $P_1$  to  $P_5$  we use the link h:  $c_{1,5} = \frac{1}{p_{1,h}}$ .
From  $P_1$  to  $P_2$  we use links a and b:  $c_{1,2} = \frac{1}{\min(s_{1,a},s_{1,b})}$ . From  $P_1$  to  $P_5$  we use the link h:  $c_{1,5} = \frac{1}{p_{1,h}}$ .

#### Set of all sharing constraints:

MINIMIZE  $\max_{1 \le i \le 5} (\alpha_i . D_w . w_i + D_c . (c_{i,i-1} + c_{i,i+1}))$  under the constraints

| $\sum_{i=1}^{5} \alpha_i = 1$                   |                                                 |                                       |
|-------------------------------------------------|-------------------------------------------------|---------------------------------------|
| $s_{1,a} \le b_a$                               | $s_{1,b} + s_{4,b} + p_{2,b} + p_{5,b} \le b_b$ | $s_{2,c} \le b_c$                     |
| $s_{2,d} + s_{3,d} + p_{3,d} + p_{4,d} \le b_d$ | $s_{3,e} + p_{3,e} + p_{4,e} \le b_e$           | $s_{4,f} + p_{3,f} + p_{5,f} \le b_f$ |
| $s_{4,g} + p_{2,g} + p_{5,g} \le b_g$           | $s_{5,h} + p_{1,h} + p_{2,h} \le b_h$           |                                       |
| $s_{1,a}.c_{1,2} \ge 1$                         | $s_{1,b}.c_{1,2} \ge 1$                         | $p_{1,h}.c_{1,5} \ge 1$               |
| $s_{2,c}.c_{2,3} \ge 1$                         | $s_{2,d}.c_{2,3} \ge 1$                         | $p_{2,b}.c_{2,1} \ge 1$               |
| $p_{2,g}.c_{2,1} \ge 1$                         | $p_{2,h}.c_{2,1} \ge 1$                         | $s_{3,d}.c_{3,4} \ge 1$               |
| $s_{3,e}.c_{3,4} \ge 1$                         | $p_{3,d}.c_{3,2} \ge 1$                         | $p_{3,e}.c_{3,2} \ge 1$               |
| $p_{3,f}.c_{3,2} \ge 1$                         | $s_{4,f}.c_{4,5} \ge 1$                         | $s_{4,b}.c_{4,5} \ge 1$               |
| $s_{4,g}.c_{4,5} \ge 1$                         | $p_{4,e}.c_{4,3} \ge 1$                         | $p_{4,d}.c_{4,3} \ge 1$               |
| $s_{5,h}.c_{5,1} \ge 1$                         | $p_{5,g}.c_{5,4} \ge 1$                         | $p_{5,b}.c_{5,4} \ge 1$               |
| $p_{5,f}.c_{5,4} \ge 1$                         |                                                 |                                       |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The problem sums up to a quadratic system if

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э.

The processors are selected;

The problem sums up to a quadratic system if

- The processors are selected;
- The processors are ordered into a ring;

The problem sums up to a quadratic system if

- The processors are selected;
- The processors are ordered into a ring;
- **③** The communication paths between the processors are known.

The problem sums up to a quadratic system if

- The processors are selected;
- The processors are ordered into a ring;
- **③** The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

The problem sums up to a quadratic system if

- The processors are selected;
- The processors are ordered into a ring;
- In the communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

- Complete graph: closed-form expression;
- General graph: quadratic system.

