
Strategies for Replica Placement
in Tree Networks

http://graal.ens-lyon.fr/~lmarchal/scheduling/

2 avril 2009

http://graal.ens-lyon.fr/~lmarchal/scheduling/

Introduction and motivation

I Replica placement in tree networks

I Set of clients (tree leaves): flows of requests with QoS
constraints, known in advance

I Internal nodes may be provided with a replica;
in this case they become servers
and process requests (up to their capacity limit)

How many replicas required?
Which locations?
Total replica cost?

Introduction and motivation

I Replica placement in tree networks

I Set of clients (tree leaves): flows of requests with QoS
constraints, known in advance

I Internal nodes may be provided with a replica;
in this case they become servers
and process requests (up to their capacity limit)

How many replicas required?

Which locations?
Total replica cost?

Introduction and motivation

I Replica placement in tree networks

I Set of clients (tree leaves): flows of requests with QoS
constraints, known in advance

I Internal nodes may be provided with a replica;
in this case they become servers
and process requests (up to their capacity limit)

How many replicas required?
Which locations?

Total replica cost?

Introduction and motivation

I Replica placement in tree networks

I Set of clients (tree leaves): flows of requests with QoS
constraints, known in advance

I Internal nodes may be provided with a replica;
in this case they become servers
and process requests (up to their capacity limit)

How many replicas required?
Which locations?
Total replica cost?

Rule of the game

I Handle all client requests, and minimize cost of replicas

I → Replica Placement problem

I Several policies to assign replicas

W = 10

5 4 3

1

2 2 3

Rule of the game

I Handle all client requests, and minimize cost of replicas

I → Replica Placement problem

I Several policies to assign replicas

W = 10

5 4 3

1

2 2 3

Rule of the game

I Handle all client requests, and minimize cost of replicas

I → Replica Placement problem

I Several policies to assign replicas

W = 10

5 4 3

1

2 2 3

Rule of the game

I Handle all client requests, and minimize cost of replicas

I → Replica Placement problem

I Several policies to assign replicas

W = 10

5 4 3

1

2 2 3

Rule of the game

I Handle all client requests, and minimize cost of replicas

I → Replica Placement problem

I Several policies to assign replicas

W = 10

5 3

1

2 2 34

Rule of the game

I Handle all client requests, and minimize cost of replicas

I → Replica Placement problem

I Several policies to assign replicas

W = 10

5 3

1

2 2 3

2

3

4

Outline

1 Framework

2 Access policies

3 Complexity results

4 Linear programming formulation

5 Heuristics for the Replica Cost problem

6 Conclusion

Outline

1 Framework

2 Access policies

3 Complexity results

4 Linear programming formulation

5 Heuristics for the Replica Cost problem

6 Conclusion

Definitions and notations

I Distribution tree T , clients C (leaf nodes), internal nodes N

I Client i ∈ C:
I Sends ri requests per time unit (number of accesses to a single

object database)
I Quality of service qi (response time)

I Node j ∈ N :
I Can contain the object database replica (server) or not
I Processing capacity Wj

I Storage cost scj

I Tree edge: l ∈ L (communication link between nodes)
I Communication time comml

I Bandwidth limit BWl

Definitions and notations

I Distribution tree T , clients C (leaf nodes), internal nodes N
I Client i ∈ C:

I Sends ri requests per time unit (number of accesses to a single
object database)

I Quality of service qi (response time)

I Node j ∈ N :
I Can contain the object database replica (server) or not
I Processing capacity Wj

I Storage cost scj

I Tree edge: l ∈ L (communication link between nodes)
I Communication time comml

I Bandwidth limit BWl

Definitions and notations

I Distribution tree T , clients C (leaf nodes), internal nodes N
I Client i ∈ C:

I Sends ri requests per time unit (number of accesses to a single
object database)

I Quality of service qi (response time)

I Node j ∈ N :
I Can contain the object database replica (server) or not
I Processing capacity Wj

I Storage cost scj

I Tree edge: l ∈ L (communication link between nodes)
I Communication time comml

I Bandwidth limit BWl

Definitions and notations

I Distribution tree T , clients C (leaf nodes), internal nodes N
I Client i ∈ C:

I Sends ri requests per time unit (number of accesses to a single
object database)

I Quality of service qi (response time)

I Node j ∈ N :
I Can contain the object database replica (server) or not
I Processing capacity Wj

I Storage cost scj

I Tree edge: l ∈ L (communication link between nodes)
I Communication time comml

I Bandwidth limit BWl

Tree notations

I r : tree root

I children(j): set of children of node j ∈ N
I parent(k): parent in the tree of node k ∈ N ∪ C
I link l : k → parent(k) = k ′. Then succ(l) is the link

k ′ → parent(k ′) (when it exists)

I Ancestors(k): set of ancestors of node k

I If k ′ ∈ Ancestors(k), then path[k → k ′]: set of links in the
path from k to k ′

I subtree(k): subtree rooted in k, including k .

