
Iterative algorithms
(on the impact of network models)

Frédéric Vivien

e-mail: Frederic.Vivien@ens-lyon.fr

16 octobre 2006

Outline

1 The problem

2 Fully homogeneous network

3 Heterogeneous network (complete)

4 Heterogeneous network (general case)

5 Non dedicated platforms

6 Conclusion

Outline

1 The problem

2 Fully homogeneous network

3 Heterogeneous network (complete)

4 Heterogeneous network (general case)

5 Non dedicated platforms

6 Conclusion

The context: distributed heterogeneous platforms

New sources of problems

Heterogeneity of processors (computational power, memory,
etc.)

Heterogeneity of communications links.

Irregularity of interconnection network.

Non dedicated platforms.

Targeted applications: iterative algorithms

A set of data (typically, a matrix)

Structure of the algorithms:

1 Each processor performs a computation on its chunk of data
2 Each processor exchange the “border” of its chunk of data with

its neighbor processors
3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

Targeted applications: iterative algorithms

A set of data (typically, a matrix)

Structure of the algorithms:

1 Each processor performs a computation on its chunk of data
2 Each processor exchange the “border” of its chunk of data with

its neighbor processors
3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

Targeted applications: iterative algorithms

A set of data (typically, a matrix)

Structure of the algorithms:
1 Each processor performs a computation on its chunk of data

2 Each processor exchange the “border” of its chunk of data with
its neighbor processors

3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

Targeted applications: iterative algorithms

A set of data (typically, a matrix)

Structure of the algorithms:
1 Each processor performs a computation on its chunk of data
2 Each processor exchange the “border” of its chunk of data with

its neighbor processors

3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

Targeted applications: iterative algorithms

A set of data (typically, a matrix)

Structure of the algorithms:
1 Each processor performs a computation on its chunk of data
2 Each processor exchange the “border” of its chunk of data with

its neighbor processors
3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

Targeted applications: iterative algorithms

A set of data (typically, a matrix)

Structure of the algorithms:
1 Each processor performs a computation on its chunk of data
2 Each processor exchange the “border” of its chunk of data with

its neighbor processors
3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?

The questions

Which processors should be used ?

What amount of data should we give them ?

How do we cut the set of data ?

Before all, a simplification: slicing the data

Data: a 2-D array

P1 P2

P4P3

Unidimensional cutting into vertical slices

Consequences:

1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

Before all, a simplification: slicing the data

Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

Unidimensional cutting into vertical slices

Consequences:

1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

Before all, a simplification: slicing the data

Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

Unidimensional cutting into vertical slices

Consequences:

1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

Before all, a simplification: slicing the data

Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

Unidimensional cutting into vertical slices

Consequences:
1 Borders and neighbors are easily defined

2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

Before all, a simplification: slicing the data

Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

Unidimensional cutting into vertical slices

Consequences:
1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

Before all, a simplification: slicing the data

Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

Unidimensional cutting into vertical slices

Consequences:
1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring

Notations

Processors: P1, ..., Pp

Processor Pi executes a unit task in a time wi

Overall amount of work Dw;
Share of Pi: αi.Dw processed in a time αi.Dw.wi
(αi ≥ 0,

∑
j αj = 1)

Cost of a unit-size communication from Pi to Pj : ci,j

Cost of a sending from Pi to its successor in the ring: Dc.ci,succ(i)

Notations

Processors: P1, ..., Pp

Processor Pi executes a unit task in a time wi

Overall amount of work Dw;
Share of Pi: αi.Dw processed in a time αi.Dw.wi
(αi ≥ 0,

∑
j αj = 1)

Cost of a unit-size communication from Pi to Pj : ci,j

Cost of a sending from Pi to its successor in the ring: Dc.ci,succ(i)

Notations

Processors: P1, ..., Pp

Processor Pi executes a unit task in a time wi

Overall amount of work Dw;
Share of Pi: αi.Dw processed in a time αi.Dw.wi
(αi ≥ 0,

∑
j αj = 1)

Cost of a unit-size communication from Pi to Pj : ci,j

Cost of a sending from Pi to its successor in the ring: Dc.ci,succ(i)

Notations

Processors: P1, ..., Pp

Processor Pi executes a unit task in a time wi

Overall amount of work Dw;
Share of Pi: αi.Dw processed in a time αi.Dw.wi
(αi ≥ 0,

∑
j αj = 1)

Cost of a unit-size communication from Pi to Pj : ci,j

Cost of a sending from Pi to its successor in the ring: Dc.ci,succ(i)

Notations

Processors: P1, ..., Pp

Processor Pi executes a unit task in a time wi

Overall amount of work Dw;
Share of Pi: αi.Dw processed in a time αi.Dw.wi
(αi ≥ 0,

∑
j αj = 1)

Cost of a unit-size communication from Pi to Pj : ci,j

Cost of a sending from Pi to its successor in the ring: Dc.ci,succ(i)

Communications: 1-port model

A processor can:

send at most one message at any time;

receive at most one message at any time;

send and receive a message simultaneously.

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
1≤i≤p

I{i}[αi.Dw.wi +Dc.(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0
otherwise

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
1≤i≤p

I{i}[αi.Dw.wi +Dc.(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0
otherwise

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
1≤i≤p

I{i}[αi.Dw.wi +Dc.(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0
otherwise

Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
1≤i≤p

I{i}[αi.Dw.wi +Dc.(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0
otherwise

Outline

1 The problem

2 Fully homogeneous network

3 Heterogeneous network (complete)

4 Heterogeneous network (general case)

5 Non dedicated platforms

6 Conclusion

Special hypotheses

1 There exists a communication link between any two processors

2 All links have the same capacity
(∃c,∀i, j ci,j = c)

Consequences

Either the most powerful processor performs all the work, or all
the processors participate

If all processors participate, all end their share of work simulta-
neously

αi.Dw rational values ???
(∃τ, αi.Dw.wi = τ , so 1 =

∑
i

τ
Dw.wi

)

Time of the optimal solution:

Tstep = min

{
Dw.wmin, Dw.