We adapt our greedy heuristic:

- Initially: best pair of processors
- **2** For each processor  $P_k$  (not already included in the ring)
  - For each pair  $(P_i, P_j)$  of neighbors in the ring
    - We build the graph of the unused bandwidths (Without considering the paths between P<sub>i</sub> and P<sub>j</sub>)
    - **2** We compute the shortest paths (in terms of bandwidth) between  $P_k$  and  $P_i$  and  $P_j$
    - 3 We evaluate the solution
- We keep the best solution found at step 2 and we start again
  + refinements (*max-min fairness*, quadratic solving)

#### • No guarantee, neither theoretical, nor practical

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• No guarantee, neither theoretical, nor practical

• Simple solution:

- No guarantee, neither theoretical, nor practical
- Simple solution:
  - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths

- No guarantee, neither theoretical, nor practical
- Simple solution:
  - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths

We apply the heuristic for complete graphs

- No guarantee, neither theoretical, nor practical
- Simple solution:
  - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths

- We apply the heuristic for complete graphs
- We allocate the bandwidths

## An example of an actual platform (Lyon)



| $P_0$  | $P_1$    | $P_2$           | $P_3$    | $P_4$    | $P_5$    | $P_6$    | $P_7$    | $P_8$  |
|--------|----------|-----------------|----------|----------|----------|----------|----------|--------|
| 0.0206 | 0.0206   | 0.0206          | 0.0206   | 0.0291   | 0.0206   | 0.0087   | 0.0206   | 0.0206 |
|        |          |                 |          |          |          |          |          |        |
| $P_9$  | $P_{10}$ | P <sub>11</sub> | $P_{12}$ | $P_{13}$ | $P_{14}$ | $P_{15}$ | $P_{16}$ |        |
| 0.0206 | 0.0206   | 0.0206          | 0.0291   | 0.0451   | 0        | 0        | 0        |        |

Processors processing times (in seconds par megaflop)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

# Describing Lyon's platform



Abstracting Lyon's platform.

・ロト ・回ト ・ヨト

ж

ъ

#### First heuristic building the ring without taking link sharing into account

Second heuristic taking into account link sharing (and with quadratic programing)

| Ratio $D_c/D_w$ | H1            | H2            | Gain   |
|-----------------|---------------|---------------|--------|
| 0.64            | 0.008738 (1)  | 0.008738 (1)  | 0%     |
| 0.064           | 0.018837 (13) | 0.006639 (14) | 64.75% |
| 0.0064          | 0.003819 (13) | 0.001975 (14) | 48.28% |

| Ratio $D_c/D_w$ | H1            | H2           | Gain   |
|-----------------|---------------|--------------|--------|
| 0.64            | 0.005825 (1)  | 0.005825 (1) | 0 %    |
| 0.064           | 0.027919 (8)  | 0.004865 (6) | 82.57% |
| 0.0064          | 0.007218 (13) | 0.001608 (8) | 77.72% |

Table:  $T_{step}/D_w$  for each heuristic on Lyon's and Strasbourg's platforms (the numbers in parentheses show the size of the rings built).

### Outline

#### The problem

- 2 Fully homogeneous network
- **3** Heterogeneous network (complete)
- 4 Heterogeneous network (general case)

5 Non dedicated platforms

#### 6 Conclusion

- The available processing power of each processor changes over time
- The available bandwidth of each communication link changes over time

- $\Rightarrow$  Need to reconsider the allocation previously done
- $\Rightarrow$  Introduce dynamicity in a static approach

## A possible approach

- If the actual performance is "too much" different from the characteristics used to build the solution
  - If the actual performance is "very" different
    - We compute a new ring
    - We redistribute data from the old ring to the new one
  - If the actual performance is "a little" different
    - We compute a new load-balancing in the existing ring

• We redistribute the data in the ring

## A possible approach

 If the actual performance is "too much" different from the characteristics used to build the solution

#### Actual criterion defining "too much" ?

- If the actual performance is "very" different
  - We compute a new ring
  - We redistribute data from the old ring to the new one Actual criterion defining "very" ? Cost of the redistribution ?
- If the actual performance is "a little" different
  - We compute a new load-balancing in the existing ring

• We redistribute the data in the ring How to efficiently do the redistribution ? Principle: the ring is modified only if this is profitable.