Problem instances

I Goal: place replicas to process client requests

I Client i ∈ C: Servers(i) ⊆ N set of servers responsible for
processing its requests

I ri ,s : number of requests from client i processed by server s
(
∑

s∈Servers(i) ri ,s = ri)

I R = {s ∈ N| ∃i ∈ C , s ∈ Servers(i)}: set of replicas

Constraints

I Server capacity

∀s ∈ R,
∑

i∈C|s∈Servers(i)

ri ,s ≤Ws

I Link capacity

∀l ∈ L
∑

i∈C,s∈Servers(i)|l∈path[i→s]

ri ,s ≤ BWl

I QoS

∀i ∈ C,∀s ∈ Servers(i),
∑

l∈path[i→s]

comml ≤ qi .

Constraints

I Server capacity

∀s ∈ R,
∑

i∈C|s∈Servers(i)

ri ,s ≤Ws

I Link capacity

∀l ∈ L
∑

i∈C,s∈Servers(i)|l∈path[i→s]

ri ,s ≤ BWl

I QoS

∀i ∈ C,∀s ∈ Servers(i),
∑

l∈path[i→s]

comml ≤ qi .

Constraints

I Server capacity

∀s ∈ R,
∑

i∈C|s∈Servers(i)

ri ,s ≤Ws

I Link capacity

∀l ∈ L
∑

i∈C,s∈Servers(i)|l∈path[i→s]

ri ,s ≤ BWl

I QoS

∀i ∈ C,∀s ∈ Servers(i),
∑

l∈path[i→s]

comml ≤ qi .

Objective function

I Min
∑

s∈R scs

I Restrict to case where scs = Ws

I Replica Cost problem: no QoS nor bandwidth constraints;
heterogeneous servers

I Replica Counting problem: idem, but homogeneous
platforms

Objective function

I Min
∑

s∈R scs

I Restrict to case where scs = Ws

I Replica Cost problem: no QoS nor bandwidth constraints;
heterogeneous servers

I Replica Counting problem: idem, but homogeneous
platforms

Outline

1 Framework

2 Access policies

3 Complexity results

4 Linear programming formulation

5 Heuristics for the Replica Cost problem

6 Conclusion

Single server vs. Multiple servers

Single server – Each client i is assigned a single server server(i),
that is responsible for processing all its requests.

Multiple servers – A client i may be assigned several servers in a
set Servers(i). Each server s ∈ Servers(i) will handle
a fraction ri ,s of the requests.

In the literature: single server policy with additional constraint.

Closest policy

I Closest: single server policy

I Server of client i is constrained to be first server found on the
path that goes from i upwards to the tree root

I Consider a client i and its server server(i):
∀i ′ ∈ subtree(server(i)), server(i ′) ∈ subtree(server(i))

I Requests from i ′ cannot “traverse” server(i) and be served
higher

i i'

server(i)

Upwards and Multiple policy

I New policies not studied in the literature

I Upwards: Closest constraint is relaxed

I Multiple: relax single server restriction

I Expect more solutions with new policies, at a lower cost

I QoS constraints may lower difference between policies

Example: existence of a solution

(b)(a) (c)

W = 1

1

s2

s1

1 1

s2

s1

s2

s1

2

I (a): solution for all policies

I (b): no solution with Closest

I (c): no solution with Closest nor Upwards

Example: existence of a solution

(b)(a) (c)

W = 1

1

s2

s1

1 1

s2

s1

s2

s1

2

I (a): solution for all policies

I (b): no solution with Closest

I (c): no solution with Closest nor Upwards

Example: existence of a solution

(b)(a) (c)

W = 1

1

s2

s1

1 1

s2

s1

s2

s1

2

I (a): solution for all policies

I (b): no solution with Closest

I (c): no solution with Closest nor Upwards

Example: existence of a solution

(b)(a) (c)

W = 1

1

s2

s1

1 1

s2

s1

s2

s1

2

I (a): solution for all policies

I (b): no solution with Closest

I (c): no solution with Closest nor Upwards

Upwards versus Closest

s1

1 1

s2n

s2n+2

s2n+1

W = n

1

I Upwards: 3 replicas in s2n, s2n+1 and s2n+2

I Closest: at least n + 2 replicas (replica in s2n+1 or not)

Upwards versus Closest

s1

1 1

s2n

s2n+2

s2n+1

W = n

1

I Upwards: 3 replicas in s2n, s2n+1 and s2n+2

I Closest: at least n + 2 replicas (replica in s2n+1 or not)

Multiple versus Upwards

n n + 1 n n + 1 n + 1n

v1 w1 w2 wnvnv2

s1 s2

n

W = 2nr

sn

I Multiple: n + 1 replicas / Upwards: 2n replicas

I Multiple twice better than Upwards.