1∑
i

1
wi

+ 2.Dc.c

}

Consequences

Either the most powerful processor performs all the work, or all
the processors participate

If all processors participate, all end their share of work simulta-
neously

αi.Dw rational values ???
(∃τ, αi.Dw.wi = τ , so 1 =

∑
i

τ
Dw.wi

)

Time of the optimal solution:

Tstep = min

{
Dw.wmin, Dw.

1∑
i

1
wi

+ 2.Dc.c

}

Consequences

Either the most powerful processor performs all the work, or all
the processors participate

If all processors participate, all end their share of work simulta-
neously αi.Dw rational values ???

(∃τ, αi.Dw.wi = τ , so 1 =
∑

i
τ

Dw.wi
)

Time of the optimal solution:

Tstep = min

{
Dw.wmin, Dw.

1∑
i

1
wi

+ 2.Dc.c

}

Consequences

Either the most powerful processor performs all the work, or all
the processors participate

If all processors participate, all end their share of work simulta-
neously αi.Dw rational values ???
(∃τ, αi.Dw.wi = τ , so 1 =

∑
i

τ
Dw.wi

)

Time of the optimal solution:

Tstep = min

{
Dw.wmin, Dw.

1∑
i

1
wi

+ 2.Dc.c

}

Consequences

Either the most powerful processor performs all the work, or all
the processors participate

If all processors participate, all end their share of work simulta-
neously αi.Dw rational values ???
(∃τ, αi.Dw.wi = τ , so 1 =

∑
i

τ
Dw.wi

)

Time of the optimal solution:

Tstep = min

{
Dw.wmin, Dw.

1∑
i

1
wi

+ 2.Dc.c

}

Outline

1 The problem

2 Fully homogeneous network

3 Heterogeneous network (complete)

4 Heterogeneous network (general case)

5 Non dedicated platforms

6 Conclusion

Special hypothesis

1 There exists a communication link between any two processors

All the processors participate: study (1)

time

Dc.c1,5

Dc.c1,2

Dc.c2,1

Dc.c2,3

Dc.c3,2

Dc.c4,3

Dc.c4,5
Dc.c5,4

Dc.c5,1

α5.Dw.w5

P1 P2 P3 P4 P5

α4.Dw.w4
Dc.c3,4

α3.Dw.w3

α2.Dw.w2

α1.Dw.w1

processors

All processors end simultaneously

All the processors participate: study (2)

All processors end simultaneously

Tstep = αi.Dw.wi +Dc.(ci,succ(i) + ci,pred(i))

p∑
i=1

αi = 1 ⇒
p∑
i=1

Tstep −Dc.(ci,succ(i) + ci,pred(i))
Dw.wi

= 1.

Thus

Tstep

Dw.wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

where wcumul = 1P
i

1
wi

All the processors participate: study (2)

All processors end simultaneously

Tstep = αi.Dw.wi +Dc.(ci,succ(i) + ci,pred(i))

p∑
i=1

αi = 1 ⇒
p∑
i=1

Tstep −Dc.(ci,succ(i) + ci,pred(i))
Dw.wi

= 1.

Thus

Tstep

Dw.wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

where wcumul = 1P
i

1
wi

All the processors participate: interpretation

Tstep

Dw.wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)

wi
is minimal

Look for an hamiltonian cycle of minimal weight in a graph where
the edge from Pi to Pj has a weight of di,j = ci,j

wi
+ cj,i

wj

NP-complete problem

All the processors participate: interpretation

Tstep

Dw.wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)

wi
is minimal

Look for an hamiltonian cycle of minimal weight in a graph where
the edge from Pi to Pj has a weight of di,j = ci,j

wi
+ cj,i

wj

NP-complete problem

All the processors participate: interpretation

Tstep

Dw.wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)

wi
is minimal

Look for an hamiltonian cycle of minimal weight in a graph where
the edge from Pi to Pj has a weight of di,j = ci,j

wi
+ cj,i

wj

NP-complete problem

All the processors participate: interpretation

Tstep

Dw.wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)

wi
is minimal

Look for an hamiltonian cycle of minimal weight in a graph where
the edge from Pi to Pj has a weight of di,j = ci,j

wi
+ cj,i

wj

NP-complete problem

All the processors participate: linear program

Minimize
∑p

i=1

∑p
j=1 di,j .xi,j ,

satisfying the (in)equations
(1)

∑p
j=1 xi,j = 1 1 ≤ i ≤ p

(2)
∑p

i=1 xi,j = 1 1 ≤ j ≤ p
(3) xi,j ∈ {0, 1} 1 ≤ i, j ≤ p
(4) ui − uj + p.xi,j ≤ p− 1 2 ≤ i, j ≤ p, i 6= j
(5) ui integer, ui ≥ 0 2 ≤ i ≤ p

xi,j = 1 if, and only if, the edge from Pi to Pj is used

General case : linear program

Best ring made of q processors

Minimize T satisfying the (in)equations8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

(1) xi,j ∈ {0, 1} 1 ≤ i, j ≤ p
(2)

Pp
i=1 xi,j ≤ 1 1 ≤ j ≤ p

(3)
Pp

i=1

Pp
j=1 xi,j = q

(4)
Pp

i=1 xi,j =
Pp

i=1 xj,i 1 ≤ j ≤ p

(5)
Pp

i=1 αi = 1
(6) αi ≤

Pp
j=1 xi,j 1 ≤ i ≤ p

(7) αi.wi + Dc
Dw

Pp
j=1(xi,jci,j + xj,icj,i) ≤ T 1 ≤ i ≤ p

(8)
Pp

i=1 yi = 1
(9) − p.yi − p.yj + ui − uj + q.xi,j ≤ q − 1 1 ≤ i, j ≤ p, i 6= j
(10) yi ∈ {0, 1} 1 ≤ i ≤ p
(11) ui integer, ui ≥ 0 1 ≤ i ≤ p

Linear programming

Problems with rational variables: can be solved in polynomial
time (in the size of the problem).