- $T_{\text{step}}$ : length of an iteration *before* load-balancing;
- $T'_{\text{step}}$ : length of an iteration *after* load-balancing;
- $T_{\text{redistribution}}$  : cost of the redistribution;
- n<sub>iter</sub>: number of remaining iterations

Condition: 
$$T_{\text{redistribution}} + n_{\text{iter}} \times T'_{\text{step}} \le n_{\text{iter}} \times T_{\text{step}}$$

### Load-balancing on a ring

- Homogeneous unidirectional ring
- Heterogeneous unidirectional ring
- Homogeneous bidirectional ring
- Heterogeneous bidirectional ring

#### Notations

•  $C_{k,l}$  the set of the processors from  $P_k$  to  $P_l$ :

$$C_{k,l} = P_k, P_{k+1}, \dots, P_l$$

- $c_{i,i+1}$ : time needed by processor  $P_i$  to send a data item to processor  $P_{i+1}$  (next one in the ring).
- Initially, processor  $P_i$  holds  $L_i$  data items (atomic). After redistribution,  $P_i$  will hold  $L_i - \delta_i$  data items.  $\delta_i$  is the unbalance of processor  $P_i$ .  $\delta_{k,l}$ : unbalance of the set  $C_{k,l}$ :  $\delta_{k,l} = \sum_{i=k}^{l} \delta_i$ . Conservation law for the data:  $\sum_i \delta_i = 0$ We assume that each processor at least one data item before and after the redistribution:  $L_i \ge 1$  et  $L_i \ge 1 + \delta_i$ .

#### Framework



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Homogeneous communication time: c.

 $P_k$  can only send messages to  $P_{k+1}$ .



Homogeneous communication time: c.

 $P_k$  can only send messages to  $P_{k+1}$ .



 $\delta_{k,k+l} = \delta_k + \delta_{k+1} + \ldots + \delta_{k+l-1} + \delta_{k+l}$ 

#### Homogeneous communication time: c.

 $P_k$  can only send messages to  $P_{k+1}$ .



 $\delta_{k,k+l} = \delta_k + \delta_{k+1} + \ldots + \delta_{k+l-1} + \delta_{k+l}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

#### Homogeneous communication time: c.

 $P_k$  can only send messages to  $P_{k+1}$ .

 $P_l$  needs a time  $\delta_{k,l} \times c$  to send  $\delta_{k,l}$  data (if  $\delta_{k,l} > 0$ ).



 $\delta_{k,k+l} = \delta_k + \delta_{k+1} + \ldots + \delta_{k+l-1} + \delta_{k+l}$ 

#### Homogeneous communication time: c.

 $P_k$  can only send messages to  $P_{k+1}$ .

 $P_l$  needs a time  $\delta_{k,l} \times c$  to send  $\delta_{k,l}$  data (if  $\delta_{k,l} > 0$ ).

Lower bound: 
$$\left(\max_{1 \le k \le n, \ 0 \le l \le n-1} \delta_{k,k+l}\right) \times c$$



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙



 $\delta_{\max}=5$ 

The redistribution algorithm is defined by the first processor of a "chain" of processors whose unbalance is maximal.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

During the algorithm execution processor  $P_i$  sends  $\delta_{2,i}$  data.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

At step 1,  $P_i$  sends a data item if and only if  $\delta_{2,i} \geq 1$ 



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

At step 1,  $P_i$  sends a data item if and only if  $\delta_{2,i} \geq 1$ 



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

At step 2,  $P_i$  sends a data item if and only if  $\delta_{2,i} \geq 2$


▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

At step 2,  $P_i$  sends a data item if and only if  $\delta_{2,i} \geq 2$ 



▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

At step 3,  $P_i$  sends a data item if and only if  $\delta_{2,i} \geq 3$ 



▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

At step 3,  $P_i$  sends a data item if and only if  $\delta_{2,i} \geq 3$ 



▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

At step 4,  $P_i$  sends a data item if and only if  $\delta_{2,i} \ge 4$ 



▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

At step 4,  $P_i$  sends a data item if and only if  $\delta_{2,i} \ge 4$ 



At step 5,  $P_i$  sends a data item if and only if  $\delta_{2,i} \geq 5$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