I Performance ratio: open problem.

Multiple versus Upwards

n n + 1 n n + 1 n + 1n

v1 w1 w2 wnvnv2

s1 s2

n

W = 2nr

sn

I Multiple: n + 1 replicas / Upwards: 2n replicas

I Multiple twice better than Upwards.

I Performance ratio: open problem.

Multiple versus Upwards

I Replica Cost

n + 1

n − 1

s1, W1 = n

s2, W2 = n

s3, W3 = Kn

I Multiple: cost 2n / Upwards: cost (K + 1)n

I : Multiple arbitrarily better than Upwards

Multiple versus Upwards

I Replica Cost

n + 1

n − 1

s1, W1 = n

s2, W2 = n

s3, W3 = Kn

I Multiple: cost 2n / Upwards: cost (K + 1)n

I : Multiple arbitrarily better than Upwards

Lower bound for the Replica Counting problem

Obvious lower bound:
⌈P

i∈C ri
W

⌉

= 2

s1

W /n W /n

r

sn

W

All policies require n + 1 replica (one at each node).

Lower bound for the Replica Counting problem

Obvious lower bound:
⌈P

i∈C ri
W

⌉
= 2

s1

W /n W /n

r

sn

W

All policies require n + 1 replica (one at each node).

Outline

1 Framework

2 Access policies

3 Complexity results

4 Linear programming formulation

5 Heuristics for the Replica Cost problem

6 Conclusion

Complexity results - Basic problem

Replica Counting Replica Cost
Homogeneous Heterogeneous

Closest polynomial [Cidon02,Liu06]

NP-complete

Upwards

NP-complete NP-complete

Multiple

polynomial algorithm NP-complete

Table: Complexity results for the different instances of the problem

I Closest/Homogeneous: only known result (Cidon et al. 2002,
Liu et al. 2006)

I Multiple/Homogeneous: nice algorithm to prove polynomial
complexity

I Upwards/Homogeneous: surprisingly, NP-complete

I All instances for the Heterogeneous case are NP-complete

Complexity results - Basic problem

Replica Counting Replica Cost
Homogeneous Heterogeneous

Closest polynomial [Cidon02,Liu06]

NP-complete

Upwards

NP-complete NP-complete

Multiple polynomial algorithm

NP-complete

Table: Complexity results for the different instances of the problem

I Closest/Homogeneous: only known result (Cidon et al. 2002,
Liu et al. 2006)

I Multiple/Homogeneous: nice algorithm to prove polynomial
complexity

I Upwards/Homogeneous: surprisingly, NP-complete

I All instances for the Heterogeneous case are NP-complete

Complexity results - Basic problem

Replica Counting Replica Cost
Homogeneous Heterogeneous

Closest polynomial [Cidon02,Liu06]

NP-complete

Upwards NP-complete

NP-complete

Multiple polynomial algorithm

NP-complete

Table: Complexity results for the different instances of the problem

I Closest/Homogeneous: only known result (Cidon et al. 2002,
Liu et al. 2006)

I Multiple/Homogeneous: nice algorithm to prove polynomial
complexity

I Upwards/Homogeneous: surprisingly, NP-complete

I All instances for the Heterogeneous case are NP-complete

Complexity results - Basic problem

Replica Counting Replica Cost
Homogeneous Heterogeneous

Closest polynomial [Cidon02,Liu06] NP-complete
Upwards NP-complete NP-complete
Multiple polynomial algorithm NP-complete

Table: Complexity results for the different instances of the problem

I Closest/Homogeneous: only known result (Cidon et al. 2002,
Liu et al. 2006)

I Multiple/Homogeneous: nice algorithm to prove polynomial
complexity

I Upwards/Homogeneous: surprisingly, NP-complete

I All instances for the Heterogeneous case are NP-complete

Multiple/Homogeneous: greedy algorithm

3-pass algorithm:

I Select nodes which can handle W requests

I Select some extra servers to fulfill remaining requests

I Decide which requests are processed where

Example to illustrate algorithm (informally)

Proof of optimality: any optimal solution can be transformed into
a solution similar to the one of the algorithm (moving requests
from one server to another)

Multiple/Homogeneous: greedy algorithm

3-pass algorithm:

I Select nodes which can handle W requests

I Select some extra servers to fulfill remaining requests

I Decide which requests are processed where

Example to illustrate algorithm (informally)

Proof of optimality: any optimal solution can be transformed into
a solution similar to the one of the algorithm (moving requests
from one server to another)

Multiple/Homogeneous: greedy algorithm

3-pass algorithm:

I Select nodes which can handle W requests

I Select some extra servers to fulfill remaining requests

I Decide which requests are processed where

Example to illustrate algorithm (informally)

Proof of optimality: any optimal solution can be transformed into
a solution similar to the one of the algorithm (moving requests
from one server to another)