Problems with integer variables: solved in exponential time in
the worst case.

No relaxation in rationals seems possible here...

Linear programming

Problems with rational variables: can be solved in polynomial
time (in the size of the problem).

Problems with integer variables: solved in exponential time in
the worst case.

No relaxation in rationals seems possible here...

Linear programming

Problems with rational variables: can be solved in polynomial
time (in the size of the problem).

Problems with integer variables: solved in exponential time in
the worst case.

No relaxation in rationals seems possible here...

And, in practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)

No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors...

2 Greedy heuristic: initially we take the best pair of processors;
for a given ring we try to insert any unused processor in between
any pair of neighbor processors in the ring...

And, in practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)
No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors...

2 Greedy heuristic: initially we take the best pair of processors;
for a given ring we try to insert any unused processor in between
any pair of neighbor processors in the ring...

And, in practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)
No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors...

2 Greedy heuristic: initially we take the best pair of processors;
for a given ring we try to insert any unused processor in between
any pair of neighbor processors in the ring...

And, in practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)
No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors...

2 Greedy heuristic: initially we take the best pair of processors;
for a given ring we try to insert any unused processor in between
any pair of neighbor processors in the ring...

And, in practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)
No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors...

2 Greedy heuristic: initially we take the best pair of processors;
for a given ring we try to insert any unused processor in between
any pair of neighbor processors in the ring...

Outline

1 The problem

2 Fully homogeneous network

3 Heterogeneous network (complete)

4 Heterogeneous network (general case)

5 Non dedicated platforms

6 Conclusion

New difficulty: communication links sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

New difficulty: communication links sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

New difficulty: communication links sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

New difficulty: communication links sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.

New notations

A set of communications links: e1, ..., en

Bandwidth of link em: bem

There is a path Si from Pi to Psucc(i) in the network

Si uses a fraction si,m of the bandwidth bem of link em

Pi needs a time Dc.
1

minem∈Si si,m
to send to its successor a

message of size Dc

Constraints on the bandwidth of em:
∑

1≤i≤p

si,m ≤ bem

Symmetrically, there is a path Pi from Pi to Ppred(i) in the
network, which uses a fraction pi,m of the bandwidth bem of
link em

New notations

A set of communications links: e1, ..., en

Bandwidth of link em: bem

There is a path Si from Pi to Psucc(i) in the network

Si uses a fraction si,m of the bandwidth bem of link em

Pi needs a time Dc.
1

minem∈Si si,m
to send to its successor a

message of size Dc

Constraints on the bandwidth of em:
∑

1≤i≤p

si,m ≤ bem

Symmetrically, there is a path Pi from Pi to Ppred(i) in the
network, which uses a fraction pi,m of the bandwidth bem of
link em

New notations

A set of communications links: e1, ..., en

Bandwidth of link em: bem

There is a path Si from Pi to Psucc(i) in the network

Si uses a fraction si,m of the bandwidth bem
of link em

Pi needs a time Dc.
1

minem∈Si si,m
to send to its successor a

message of size Dc

Constraints on the bandwidth of em:
∑

1≤i≤p

si,m ≤ bem

Symmetrically, there is a path Pi from Pi to Ppred(i) in the
network, which uses a fraction pi,m of the bandwidth bem of
link em

New notations

A set of communications links: e1, ..., en

Bandwidth of link em: bem

There is a path Si from Pi to Psucc(i) in the network

Si uses a fraction si,m of the bandwidth bem
of link em

Pi needs a time Dc.
1

minem∈Si si,m
to send to its successor a

message of size Dc

Constraints on the bandwidth of em:
∑

1≤i≤p

si,m ≤ bem

Symmetrically, there is a path Pi from Pi to Ppred(i) in the
network, which uses a fraction pi,m of the bandwidth bem of
link em

New notations

A set of communications links: e1, ..., en

Bandwidth of link em: bem

There is a path Si from Pi to Psucc(i) in the network

Si uses a fraction si,m of the bandwidth bem
of link em

Pi needs a time Dc.
1

minem∈Si si,m
to send to its successor a

message of size Dc

Constraints on the bandwidth of em:
∑

1≤i≤p

si,m ≤ bem

Symmetrically, there is a path Pi from Pi to Ppred(i) in the
network, which uses a fraction pi,m of the bandwidth bem of
link em

New notations

A set of communications links: e1, ..., en

Bandwidth of link em: bem

There is a path Si from Pi to Psucc(i) in the network

Si uses a fraction si,m of the bandwidth bem
of link em

Pi needs a time Dc.
1

minem∈Si si,m
to send to its successor a

message of size Dc

Constraints on the bandwidth of em:
∑

1≤i≤p

si,m ≤ bem

Symmetrically, there is a path Pi from Pi to Ppred(i) in the
network, which uses a fraction pi,m of the bandwidth bem of
link em

New notations

A set of communications links: e1, ..., en

Bandwidth of link em: bem

There is a path Si from Pi to Psucc(i) in the network

Si uses a fraction si,m of the bandwidth bem
of link em

Pi needs a time Dc.
1

minem∈Si si,m
to send to its successor a

message of size Dc

Constraints on the bandwidth of em:
∑

1≤i≤p

si,m ≤ bem

Symmetrically, there is a path Pi from Pi to Ppred(i) in the
network, which uses a fraction pi,m of the bandwidth bem of
link em

Toy example: choosing the ring

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

7 processors and 8 bidirectional communications links

We choose a ring of 5 processors:
P1 → P2 → P3 → P4 → P5 (we use neither Q, nor R)

Toy example: choosing the ring

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

7 processors and 8 bidirectional communications links

We choose a ring of 5 processors:
P1 → P2 → P3 → P4 → P5 (we use neither Q, nor R)

Toy example: choosing the paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.
From P2 to P1, we use the links b, g and h: P2 = {b, g, h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}
From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}
From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f}
From P4: to P5, S4 = {f, b, g} and to P3, P4 = {e, d}
From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f}

Toy example: choosing the paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.