At step 5,  $P_i$  sends a data item if and only if  $\delta_{2,i} \geq 5$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

### Homogeneous unidirectional ring: formal algorithm

- 1: Let  $\delta_{\max} = (\max_{1 \le k \le n, 0 \le l \le n-1} |\delta_{k,k+l}|)$
- 2: Let start and end be two indices such that the slice  $C_{\text{start,end}}$  is of maximal imbalance:  $\delta_{\text{start,end}} = \delta_{\text{max}}$ .
- 3: for s=1 to  $\delta_{\max}$  do

4: for all 
$$l = 0$$
 to  $n - 1$  do

5: **if** 
$$\delta_{\texttt{start},\texttt{start}+l} \ge s$$
 **then**

6:  $P_{\text{start}+l}$  sends to  $P_{\text{start}+l+1}$  a data item during the time interval  $[(s-1) \times c, s \times c]$ 

### Homogeneous unidirectional ring: formal algorithm

- 1: Let  $\delta_{\max} = (\max_{1 \le k \le n, 0 \le l \le n-1} |\delta_{k,k+l}|)$
- 2: Let start and end be two indices such that the slice  $C_{\text{start,end}}$  is of maximal imbalance:  $\delta_{\text{start,end}} = \delta_{\text{max}}$ .
- 3: for s=1 to  $\delta_{\max}$  do

4: for all 
$$l = 0$$
 to  $n - 1$  do

5: **if** 
$$\delta_{\texttt{start},\texttt{start}+l} \ge s$$
 **then**

6:  $P_{\text{start}+l}$  sends to  $P_{\text{start}+l+1}$  a data item during the time interval  $[(s-1) \times c, s \times c]$ 

#### Theorem

This redistribution algorithm is optimal.

Processor  $P_i$  needs a time  $c_{i,i+1}$  to send a data to processor  $P_{i+1}$ .

Processor  $P_i$  needs a time  $c_{i,i+1}$  to send a data to processor  $P_{i+1}$ .

Principle of the lower bound : same as for the homogeneous case.

 $P_l$  needs a time  $\delta_{k,l} \times c_{l,l+1}$  to send  $\delta_{k,l}$  data items to  $P_{l+1}$  (if  $\delta_{k,l} > 0$ ).

Lower bound: 
$$\max_{1 \le k \le n, \ 0 \le l \le n-1} \delta_{k,k+l} \times c_{k+l,k+l+1}$$

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 9 Q Q</p>

# Consequences of the heterogeneity of communications



 $P_6$  can have to receive some data items from  $P_5$  to complete sending all the necessary data items to  $P_7$ .

# Consequences of the heterogeneity of communications



 $P_6$  can have to receive some data items from  $P_5$  to complete sending all the necessary data items to  $P_7$ .

We cannot express with a simple closed-form expression the time needed by  $P_6$  to complete its share of the work.

The redistribution algorithm is asynchronous.

This is just an asynchronous version of the previous algorithm.

- 1: Let  $\delta_{\max} = (\max_{1 \le k \le n, 0 \le l \le n-1} |\delta_{k,k+l}|)$
- 2: Let start and end be two indices such that the slice  $C_{\text{start,end}}$  is of maximal unbalance:  $\delta_{\text{start,end}} = \delta_{\text{max}}$ .
- 3: for all l = 0 to n 1 do
- 4:  $P_{\texttt{start}+l}$  sends  $\delta_{\texttt{start},\texttt{start}+l}$  data items one by one and as soon as possible to processor  $P_{\texttt{start}+l+1}$



Obvious by construction





Obvious by construction

#### Lemma

The execution time of the redistribution algorithm is

$$\max_{0 \le l \le n-1} \delta_{\textit{start,start}+l} \times c_{\textit{start}+l,\textit{start}+l+1}.$$



Obvious by construction

#### Lemma

The execution time of the redistribution algorithm is

$$\max_{0 \le l \le n-1} \delta_{start, start+l} \times c_{start+l, start+l+1}.$$

In other words, there is no propagation delay, whatever the initial distribution of the data, and whatever the communication speeds...