Multiple/Homogeneous: example

n1

n2 n3 n4

2

2

n5

n6
n7 n8

n9
n10 n11

12

1

1

9

7

W = 10

4

37

Initial network

The example network

Multiple/Homogeneous: example

n1

n2 n3 n4

2

2

n5

n6
n7 n8

n9
n10 n11

12

1

1

9

7 7

2 2

24

6

2 12

1

1

7 7

4

1

3

7
4

8

3

3

492

1

Pass 1

Placing saturated replicas

Multiple/Homogeneous: example

� �� �

n1

n2 n3 n4

2

2

n5

n6
n7 n8

n9
n10 n11

12

1

1

9

7 7

2 2

24

2
3

6
1

1

1

1

1

1 4 3

333

4

4

8

7

2

Pass 2

Placing extra replicas: n4 has maximum useful flow

Multiple/Homogeneous: example

� �� �� ��

n1

n2 n3 n4

2

2

n5

n6
n7 n8

n9
n10 n11

12

1

1

9

7 7

2 2

24

2
3

6
1

1

1

1

1

1 4 3

333

4

4

2

Pass 2

0

1

Placing extra replicas: n2 is of maximum useful flow 1

Multiple/Homogeneous: example

� �� �� �� �

2

2

12

1

1

9

7 7 3

4

2
2

10

2

1

1

1

4

3

7 3
4

8

Pass 3

Deciding where requests are processed

Upwards/Homogeneous

I The Replica Counting problem with the Upwards strategy
is NP-complete in the strong sense

I Reduction from 3-PARTITION

c1 c2 c3

n1

n2

nm

W = B

c3m

∑3m
i=1 ci = mB

Upwards/Homogeneous

I The Replica Counting problem with the Upwards strategy
is NP-complete in the strong sense

I Reduction from 3-PARTITION

c1 c2 c3

n1

n2

nm

W = B

c3m

∑3m
i=1 ci = mB

Heterogeneous network: Replica Cost problem

I All three instances of the Replica Cost problem with
heterogeneous nodes are NP-complete

I Reduction from 2-PARTITION

n1

c1 c2

nm

cm cm+1

n2

r

∑m
i=1 ci = S , cm+1 = 1, Wj = cj , Wr = S/2 + 1

Solution with total storage cost S + 1 ?

Heterogeneous network: Replica Cost problem

I All three instances of the Replica Cost problem with
heterogeneous nodes are NP-complete

I Reduction from 2-PARTITION

n1

c1 c2

nm

cm cm+1

n2

r

∑m
i=1 ci = S , cm+1 = 1, Wj = cj , Wr = S/2 + 1

Solution with total storage cost S + 1 ?

Heterogeneous network: Replica Cost problem

I All three instances of the Replica Cost problem with
heterogeneous nodes are NP-complete

I Reduction from 2-PARTITION

n1

c1 c2

nm

cm cm+1

n2

r

∑m
i=1 ci = S , cm+1 = 1, Wj = cj , Wr = S/2 + 1

Solution with total storage cost S + 1 ?

Outline

1 Framework

2 Access policies

3 Complexity results

4 Linear programming formulation

5 Heuristics for the Replica Cost problem

6 Conclusion

Linear programming

I General instance of the problem
I Heterogeneous tree
I QoS and bandwidth constraints
I Closest, Upwards and Multiple policies

I Integer linear program: no efficient algorithm

I Absolute lower bound if program solved over the rationals
(using the GLPK software)

I Closest/Upwards LP formulation

Linear program: variables

I xj : boolean variable equal to 1 if j is a server (for one or
several clients)

I yi ,j : boolean variable equal to 1 if j = server(i)
I If j /∈ Ancests(i), yi,j = 0

I zi ,l : boolean variable equal to 1 if link l ∈ path[i → r] used
when i accesses server(i)

I If l /∈ path[i → r], zi,l = 0

Objective function:
∑

j∈N scjxj

Linear program: variables

I xj : boolean variable equal to 1 if j is a server (for one or
several clients)

I yi ,j : boolean variable equal to 1 if j = server(i)
I If j /∈ Ancests(i), yi,j = 0

I zi ,l : boolean variable equal to 1 if link l ∈ path[i → r] used
when i accesses server(i)

I If l /∈ path[i → r], zi,l = 0

Objective function:
∑

j∈N scjxj

Linear program: variables

I xj : boolean variable equal to 1 if j is a server (for one or
several clients)

I yi ,j : boolean variable equal to 1 if j = server(i)
I If j /∈ Ancests(i), yi,j = 0

I zi ,l : boolean variable equal to 1 if link l ∈ path[i → r] used
when i accesses server(i)

I If l /∈ path[i → r], zi,l = 0

Objective function:
∑

j∈N scjxj

Linear program: variables

I xj : boolean variable equal to 1 if j is a server (for one or
several clients)