From P2 to P1, we use the links b, g and h: P2 = {b, g, h}.
From P1: to P2, S1 = {a, b} and to P5, P1 = {h}
From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}
From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f}
From P4: to P5, S4 = {f, b, g} and to P3, P4 = {e, d}
From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f}

Toy example: choosing the paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.
From P2 to P1, we use the links b, g and h: P2 = {b, g, h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}
From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}
From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f}
From P4: to P5, S4 = {f, b, g} and to P3, P4 = {e, d}
From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f}

Toy example: choosing the paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.
From P2 to P1, we use the links b, g and h: P2 = {b, g, h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}
From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}
From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f}
From P4: to P5, S4 = {f, b, g} and to P3, P4 = {e, d}
From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f}

Toy example: bandwidth sharing

From P1 to P2 we use links a and b: c1,2 = 1
min(s1,a,s1,b)

.

From P1 to P5 we use the link h: c1,5 = 1
p1,h

.

Set of all sharing constraints:
Lien a: s1,a ≤ ba
Lien b: s1,b + s4,b + p2,b + p5,b ≤ bb
Lien c: s2,c ≤ bc
Lien d: s2,d + s3,d + p3,d + p4,d ≤ bd
Lien e: s3,e + p3,e + p4,e ≤ be
Lien f : s4,f + p3,f + p5,f ≤ bf
Lien g: s4,g + p2,g + p5,g ≤ bg
Lien h: s5,h + p1,h + p2,h ≤ bh

Toy example: bandwidth sharing

From P1 to P2 we use links a and b: c1,2 = 1
min(s1,a,s1,b)

.

From P1 to P5 we use the link h: c1,5 = 1
p1,h

.

Set of all sharing constraints:
Lien a: s1,a ≤ ba
Lien b: s1,b + s4,b + p2,b + p5,b ≤ bb
Lien c: s2,c ≤ bc
Lien d: s2,d + s3,d + p3,d + p4,d ≤ bd
Lien e: s3,e + p3,e + p4,e ≤ be
Lien f : s4,f + p3,f + p5,f ≤ bf
Lien g: s4,g + p2,g + p5,g ≤ bg
Lien h: s5,h + p1,h + p2,h ≤ bh

Toy example: final quadratic system

Minimize max1≤i≤5 (αi.Dw.wi +Dc.(ci,i−1 + ci,i+1)) under the constraints8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

P5
i=1 αi = 1

s1,a ≤ ba s1,b + s4,b + p2,b + p5,b ≤ bb s2,c ≤ bc
s2,d + s3,d + p3,d + p4,d ≤ bd s3,e + p3,e + p4,e ≤ be s4,f + p3,f + p5,f ≤ bf
s4,g + p2,g + p5,g ≤ bg s5,h + p1,h + p2,h ≤ bh
s1,a.c1,2 ≥ 1 s1,b.c1,2 ≥ 1 p1,h.c1,5 ≥ 1
s2,c.c2,3 ≥ 1 s2,d.c2,3 ≥ 1 p2,b.c2,1 ≥ 1
p2,g.c2,1 ≥ 1 p2,h.c2,1 ≥ 1 s3,d.c3,4 ≥ 1
s3,e.c3,4 ≥ 1 p3,d.c3,2 ≥ 1 p3,e.c3,2 ≥ 1
p3,f .c3,2 ≥ 1 s4,f .c4,5 ≥ 1 s4,b.c4,5 ≥ 1
s4,g.c4,5 ≥ 1 p4,e.c4,3 ≥ 1 p4,d.c4,3 ≥ 1
s5,h.c5,1 ≥ 1 p5,g.c5,4 ≥ 1 p5,b.c5,4 ≥ 1
p5,f .c5,4 ≥ 1

Toy example: the moral

The problem sums up to a quadratic system if

1 The processors are selected;

2 The processors are ordered into a ring;

3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

Complete graph: closed-form expression;

General graph: quadratic system.

Toy example: the moral

The problem sums up to a quadratic system if

1 The processors are selected;

2 The processors are ordered into a ring;

3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

Complete graph: closed-form expression;

General graph: quadratic system.

Toy example: the moral

The problem sums up to a quadratic system if

1 The processors are selected;

2 The processors are ordered into a ring;

3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

Complete graph: closed-form expression;

General graph: quadratic system.

Toy example: the moral

The problem sums up to a quadratic system if

1 The processors are selected;

2 The processors are ordered into a ring;

3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

Complete graph: closed-form expression;

General graph: quadratic system.

Toy example: the moral

The problem sums up to a quadratic system if

1 The processors are selected;

2 The processors are ordered into a ring;

3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

Complete graph: closed-form expression;

General graph: quadratic system.

And, in practice ?

We adapt our greedy heuristic:

1 Initially: best pair of processors
2 For each processor Pk (not already included in the ring)

For each pair (Pi, Pj) of neighbors in the ring

1 We build the graph of the unused bandwidths
(Without considering the paths between Pi and Pj)

2 We compute the shortest paths (in terms of bandwidth) be-
tween Pk and Pi and Pj

3 We evaluate the solution

3 We keep the best solution found at step 2 and we start again

+ refinements (max-min fairness, quadratic solving)

Is this meaningful ?

