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Introduction and motivation

I Replica placement in tree networks

I Set of clients (tree leaves): flows of requests with QoS
constraints, known in advance

I Internal nodes may be provided with a replica;
in this case they become servers
and process requests (up to their capacity limit)

How many replicas required?
Which locations?
Total replica cost?
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Rule of the game

I Handle all client requests, and minimize cost of replicas

I → Replica Placement problem

I Several policies to assign replicas
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Definitions and notations

I Distribution tree T , clients C (leaf nodes), internal nodes N

I Client i ∈ C:
I Sends ri requests per time unit (number of accesses to a single

object database)
I Quality of service qi (response time)

I Node j ∈ N :
I Can contain the object database replica (server) or not
I Processing capacity Wj

I Storage cost scj

I Tree edge: l ∈ L (communication link between nodes)
I Communication time comml

I Bandwidth limit BWl
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Tree notations

I r : tree root

I children(j): set of children of node j ∈ N
I parent(k): parent in the tree of node k ∈ N ∪ C
I link l : k → parent(k) = k ′. Then succ(l) is the link

k ′ → parent(k ′) (when it exists)

I Ancestors(k): set of ancestors of node k

I If k ′ ∈ Ancestors(k), then path[k → k ′]: set of links in the
path from k to k ′

I subtree(k): subtree rooted in k, including k .



Problem instances

I Goal: place replicas to process client requests

I Client i ∈ C: Servers(i) ⊆ N set of servers responsible for
processing its requests

I ri ,s : number of requests from client i processed by server s
(
∑

s∈Servers(i) ri ,s = ri )

I R = {s ∈ N| ∃i ∈ C , s ∈ Servers(i)}: set of replicas



Constraints

I Server capacity

∀s ∈ R,
∑

i∈C|s∈Servers(i)

ri ,s ≤Ws

I Link capacity

∀l ∈ L
∑

i∈C,s∈Servers(i)|l∈path[i→s]

ri ,s ≤ BWl

I QoS

∀i ∈ C,∀s ∈ Servers(i),
∑

l∈path[i→s]

comml ≤ qi .
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Objective function

I Min
∑

s∈R scs

I Restrict to case where scs = Ws

I Replica Cost problem: no QoS nor bandwidth constraints;
heterogeneous servers

I Replica Counting problem: idem, but homogeneous
platforms
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Single server vs. Multiple servers

Single server – Each client i is assigned a single server server(i),
that is responsible for processing all its requests.

Multiple servers – A client i may be assigned several servers in a
set Servers(i). Each server s ∈ Servers(i) will handle
a fraction ri ,s of the requests.

In the literature: single server policy with additional constraint.



Closest policy

I Closest: single server policy

I Server of client i is constrained to be first server found on the
path that goes from i upwards to the tree root

I Consider a client i and its server server(i):
∀i ′ ∈ subtree(server(i)), server(i ′) ∈ subtree(server(i))

I Requests from i ′ cannot “traverse” server(i) and be served
higher

i i'

server(i)



Upwards and Multiple policy

I New policies not studied in the literature

I Upwards: Closest constraint is relaxed

I Multiple: relax single server restriction

I Expect more solutions with new policies, at a lower cost

I QoS constraints may lower difference between policies



Example: existence of a solution
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Upwards versus Closest

s1
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W = n

1

I Upwards: 3 replicas in s2n, s2n+1 and s2n+2

I Closest: at least n + 2 replicas (replica in s2n+1 or not)
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Multiple versus Upwards
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I Multiple: n + 1 replicas / Upwards: 2n replicas

I Multiple twice better than Upwards.

I Performance ratio: open problem.
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Multiple versus Upwards

I Replica Cost

n + 1
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Lower bound for the Replica Counting problem

Obvious lower bound:
⌈P
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W

⌉
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All policies require n + 1 replica (one at each node).
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Complexity results - Basic problem

Replica Counting Replica Cost
Homogeneous Heterogeneous

Closest polynomial [Cidon02,Liu06]

NP-complete

Upwards

NP-complete NP-complete

Multiple

polynomial algorithm NP-complete

Table: Complexity results for the different instances of the problem

I Closest/Homogeneous: only known result (Cidon et al. 2002,
Liu et al. 2006)

I Multiple/Homogeneous: nice algorithm to prove polynomial
complexity

I Upwards/Homogeneous: surprisingly, NP-complete

I All instances for the Heterogeneous case are NP-complete
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Multiple/Homogeneous: greedy algorithm

3-pass algorithm:

I Select nodes which can handle W requests

I Select some extra servers to fulfill remaining requests

I Decide which requests are processed where

Example to illustrate algorithm (informally)

Proof of optimality: any optimal solution can be transformed into
a solution similar to the one of the algorithm (moving requests
from one server to another)
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Multiple/Homogeneous: example
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Multiple/Homogeneous: example
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Multiple/Homogeneous: example
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Upwards/Homogeneous