I yi ,j : boolean variable equal to 1 if j = server(i)
I If j /∈ Ancests(i), yi,j = 0

I zi ,l : boolean variable equal to 1 if link l ∈ path[i → r] used
when i accesses server(i)

I If l /∈ path[i → r], zi,l = 0

Objective function:
∑

j∈N scjxj

Linear program: constraints

I Servers: ∀i ∈ C,
∑

j∈Ancestors(i) yi ,j = 1

I Links: ∀i ∈ C, zi ,i→parent(i) = 1

I Conservation: ∀i ∈ C,∀l : j → j ′ = parent(j) ∈ path[i → r],
zi ,succ(l) = zi ,l − yi ,j ′

I Server capacity: ∀j ∈ N ,
∑

i∈C riyi ,j ≤Wjxj

I Bandwidth limit: ∀l ∈ L,
∑

i∈C rizi ,l ≤ BWl

I QoS constraint: ∀i ∈ C,∀j ∈ Ancestors(i), dist(i , j)yi ,j ≤ qi

I Closest constraint: ∀i ∈ C,∀j ∈ Ancestors(i) \ {r},
∀i ′ ∈ C ∩ subtree(j), yi ,j + zi ′,j→parent(j) ≤ 1

Linear program: constraints

I Servers: ∀i ∈ C,
∑

j∈Ancestors(i) yi ,j = 1

I Links: ∀i ∈ C, zi ,i→parent(i) = 1

I Conservation: ∀i ∈ C,∀l : j → j ′ = parent(j) ∈ path[i → r],
zi ,succ(l) = zi ,l − yi ,j ′

I Server capacity: ∀j ∈ N ,
∑

i∈C riyi ,j ≤Wjxj

I Bandwidth limit: ∀l ∈ L,
∑

i∈C rizi ,l ≤ BWl

I QoS constraint: ∀i ∈ C,∀j ∈ Ancestors(i), dist(i , j)yi ,j ≤ qi

I Closest constraint: ∀i ∈ C,∀j ∈ Ancestors(i) \ {r},
∀i ′ ∈ C ∩ subtree(j), yi ,j + zi ′,j→parent(j) ≤ 1

Linear program: constraints

I Servers: ∀i ∈ C,
∑

j∈Ancestors(i) yi ,j = 1

I Links: ∀i ∈ C, zi ,i→parent(i) = 1

I Conservation: ∀i ∈ C, ∀l : j → j ′ = parent(j) ∈ path[i → r],
zi ,succ(l) = zi ,l − yi ,j ′

I Server capacity: ∀j ∈ N ,
∑

i∈C riyi ,j ≤Wjxj

I Bandwidth limit: ∀l ∈ L,
∑

i∈C rizi ,l ≤ BWl

I QoS constraint: ∀i ∈ C,∀j ∈ Ancestors(i), dist(i , j)yi ,j ≤ qi

I Closest constraint: ∀i ∈ C,∀j ∈ Ancestors(i) \ {r},
∀i ′ ∈ C ∩ subtree(j), yi ,j + zi ′,j→parent(j) ≤ 1

Linear program: constraints

I Servers: ∀i ∈ C,
∑

j∈Ancestors(i) yi ,j = 1

I Links: ∀i ∈ C, zi ,i→parent(i) = 1

I Conservation: ∀i ∈ C, ∀l : j → j ′ = parent(j) ∈ path[i → r],
zi ,succ(l) = zi ,l − yi ,j ′

I Server capacity: ∀j ∈ N ,
∑

i∈C riyi ,j ≤Wjxj

I Bandwidth limit: ∀l ∈ L,
∑

i∈C rizi ,l ≤ BWl

I QoS constraint: ∀i ∈ C,∀j ∈ Ancestors(i), dist(i , j)yi ,j ≤ qi

I Closest constraint: ∀i ∈ C,∀j ∈ Ancestors(i) \ {r},
∀i ′ ∈ C ∩ subtree(j), yi ,j + zi ′,j→parent(j) ≤ 1

Linear program: constraints

I Servers: ∀i ∈ C,
∑

j∈Ancestors(i) yi ,j = 1

I Links: ∀i ∈ C, zi ,i→parent(i) = 1

I Conservation: ∀i ∈ C, ∀l : j → j ′ = parent(j) ∈ path[i → r],
zi ,succ(l) = zi ,l − yi ,j ′

I Server capacity: ∀j ∈ N ,
∑

i∈C riyi ,j ≤Wjxj

I Bandwidth limit: ∀l ∈ L,
∑

i∈C rizi ,l ≤ BWl

I QoS constraint: ∀i ∈ C,∀j ∈ Ancestors(i), dist(i , j)yi ,j ≤ qi

I Closest constraint: ∀i ∈ C, ∀j ∈ Ancestors(i) \ {r},
∀i ′ ∈ C ∩ subtree(j), yi ,j + zi ′,j→parent(j) ≤ 1