No guarantee, neither theoretical, nor practical

Simple solution:

1 we build the complete graph whose edges are labeled with the
bandwidths of the best communication paths

2 we apply the heuristic for complete graphs
3 we allocate the bandwidths

Is this meaningful ?

No guarantee, neither theoretical, nor practical

Simple solution:

1 we build the complete graph whose edges are labeled with the
bandwidths of the best communication paths

2 we apply the heuristic for complete graphs
3 we allocate the bandwidths

Is this meaningful ?

No guarantee, neither theoretical, nor practical

Simple solution:
1 we build the complete graph whose edges are labeled with the

bandwidths of the best communication paths

2 we apply the heuristic for complete graphs
3 we allocate the bandwidths

Is this meaningful ?

No guarantee, neither theoretical, nor practical

Simple solution:
1 we build the complete graph whose edges are labeled with the

bandwidths of the best communication paths
2 we apply the heuristic for complete graphs

3 we allocate the bandwidths

Is this meaningful ?

No guarantee, neither theoretical, nor practical

Simple solution:
1 we build the complete graph whose edges are labeled with the

bandwidths of the best communication paths
2 we apply the heuristic for complete graphs
3 we allocate the bandwidths

An example of an actual platform (Lyon)

moby canaria

mryi0 popc0 sci0

Hub

Switch

sci3

sci2

sci4

sci5
sci6

sci1
myri1

myri2

Hub

router backbone
routlhpc

Topology

P0 P1 P2 P3 P4 P5 P6 P7 P8

0.0206 0.0206 0.0206 0.0206 0.0291 0.0206 0.0087 0.0206 0.0206

P9 P10 P11 P12 P13 P14 P15 P16

0.0206 0.0206 0.0206 0.0291 0.0451 0 0 0

Processors processing times (in seconds par megaflop)

Describing Lyon’s platform

0

1

32.29

3

32.29

5

32.29

9

32.29

10

32.29

11

32.29

 32.29

 32.29

 32.29

32.29

 32.29

2

7

32.22

8

32.22

32.31

13

32.31

16

 32.31

 32.29

 32.29

 32.29

 32.29

4

15

40.35

32.29

 32.29

 32.29

6

40.35

 32.22

 32.29

 32.29

 32.29 32.31

14

30.51

12

40.35

 32.31

30.51

 4.7

Abstracting Lyon’s platform.

Results

First heuristic building the ring without taking link sharing into ac-
count

Second heuristic taking into account link sharing (and with quadratic
programing)

Ratio Dc/Dw H1 H2 Gain

0.64 0.008738 (1) 0.008738 (1) 0%

0.064 0.018837 (13) 0.006639 (14) 64.75%

0.0064 0.003819 (13) 0.001975 (14) 48.28%

Ratio Dc/Dw H1 H2 Gain

0.64 0.005825 (1) 0.005825 (1) 0 %

0.064 0.027919 (8) 0.004865 (6) 82.57%

0.0064 0.007218 (13) 0.001608 (8) 77.72%

Table: Tstep/Dw for each heuristic on Lyon’s and Strasbourg’s platforms
(the numbers in parentheses show the size of the rings built).

Outline

1 The problem

2 Fully homogeneous network

3 Heterogeneous network (complete)

4 Heterogeneous network (general case)

5 Non dedicated platforms

6 Conclusion

New difficulties

The available processing power of each processor changes over time

The available bandwidth of each communication link changes over
time

⇒ Need to reconsider the allocation previously done

⇒ Introduce dynamicity in a static approach

A possible approach

If the actual performance is “too much” different from the char-
acteristics used to build the solution

Actual criterion defining “too much” ?

If the actual performance is “very” different

We compute a new ring
We redistribute data from the old ring to the new one

Actual criterion defining “very” ?
Cost of the redistribution ?

If the actual performance is “a little” different

We compute a new load-balancing in the existing ring
We redistribute the data in the ring

How to efficiently do the redistribution ?

A possible approach

If the actual performance is “too much” different from the char-
acteristics used to build the solution

Actual criterion defining “too much” ?
If the actual performance is “very” different

We compute a new ring
We redistribute data from the old ring to the new one
Actual criterion defining “very” ?
Cost of the redistribution ?

If the actual performance is “a little” different

We compute a new load-balancing in the existing ring
We redistribute the data in the ring
How to efficiently do the redistribution ?

Principle of the load-balancing

Principle: the ring is modified only if this is profitable.

Tstep: length of an iteration before load-balancing;

T ′step: length of an iteration after load-balancing;

Tredistribution : cost of the redistribution;

niter: number of remaining iterations

Condition: Tredistribution + niter × T ′step ≤ niter × Tstep

Load-balancing on a ring

Homogeneous unidirectional ring

Heterogeneous unidirectional ring

Homogeneous bidirectional ring

Heterogeneous bidirectional ring

Notations

Ck,l the set of the processors from Pk to Pl:

Ck,l = Pk, Pk+1, ..., Pl

ci,i+1: time needed by processor Pi to send a data item to
processor Pi+1 (next one in the ring).

Initially, processor Pi holds Li data items (atomic).
After redistribution, Pi will hold Li − δi data items.
δi is the unbalance of processor Pi.
δk,l: unbalance of the set Ck,l: δk,l =

∑l
i=k δi.

Conservation law for the data:
∑

i δi = 0
We assume that each processor at least one data item before
and after the redistribution: Li ≥ 1 et Li ≥ 1 + δi.

Framework

Pk Pk+1 Pk+l−1 Pk+l

Homogeneous communication time: c.

Pk can only send messages to Pk+1.