# Optimality : principle of the proof

#### The execution time of the algorithm is

$$\max_{0 \le l \le n-1} \delta_{\texttt{start},\texttt{start}+l} \times c_{\texttt{start}+l,\texttt{start}+l+1}.$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のくで

### Homogeneous bidirectional ring : framework



Homogeneous communication time: c.

Bidirectional communications



Homogeneous communication time: c.

Bidirectional communications



 $\delta_{k,k+l} = \delta_k + \delta_{k+1} + \ldots + \delta_{k+l-1} + \delta_{k+l}$ 

### Homogeneous communication time: c.

#### Bidirectional communications



 $\delta_{k,k+l} = \delta_k + \delta_{k+1} + \ldots + \delta_{k+l-1} + \delta_{k+l}$ 

#### Homogeneous communication time: c.

We need a time  $\left\lceil \frac{\delta_{k,k+l}}{2} \right\rceil \times c$  to send  $\delta_{k,k+l}$  data items of the processor "chain"  $P_k, ..., P_{k+l}$  (if  $\delta_{k,l} > 0$ ).



 $\delta_{k,k+l} = \delta_k + \delta_{k+1} + \ldots + \delta_{k+l-1} + \delta_{k+l}$ 

#### Homogeneous communication time: c.

We need a time  $\left\lceil \frac{\delta_{k,k+l}}{2} \right\rceil \times c$  to send  $\delta_{k,k+l}$  data items of the processor "chain"  $P_k, ..., P_{k+l}$  (if  $\delta_{k,l} > 0$ ).

$$\text{Lower bound:}\qquad \max\left\{\max_{1\leq i\leq n}|\delta_i|,\max_{1\leq i\leq n,1\leq l\leq n-1}\left\lceil\frac{|\delta_{i,i+l}|}{2}\right\rceil\right\}\times c$$

### Bidirectional homogeneous: principle of the algorithm

• Each non trivial set  $C_{k,l}$  such that  $\left\lceil \frac{|\delta_{k,l}|}{2} \right\rceil = \delta_{\max}$  and  $\delta_{k,l} \ge 0$  must send two data items at each step, one by each of its two extremities.

### Bidirectional homogeneous: principle of the algorithm

• Each non trivial set  $C_{k,l}$  such that  $\left\lceil \frac{|\delta_{k,l}|}{2} \right\rceil = \delta_{\max}$  and  $\delta_{k,l} \ge 0$  must send two data items at each step, one by each of its two extremities.

2 Each non trivial set C<sub>k,l</sub> such that  $\left\lceil \frac{|\delta_{k,l}|}{2} \right\rceil = \delta_{\max}$  and  $\delta_{k,l} \leq 0$  must receive two data items at each step, one by each of its two extremities.

# Bidirectional homogeneous: principle of the algorithm

- Each non trivial set  $C_{k,l}$  such that  $\left\lceil \frac{|\delta_{k,l}|}{2} \right\rceil = \delta_{\max}$  and  $\delta_{k,l} \ge 0$  must send two data items at each step, one by each of its two extremities.
- 2 Each non trivial set C<sub>k,l</sub> such that  $\left\lceil \frac{|\delta_{k,l}|}{2} \right\rceil = \delta_{\max}$  and  $\delta_{k,l} \leq 0$  must receive two data items at each step, one by each of its two extremities.
- Once the communications required by the two previous cases are defined, we take care of P<sub>i</sub> such that |δ<sub>i</sub>| = δ<sub>max</sub>.
  If P<sub>i</sub> is already implied in a communication: everything is already set up.

Otherwise, we have the choice of the processor to which  $P_i$  sends (case  $\delta_i \geq 0$ ) or from which  $P_i$  receives (case  $\delta_i \leq 0$ ) a data item.