Linear program: constraints

I Servers: ∀i ∈ C,
∑

j∈Ancestors(i) yi ,j = 1

I Links: ∀i ∈ C, zi ,i→parent(i) = 1

I Conservation: ∀i ∈ C, ∀l : j → j ′ = parent(j) ∈ path[i → r],
zi ,succ(l) = zi ,l − yi ,j ′

I Server capacity: ∀j ∈ N ,
∑

i∈C riyi ,j ≤Wjxj

I Bandwidth limit: ∀l ∈ L,
∑

i∈C rizi ,l ≤ BWl

I QoS constraint: ∀i ∈ C,∀j ∈ Ancestors(i), dist(i , j)yi ,j ≤ qi

I Closest constraint: ∀i ∈ C, ∀j ∈ Ancestors(i) \ {r},
∀i ′ ∈ C ∩ subtree(j), yi ,j + zi ′,j→parent(j) ≤ 1

Linear program: constraints

I Servers: ∀i ∈ C,
∑

j∈Ancestors(i) yi ,j = 1

I Links: ∀i ∈ C, zi ,i→parent(i) = 1

I Conservation: ∀i ∈ C, ∀l : j → j ′ = parent(j) ∈ path[i → r],
zi ,succ(l) = zi ,l − yi ,j ′

I Server capacity: ∀j ∈ N ,
∑

i∈C riyi ,j ≤Wjxj

I Bandwidth limit: ∀l ∈ L,
∑

i∈C rizi ,l ≤ BWl

I QoS constraint: ∀i ∈ C,∀j ∈ Ancestors(i), dist(i , j)yi ,j ≤ qi

I Closest constraint: ∀i ∈ C, ∀j ∈ Ancestors(i) \ {r},
∀i ′ ∈ C ∩ subtree(j), yi ,j + zi ′,j→parent(j) ≤ 1

Multiple formulation

Multiple
I Similar formulation, with

I yi,j : integer variable = nb requests from client i processed by
node j

I zi,l : integer variable = nb requests flowing through link l

I Constraints are slightly modified

An ILP-based lower bound

I Solving over the rationals: solution for all practical values of
the problem size

I Not very precise bound
I Upwards/Closest equivalent to Multiple when solved over the

rationals

I Integer solving: limitation to s ≤ 50 nodes and clients
I Mixed bound obtained by solving the Multiple formulation

over the rational and imposing only the xj being integers
I Resolution for problem sizes s ≤ 400
I Improved bound: if a server is used only at 50% of its capacity,

the cost of placing a replica at this node is not halved as it
would be with xj = 0.5.

An ILP-based lower bound

I Solving over the rationals: solution for all practical values of
the problem size

I Not very precise bound
I Upwards/Closest equivalent to Multiple when solved over the

rationals

I Integer solving: limitation to s ≤ 50 nodes and clients

I Mixed bound obtained by solving the Multiple formulation
over the rational and imposing only the xj being integers

I Resolution for problem sizes s ≤ 400
I Improved bound: if a server is used only at 50% of its capacity,

the cost of placing a replica at this node is not halved as it
would be with xj = 0.5.

An ILP-based lower bound

I Solving over the rationals: solution for all practical values of
the problem size

I Not very precise bound
I Upwards/Closest equivalent to Multiple when solved over the

rationals

I Integer solving: limitation to s ≤ 50 nodes and clients
I Mixed bound obtained by solving the Multiple formulation

over the rational and imposing only the xj being integers
I Resolution for problem sizes s ≤ 400
I Improved bound: if a server is used only at 50% of its capacity,

the cost of placing a replica at this node is not halved as it
would be with xj = 0.5.

Outline

1 Framework

2 Access policies

3 Complexity results

4 Linear programming formulation

5 Heuristics for the Replica Cost problem
Heuristics
Experiments

6 Conclusion

Heuristics

I Polynomial heuristics for the Replica Cost problem
I Heterogeneous platforms
I No QoS nor bandwidth constraints

I Experimental assessment of the relative performance of the
three policies

I Traversals of the tree, bottom-up or top-down

I Worst case complexity O(s2),
where s = |C|+ |N | is problem size

Heuristics

I Polynomial heuristics for the Replica Cost problem
I Heterogeneous platforms
I No QoS nor bandwidth constraints

I Experimental assessment of the relative performance of the
three policies

I Traversals of the tree, bottom-up or top-down

I Worst case complexity O(s2),
where s = |C|+ |N | is problem size

Heuristics

I Polynomial heuristics for the Replica Cost problem
I Heterogeneous platforms
I No QoS nor bandwidth constraints

I Experimental assessment of the relative performance of the
three policies

I Traversals of the tree, bottom-up or top-down

I Worst case complexity O(s2),
where s = |C|+ |N | is problem size

Heuristics for Closest

Closest Top Down All CTDA

I Breadth-first traversal of the
tree

I When a node can process
the requests of all the clients
in its subtree, node chosen
as a server and exploration
of the subtree stopped