Pl needs a time δk,l × c to send δk,l data (if δk,l > 0).

Lower bound:

(
max

1≤k≤n, 0≤l≤n−1
δk,k+l

)
× c

Lower bound on the length of the redistribution

Pk Pk+1 Pk+l−1 Pk+l

δk δk+1 δk+l−1 δk+l

Homogeneous communication time: c.

Pk can only send messages to Pk+1.

Pl needs a time δk,l × c to send δk,l data (if δk,l > 0).

Lower bound:

(
max

1≤k≤n, 0≤l≤n−1
δk,k+l

)
× c

Lower bound on the length of the redistribution

Pk Pk+1 Pk+l−1 Pk+l

δk δk+1 δk+l−1 δk+l

δk,k+l = δk + δk+1 + ...+ δk+l−1 + δk+l

Homogeneous communication time: c.

Pk can only send messages to Pk+1.

Pl needs a time δk,l × c to send δk,l data (if δk,l > 0).

Lower bound:

(
max

1≤k≤n, 0≤l≤n−1
δk,k+l

)
× c

Lower bound on the length of the redistribution

Pk Pk+1 Pk+l−1 Pk+l

δk δk+1 δk+l−1 δk+l

δk,k+l = δk + δk+1 + ...+ δk+l−1 + δk+l

Homogeneous communication time: c.

Pk can only send messages to Pk+1.

Pl needs a time δk,l × c to send δk,l data (if δk,l > 0).

Lower bound:

(
max

1≤k≤n, 0≤l≤n−1
δk,k+l

)
× c

Lower bound on the length of the redistribution

Pk Pk+1 Pk+l−1 Pk+l

δk δk+1 δk+l−1 δk+l

δk,k+l = δk + δk+1 + ...+ δk+l−1 + δk+l

Homogeneous communication time: c.

Pk can only send messages to Pk+1.

Pl needs a time δk,l × c to send δk,l data (if δk,l > 0).

Lower bound:

(
max

1≤k≤n, 0≤l≤n−1
δk,k+l

)
× c

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ4,7 = 4− 3 + 1− 1 = 1

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,4 = 2− 1 + 4 = 5 = δmax

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,4 = 2− 1 + 4 = 5 = δmax

δmax = 5

The redistribution algorithm is defined by the first processor of a
“chain” of processors whose unbalance is maximal.

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

During the algorithm execution processor Pi sends δ2,i data.

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

At step 1, Pi sends a data item if and only if δ2,i ≥ 1

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

At step 1, Pi sends a data item if and only if δ2,i ≥ 1

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

At step 2, Pi sends a data item if and only if δ2,i ≥ 2

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

At step 2, Pi sends a data item if and only if δ2,i ≥ 2

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

At step 3, Pi sends a data item if and only if δ2,i ≥ 3

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

At step 3, Pi sends a data item if and only if δ2,i ≥ 3

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

At step 4, Pi sends a data item if and only if δ2,i ≥ 4

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

At step 4, Pi sends a data item if and only if δ2,i ≥ 4

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

At step 5, Pi sends a data item if and only if δ2,i ≥ 5

Redistribution algorithm

2 4 1 −1−3−1−2

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

At step 5, Pi sends a data item if and only if δ2,i ≥ 5

Homogeneous unidirectional ring: formal algorithm

1: Let δmax = (max1≤k≤n,0≤l≤n−1 |δk,k+l|)
2: Let start and end be two indices such that the slice Cstart,end

is of maximal imbalance: δstart,end = δmax.
3: for s = 1 to δmax do

4: for all l = 0 to n− 1 do
5: if δstart,start+l ≥ s then

6: Pstart+l sends to Pstart+l+1 a data item during the time
interval [(s− 1)× c, s× c[

Theorem

This redistribution algorithm is optimal.

Homogeneous unidirectional ring: formal algorithm

1: Let δmax = (max1≤k≤n,0≤l≤n−1 |δk,k+l|)
2: Let start and end be two indices such that the slice Cstart,end

is of maximal imbalance: δstart,end = δmax.
3: for s = 1 to δmax do

4: for all l = 0 to n− 1 do
5: if δstart,start+l ≥ s then

6: Pstart+l sends to Pstart+l+1 a data item during the time
interval [(s− 1)× c, s× c[

Theorem

This redistribution algorithm is optimal.

Heterogeneous unidirectional ring: lower bound

Processor Pi needs a time ci,i+1 to send a data to processor Pi+1.

Principle of the lower bound : same as for the homogeneous case.

Pl needs a time δk,l × cl,l+1 to send δk,l data items to Pl+1 (if
δk,l > 0).

Lower bound: max
1≤k≤n, 0≤l≤n−1

δk,k+l × ck+l,k+l+1

Heterogeneous unidirectional ring: lower bound

Processor Pi needs a time ci,i+1 to send a data to processor Pi+1.

Principle of the lower bound : same as for the homogeneous case.

Pl needs a time δk,l × cl,l+1 to send δk,l data items to Pl+1 (if
δk,l > 0).

Lower bound: max
1≤k≤n, 0≤l≤n−1

δk,k+l × ck+l,k+l+1

Consequences of the heterogeneity of communications

2 4 1 −1−3−1−2
FastSlow

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

P6 can have to receive some data items from P5 to complete sending
all the necessary data items to P7.

We cannot express with a simple closed-form expression the time
needed by P6 to complete its share of the work.

The redistribution algorithm is asynchronous.

Consequences of the heterogeneity of communications

2 4 1 −1−3−1−2
FastSlow

P1 P4 P7P6P5P3P2

δ2,2 = 2 δ2,3 = 1 δ2,4 = 5 δ2,5 = 2 δ2,6 = 3 δ2,7 = 2δ2,1 = 0

P6 can have to receive some data items from P5 to complete sending
all the necessary data items to P7.