For the sake of simplicity: all these communications are in the same direction "from  $P_i$  to  $P_{i+1}$ ".

# Homogeneous bidirectional ring: optimality

Difficulties:

- Particular cases (taking care of the termination)
- Proof of the correctness of the algorithm (the optimality is then obvious)



<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 9 Q Q</p>





$$\tau \ge \max \begin{cases} \max_{1 \le k \le n, \, \delta_k > 0} \delta_k \min\{c_{k,k-1}, c_{k,k+1}\} \\ \max_{1 \le k \le n, \, \delta_k < 0} -\delta_k \min\{c_{k-1,k}, c_{k+1,k}\} \\ \max_{1 \le k \le n, \, 0 \le i \le \delta_{k,k+l}} \max\{i \cdot c_{k,k-1}, (\delta_{k,k+l} - i) \cdot c_{k+l,k+l+1}\} \\ 1 \le l \le n-2, \\ \delta_{k,k+l} > 0 \end{cases}$$

The length  $\tau$  of any redistribution satisfies:

$$\tau \ge \max \begin{cases} \max_{1 \le k \le n, \ \delta_k > 0} \delta_k \min\{c_{k,k-1}, c_{k,k+1}\} \\ \max_{1 \le k \le n, \ \delta_k > 0} -\delta_k \min\{c_{k-1,k}, c_{k+1,k}\} \\ \max_{1 \le k \le n, \ 0 \le i \le \delta_{k,k+l}} \max\{i \cdot c_{k,k-1}, (\delta_{k,k+l} - i) \cdot c_{k+l,k+l+1}\} \\ \max_{1 \le l \le n-2, \ \delta_{k,k+l} > 0} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max_{1 \le l \le n-2, \ \delta_{k,k+l} < 0} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \end{cases}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition: we say that a redistribution is "light" if each processor initially holds all the data items it needs to send during the execution of the algorithm.

 $S_{i,j}$ : amount of data sent by  $P_i$  to its neighbor  $P_j$ .

 $\begin{array}{l} \text{MINIMIZE } \tau, \text{ SUBJECT TO} \\ \left\{ \begin{array}{ll} \mathcal{S}_{i,i+1} \ge 0 & 1 \le i \le n \\ \mathcal{S}_{i,i-1} \ge 0 & 1 \le i \le n \\ \mathcal{S}_{i,i+1} + \mathcal{S}_{i,i-1} - \mathcal{S}_{i+1,i} - \mathcal{S}_{i-1,i} = \delta_i & 1 \le i \le n \\ \mathcal{S}_{i,i+1}c_{i,i+1} + \mathcal{S}_{i,i-1}c_{i,i-1} \le \tau & 1 \le i \le n \\ \mathcal{S}_{i+1,i}c_{i+1,i} + \mathcal{S}_{i-1,i}c_{i-1,i} \le \tau & 1 \le i \le n \end{array} \right.$ 

# Heterogeneous bidirectional ring: "light" redistributions (2)

Any integral solution is feasible.

Ex.:  $P_i$  sends its  $S_{i,i+1}$  data to  $P_{i+1}$  starting at time 0. Once this communication is completed,  $P_i$  sends  $S_{i,i-1}$  data to  $P_{i-1}$  as soon as it is possible under the one port model.

If we solve the system in rational, one of the two natural rounding in integer defines an optimal integral solution.

# Heterogeneous bidirectional ring: general case

Any idea anybody ?



### Outline

### The problem

- 2 Fully homogeneous network
- **3** Heterogeneous network (complete)
- 4 Heterogeneous network (general case)

5 Non dedicated platforms

### 6 Conclusion

### Conclusion

"Regular" parallelism was already complicated, now we have:

- Processors with different characteristics
- Communications links with different characteristics
- Irregular interconnection networks
- Resources whose characteristics evolve over time

We need to use a realistic model of networks... but a more realistic model may lead to a more complicated problem.