I Procedure called until no
more servers are added

I Choosing n2, n4 and then n1

n1

n2

1 1 2

1 1

1n

3

n3

n4

n5

n6n

Heuristics for Closest

Closest Top Down All CTDA

I Breadth-first traversal of the
tree

I When a node can process
the requests of all the clients
in its subtree, node chosen
as a server and exploration
of the subtree stopped

I Procedure called until no
more servers are added

I Choosing n2, n4 and then n1

n1

n2

1 1 2

1 1

1n

3

n3

n4

n5

n6n

Heuristics for Closest

Closest Top Down Largest First CTDLF

I Traversal of the tree,
treating subtrees that
contains most requests first

I When a node can process
the requests of all the clients
in its subtree, node chosen
as a server and traversal
stopped

I Procedure called until no
more servers are added

I Choosing n2 and then n1

n1

n2

1 1 2

1 1

1n

3

n3

n4

n5

n6n

Heuristics for Closest

Closest Bottom Up CBU

I Bottom-up traversal of the
tree

I When a node can process
the requests of all the clients
in its subtree, node chosen
as a server

I Choosing n3, n5, n1

n1

n2

1 1 2

1 1

1n

3

n3

n4

n5

n6n

Heuristics for Upwards

Upwards Top Down UTD

I 2-pass algorithm

I Select first saturating nodes,
then extra nodes

I Choosing n2 (for c1) and in
second pass n1 (for c2, c3)

3 2 1

n2

n1 7

4

Heuristics for Upwards

Upwards Top Down UTD

I 2-pass algorithm

I Select first saturating nodes,
then extra nodes

I Choosing n2 (for c1) and in
second pass n1 (for c2, c3)

3 2 1

n2

n1 7

4

Heuristics for Upwards

Upwards Big Client First UBCF

I Sorting clients by decreasing
request numbers, and
finding the server of minimal
available capacity to process
its requests.

I Choosing n2 for c1, n1 for c2

and n1 for c3

3 2 1

n2

n1 7

4

Heuristics for Multiple

A greedy heuristic MG, similar to
Pass 3 of the polynomial
algorithm for
Multiple/Homogeneous: fill all
servers as much as possible in a
bottom-up fashion

3 2 1

n2

n1 7

4

I MG affects 4 requests to n2, and then the remaining 2
requests to n1

I CTDLF better on this example: selects n1 only

Heuristics for Multiple

A greedy heuristic MG, similar to
Pass 3 of the polynomial
algorithm for
Multiple/Homogeneous: fill all
servers as much as possible in a
bottom-up fashion

3 2 1

n2

n1 7

4

I MG affects 4 requests to n2, and then the remaining 2
requests to n1

I CTDLF better on this example: selects n1 only

Heuristics for Multiple

I A top-down and a bottom-up heuristic in 2-passes
(MTD, MBU)

I Heuristic MixedBest MB which picks up best result over all
heuristics: solution for the Multiple policy

Plan of experiments

I Assess impact of the different access policies

I Assess performance of the polynomial heuristics

I Important parameter:

λ =

∑
i∈C ri∑

j∈N Wi

I 30 trees for each λ = 0.1, 0.2, ..., 0.9

I Problem size s = |C|+ |N | such that 15 ≤ s ≤ 400

I Computation of the LP lower bound for each tree

Plan of experiments

I Assess impact of the different access policies

I Assess performance of the polynomial heuristics

I Important parameter:

λ =

∑
i∈C ri∑

j∈N Wi

I 30 trees for each λ = 0.1, 0.2, ..., 0.9

I Problem size s = |C|+ |N | such that 15 ≤ s ≤ 400

I Computation of the LP lower bound for each tree

Results - Percentage of success

I Number of solutions for each lambda and each heuristic
I No LP solution → No solution for any heuristic
I Homogeneous case

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pe
rc

en
ta

ge
 o

f t
re

es

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst
MultipleGreedy

MultipleTopDown
MultipleBottomUp

MixedBest
LP

Results - Percentage of success

I Heterogeneous trees: similar results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pe
rc

en
ta

ge
 o

f t
re

es

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst
MultipleGreedy

MultipleTopDown
MultipleBottomUp

MixedBest
LP

I Striking impact of new policies
I MG and MB always find the solution

Results - Percentage of success

I Heterogeneous trees: similar results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pe
rc

en
ta

ge
 o

f t
re

es

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst
MultipleGreedy

MultipleTopDown
MultipleBottomUp

MixedBest
LP

I Striking impact of new policies

I MG and MB always find the solution

Results - Percentage of success

I Heterogeneous trees: similar results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pe
rc

en
ta

ge
 o

f t
re

es

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst
MultipleGreedy

MultipleTopDown
MultipleBottomUp

MixedBest
LP

I Striking impact of new policies
I MG and MB always find the solution

Results - Solution cost

I Distance of the result (in terms of replica cost) of the
heuristic to the lower bound