We cannot express with a simple closed-form expression the time
needed by P6 to complete its share of the work.

The redistribution algorithm is asynchronous.

The redistribution algorithm

This is just an asynchronous version of the previous algorithm.

1: Let δmax = (max1≤k≤n,0≤l≤n−1 |δk,k+l|)

2: Let start and end be two indices such that the slice Cstart,end

is of maximal unbalance: δstart,end = δmax.

3: for all l = 0 to n− 1 do

4: Pstart+l sends δstart,start+l data items one by one and as
soon as possible to processor Pstart+l+1

Optimality

Obvious by construction

Lemma

The execution time of the redistribution algorithm is

max
0≤l≤n−1

δstart,start+l × cstart+l,start+l+1.

In other words, there is no propagation delay, whatever the initial
distribution of the data, and whatever the communication speeds...

Optimality

Obvious by construction

Lemma

The execution time of the redistribution algorithm is

max
0≤l≤n−1

δstart,start+l × cstart+l,start+l+1.

In other words, there is no propagation delay, whatever the initial
distribution of the data, and whatever the communication speeds...

Optimality

Obvious by construction

Lemma

The execution time of the redistribution algorithm is

max
0≤l≤n−1

δstart,start+l × cstart+l,start+l+1.

In other words, there is no propagation delay, whatever the initial
distribution of the data, and whatever the communication speeds...

Optimality : principle of the proof

The execution time of the algorithm is

max
0≤l≤n−1

δstart,start+l × cstart+l,start+l+1.

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �	 	 	 	

� � � �
� � � �

� � � �
� � � �

� � � �� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �� � � �
� � � �
� � � �
� � � �
� � � �� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

! ! ! !
! ! ! !

" " " "# # # # Pi−1 → PiPi−2 → Pi−1Pi−3 → Pi−2 Pi → Pi+1

ti

ti − ci−1,i

ti − ci−1,i − ci−2,i−1

0

ti − ci−1,i − ci−2,i−1 − ci−3,i−2

tmax

Time

Homogeneous bidirectional ring : framework

Pk Pk+1 Pk+l−1 Pk+l

Homogeneous communication time: c.

Bidirectional communications

Lower bound: max
{

max
1≤i≤n

|δi|, max
1≤i≤n,1≤l≤n−1

⌈
|δi,i+l|

2

⌉}
× c

Homogeneous bidirectional ring : lower bound

Pk Pk+1 Pk+l−1 Pk+l

δk δk+1 δk+l−1 δk+l

Homogeneous communication time: c.

Bidirectional communications

Lower bound: max
{

max
1≤i≤n

|δi|, max
1≤i≤n,1≤l≤n−1

⌈
|δi,i+l|

2

⌉}
× c

Homogeneous bidirectional ring : lower bound

Pk Pk+1 Pk+l−1 Pk+l

δk δk+1 δk+l−1 δk+l

δk,k+l = δk + δk+1 + ...+ δk+l−1 + δk+l

Homogeneous communication time: c.

Bidirectional communications

Lower bound: max
{

max
1≤i≤n

|δi|, max
1≤i≤n,1≤l≤n−1

⌈
|δi,i+l|

2

⌉}
× c

Homogeneous bidirectional ring : lower bound

Pk Pk+1 Pk+l−1 Pk+l

δk δk+1 δk+l−1 δk+l

δk,k+l = δk + δk+1 + ...+ δk+l−1 + δk+l

Homogeneous communication time: c.

We need a time

⌈
δk,k+l

2

⌉
× c to send δk,k+l data items of the

processor “chain” Pk, ..., Pk+l(if δk,l > 0).

Lower bound: max
{

max
1≤i≤n

|δi|, max
1≤i≤n,1≤l≤n−1

⌈
|δi,i+l|

2

⌉}
× c

Homogeneous bidirectional ring : lower bound

Pk Pk+1 Pk+l−1 Pk+l

δk δk+1 δk+l−1 δk+l

δk,k+l = δk + δk+1 + ...+ δk+l−1 + δk+l

Homogeneous communication time: c.

We need a time

⌈
δk,k+l

2

⌉
× c to send δk,k+l data items of the

processor “chain” Pk, ..., Pk+l(if δk,l > 0).

Lower bound: max
{

max
1≤i≤n

|δi|, max
1≤i≤n,1≤l≤n−1

⌈
|δi,i+l|

2

⌉}
× c

Bidirectional homogeneous: principle of the algorithm

1 Each non trivial set Ck,l such that
⌈
|δk,l|

2

⌉
= δmax and δk,l ≥ 0

must send two data items at each step, one by each of its two
extremities.

2 Each non trivial set Ck,l such that
⌈
|δk,l|

2

⌉
= δmax and δk,l ≤ 0

must receive two data items at each step, one by each of its
two extremities.

3 Once the communications required by the two previous cases
are defined, we take care of Pi such that |δi| = δmax.
If Pi is already implied in a communication: everything is al-
ready set up.
Otherwise, we have the choice of the processor to which Pi
sends (case δi ≥ 0) or from which Pi receives (case δi ≤ 0) a
data item.
For the sake of simplicity: all these communications are in the
same direction “from Pi to Pi+1”.

Bidirectional homogeneous: principle of the algorithm

1 Each non trivial set Ck,l such that
⌈
|δk,l|

2

⌉
= δmax and δk,l ≥ 0

must send two data items at each step, one by each of its two
extremities.

2 Each non trivial set Ck,l such that
⌈
|δk,l|

2

⌉
= δmax and δk,l ≤ 0

must receive two data items at each step, one by each of its
two extremities.

3 Once the communications required by the two previous cases
are defined, we take care of Pi such that |δi| = δmax.
If Pi is already implied in a communication: everything is al-
ready set up.
Otherwise, we have the choice of the processor to which Pi
sends (case δi ≥ 0) or from which Pi receives (case δi ≤ 0) a
data item.
For the sake of simplicity: all these communications are in the
same direction “from Pi to Pi+1”.

Bidirectional homogeneous: principle of the algorithm

1 Each non trivial set Ck,l such that
⌈
|δk,l|

2

⌉
= δmax and δk,l ≥ 0

must send two data items at each step, one by each of its two
extremities.

2 Each non trivial set Ck,l such that
⌈
|δk,l|

2

⌉
= δmax and δk,l ≤ 0

must receive two data items at each step, one by each of its
two extremities.

3 Once the communications required by the two previous cases
are defined, we take care of Pi such that |δi| = δmax.
If Pi is already implied in a communication: everything is al-
ready set up.
Otherwise, we have the choice of the processor to which Pi
sends (case δi ≥ 0) or from which Pi receives (case δi ≤ 0) a
data item.
For the sake of simplicity: all these communications are in the
same direction “from Pi to Pi+1”.

Homogeneous bidirectional ring: optimality

Difficulties:

Particular cases (taking care of the termination)

Proof of the correctness of the algorithm (the optimality is then
obvious)

Heterogeneous bidirectional ring: bound

The length τ of any redistribution satisfies:

τ ≥ max



max
1≤k≤n, δk>0

δk min{ck,k−1, ck,k+1}

max
1≤k≤n, δk<0

−δk min{ck−1,k, ck+1,k}

max
1≤k≤n,

1≤l≤n−2,
δk,k+l>0

min
0≤i≤δk,k+l

max{i · ck,k−1, (δk,k+l − i) · ck+l,k+l+1}

max
1≤k≤n,

1≤l≤n−2,
δk,k+l<0

min
0≤i≤−δk,k+l

max{i · ck−1,k,−(δk,k+l+i) · ck+l+1,k+l}

Heterogeneous bidirectional ring: bound

The length τ of any redistribution satisfies:

τ ≥ max



max
1≤k≤n, δk>0

δk min{ck,k−1, ck,k+1}

max
1≤k≤n, δk<0

−δk min{ck−1,k, ck+1,k}

max
1≤k≤n,

1≤l≤n−2,
δk,k+l>0

min
0≤i≤δk,k+l

max{i · ck,k−1, (δk,k+l − i) · ck+l,k+l+1}

max
1≤k≤n,

1≤l≤n−2,
δk,k+l<0

min
0≤i≤−δk,k+l

max{i · ck−1,k,−(δk,k+l+i) · ck+l+1,k+l}

Heterogeneous bidirectional ring: bound

The length τ of any redistribution satisfies:

τ ≥ max



max
1≤k≤n, δk>0

δk min{ck,k−1, ck,k+1}

max
1≤k≤n, δk<0

−δk min{ck−1,k, ck+1,k}

max
1≤k≤n,

1≤l≤n−2,
δk,k+l>0

min
0≤i≤δk,k+l

max{i · ck,k−1, (δk,k+l − i) · ck+l,k+l+1}

max
1≤k≤n,

1≤l≤n−2,
δk,k+l<0

min
0≤i≤−δk,k+l

max{i · ck−1,k,−(δk,k+l+i) · ck+l+1,k+l}

Heterogeneous bidirectional ring: bound

The length τ of any redistribution satisfies:

τ ≥ max



max
1≤k≤n, δk>0

δk min{ck,k−1, ck,k+1}

max
1≤k≤n, δk<0

−δk min{ck−1,k, ck+1,k}

max
1≤k≤n,

1≤l≤n−2,
δk,k+l>0

min
0≤i≤δk,k+l

max{i · ck,k−1, (δk,k+l − i) · ck+l,k+l+1}

max
1≤k≤n,

1≤l≤n−2,
δk,k+l<0

min
0≤i≤−δk,k+l

max{i · ck−1,k,−(δk,k+l+i) · ck+l+1,k+l}

Heterogeneous bidirectional ring: “light” redistributions (1)

Definition: we say that a redistribution is “light” if each processor
initially holds all the data items it needs to send during the execution
of the algorithm.

Si,j : amount of data sent by Pi to its neighbor Pj .

Minimize τ, subject to
Si,i+1 ≥ 0 1 ≤ i ≤ n
Si,i−1 ≥ 0 1 ≤ i ≤ n
Si,i+1 + Si,i−1 − Si+1,i − Si−1,i = δi 1 ≤ i ≤ n
Si,i+1ci,i+1 + Si,i−1ci,i−1 ≤ τ 1 ≤ i ≤ n
Si+1,ici+1,i + Si−1,ici−1,i ≤ τ 1 ≤ i ≤ n

Heterogeneous bidirectional ring: “light” redistributions (2)

1 Any integral solution is feasible.

Ex.: Pi sends its Si,i+1 data to Pi+1 starting at time 0. Once
this communication is completed, Pi sends Si,i−1 data to Pi−1

as soon as it is possible under the one port model.

2 If we solve the system in rational, one of the two natural round-
ing in integer defines an optimal integral solution.

Heterogeneous bidirectional ring: general case

Any idea anybody ?

Outline

1 The problem

2 Fully homogeneous network

3 Heterogeneous network (complete)

4 Heterogeneous network (general case)

5 Non dedicated platforms

6 Conclusion

Conclusion

“Regular” parallelism was already complicated, now we have:

Processors with different characteristics

Communications links with different characteristics

Irregular interconnection networks

Resources whose characteristics evolve over time

We need to use a realistic model of networks... but a more realistic
model may lead to a more complicated problem.

	The problem
	Fully homogeneous network
	Heterogeneous network (complete)
	Heterogeneous network (general case)
	Non dedicated platforms
	Conclusion