I Tλ: subset of trees with a solution

I Relative cost:

rcost =
1

|Tλ|
∑
t∈Tλ

costLP(t)

costh(t)

I costLP(t): lower bound cost on tree t

I costh(t): heuristic cost on tree t; costh(t) = +∞ if h did not
find any solution

Results - Solution cost

I Distance of the result (in terms of replica cost) of the
heuristic to the lower bound

I Tλ: subset of trees with a solution

I Relative cost:

rcost =
1

|Tλ|
∑
t∈Tλ

costLP(t)

costh(t)

I costLP(t): lower bound cost on tree t

I costh(t): heuristic cost on tree t; costh(t) = +∞ if h did not
find any solution

Results - Solution cost

I Homogeneous results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

re
la

tiv
e

co
st

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst
MultipleGreedy

MultipleTopDown
MultipleBottomUp

MixedBest

Results - Solution cost

I Heterogeneous results - similar to the homogeneous case

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

re
la

tiv
e

co
st

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst
MultipleGreedy

MultipleTopDown
MultipleBottomUp

MixedBest

Results - Hierarchy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

re
la

tiv
e

co
st

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst
MultipleGreedy

MultipleTopDown
MultipleBottomUp

MixedBest

Summary

I Striking effect of new policies: many more solutions to the
Replica Placement problem

I Multiple ≥ Upwards ≥ Closest: hierarchy observed within our
heuristics

I Best Multiple heuristic (MB) always at 85% of the lower
bound: satisfactory result

Outline

1 Framework

2 Access policies

3 Complexity results

4 Linear programming formulation

5 Heuristics for the Replica Cost problem

6 Conclusion

Related work

I Several papers on replica placement, but...

I ...all consider only the Closest policy

I Replica Placement in a general graph is NP-complete

I Wolfson and Milo: impact of the write cost, use of a minimum
spanning tree for updates. Tree networks: polynomial solution

I Cidon et al (multiple objects) and Liu et al (QoS constraints):
polynomial algorithms for homogeneous networks.

I Kalpakis et al: NP-completeness of a variant with
bidirectional links (requests served by any node in the tree)

I Karlsson et al: comparison of different objective functions and
several heuristics. No QoS, but several other constraints.

I Tang et al: real QoS constraints

I Rodolakis et al: Multiple policy but in a very different context

Related work

I Several papers on replica placement, but...

I ...all consider only the Closest policy

I Replica Placement in a general graph is NP-complete

I Wolfson and Milo: impact of the write cost, use of a minimum
spanning tree for updates. Tree networks: polynomial solution

I Cidon et al (multiple objects) and Liu et al (QoS constraints):
polynomial algorithms for homogeneous networks.

I Kalpakis et al: NP-completeness of a variant with
bidirectional links (requests served by any node in the tree)

I Karlsson et al: comparison of different objective functions and
several heuristics. No QoS, but several other constraints.

I Tang et al: real QoS constraints

I Rodolakis et al: Multiple policy but in a very different context

Related work

I Several papers on replica placement, but...

I ...all consider only the Closest policy

I Replica Placement in a general graph is NP-complete

I Wolfson and Milo: impact of the write cost, use of a minimum
spanning tree for updates. Tree networks: polynomial solution

I Cidon et al (multiple objects) and Liu et al (QoS constraints):
polynomial algorithms for homogeneous networks.

I Kalpakis et al: NP-completeness of a variant with
bidirectional links (requests served by any node in the tree)

I Karlsson et al: comparison of different objective functions and
several heuristics. No QoS, but several other constraints.

I Tang et al: real QoS constraints

I Rodolakis et al: Multiple policy but in a very different context

Conclusion

I Introduction of two new policies for the Replica
Placement problem

I Upwards and Multiple: natural variants of the standard
Closest approach → surprising they have not already been
considered

Theoretical side – Complexity of each policy, for homogeneous and
heterogeneous platforms

Practical side I Design of several heuristics for each policy
I Comparison of their performance
I Striking impact of the policy on the result
I Use of a LP-based lower bound to assess the

absolute performance, which turns out to be
quite good.

Conclusion

I Introduction of two new policies for the Replica
Placement problem

I Upwards and Multiple: natural variants of the standard
Closest approach → surprising they have not already been
considered

Theoretical side – Complexity of each policy, for homogeneous and
heterogeneous platforms

Practical side I Design of several heuristics for each policy
I Comparison of their performance
I Striking impact of the policy on the result
I Use of a LP-based lower bound to assess the

absolute performance, which turns out to be
quite good.

	Intro
	Framework
	Access policies
	Complexity results
	Linear programming formulation
	

	Heuristics for the Replica Cost problem
	Heuristics
	Experiments

	Conclusion