I The Replica Counting problem with the Upwards strategy
is NP-complete in the strong sense

I Reduction from 3-PARTITION

c1 c2 c3

n1

n2

nm

W = B

c3m

∑3m
i=1 ci = mB
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Heterogeneous network: Replica Cost problem

I All three instances of the Replica Cost problem with
heterogeneous nodes are NP-complete

I Reduction from 2-PARTITION

n1

c1 c2

nm

cm cm+1

n2

r

∑m
i=1 ci = S , cm+1 = 1, Wj = cj , Wr = S/2 + 1

Solution with total storage cost S + 1 ?
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Linear programming

I General instance of the problem
I Heterogeneous tree
I QoS and bandwidth constraints
I Closest, Upwards and Multiple policies

I Integer linear program: no efficient algorithm

I Absolute lower bound if program solved over the rationals
(using the GLPK software)

I Closest/Upwards LP formulation



Linear program: variables

I xj : boolean variable equal to 1 if j is a server (for one or
several clients)

I yi ,j : boolean variable equal to 1 if j = server(i)
I If j /∈ Ancests(i), yi,j = 0

I zi ,l : boolean variable equal to 1 if link l ∈ path[i → r ] used
when i accesses server(i)

I If l /∈ path[i → r ], zi,l = 0

Objective function:
∑

j∈N scjxj
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Linear program: constraints

I Servers: ∀i ∈ C,
∑

j∈Ancestors(i) yi ,j = 1

I Links: ∀i ∈ C, zi ,i→parent(i) = 1

I Conservation: ∀i ∈ C,∀l : j → j ′ = parent(j) ∈ path[i → r ],
zi ,succ(l) = zi ,l − yi ,j ′

I Server capacity: ∀j ∈ N ,
∑

i∈C riyi ,j ≤Wjxj

I Bandwidth limit: ∀l ∈ L,
∑

i∈C rizi ,l ≤ BWl

I QoS constraint: ∀i ∈ C,∀j ∈ Ancestors(i), dist(i , j)yi ,j ≤ qi

I Closest constraint: ∀i ∈ C,∀j ∈ Ancestors(i) \ {r},
∀i ′ ∈ C ∩ subtree(j), yi ,j + zi ′,j→parent(j) ≤ 1
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I Bandwidth limit: ∀l ∈ L,
∑

i∈C rizi ,l ≤ BWl

I QoS constraint: ∀i ∈ C,∀j ∈ Ancestors(i), dist(i , j)yi ,j ≤ qi

I Closest constraint: ∀i ∈ C, ∀j ∈ Ancestors(i) \ {r},
∀i ′ ∈ C ∩ subtree(j), yi ,j + zi ′,j→parent(j) ≤ 1



Multiple formulation

Multiple
I Similar formulation, with

I yi,j : integer variable = nb requests from client i processed by
node j

I zi,l : integer variable = nb requests flowing through link l

I Constraints are slightly modified



An ILP-based lower bound

I Solving over the rationals: solution for all practical values of
the problem size

I Not very precise bound
I Upwards/Closest equivalent to Multiple when solved over the

rationals

I Integer solving: limitation to s ≤ 50 nodes and clients
I Mixed bound obtained by solving the Multiple formulation

over the rational and imposing only the xj being integers
I Resolution for problem sizes s ≤ 400
I Improved bound: if a server is used only at 50% of its capacity,

the cost of placing a replica at this node is not halved as it
would be with xj = 0.5.
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Heuristics

I Polynomial heuristics for the Replica Cost problem
I Heterogeneous platforms
I No QoS nor bandwidth constraints

I Experimental assessment of the relative performance of the
three policies

I Traversals of the tree, bottom-up or top-down

I Worst case complexity O(s2),
where s = |C|+ |N | is problem size
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Heuristics for Closest

Closest Top Down All CTDA

I Breadth-first traversal of the
tree

I When a node can process
the requests of all the clients
in its subtree, node chosen
as a server and exploration
of the subtree stopped

I Procedure called until no
more servers are added

I Choosing n2, n4 and then n1

n1
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Heuristics for Closest

Closest Top Down Largest First CTDLF

I Traversal of the tree,
treating subtrees that
contains most requests first

I When a node can process
the requests of all the clients
in its subtree, node chosen
as a server and traversal
stopped

I Procedure called until no
more servers are added

I Choosing n2 and then n1

n1

n2

1 1 2

1 1

1n

3

n3

n4
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Heuristics for Closest

Closest Bottom Up CBU

I Bottom-up traversal of the
tree

I When a node can process
the requests of all the clients
in its subtree, node chosen
as a server

I Choosing n3, n5, n1

n1

n2

1 1 2

1 1

1n

3

n3

n4

n5

n6n



Heuristics for Upwards

Upwards Top Down UTD

I 2-pass algorithm

I Select first saturating nodes,
then extra nodes

I Choosing n2 (for c1) and in
second pass n1 (for c2, c3)

3 2 1

n2

n1 7

4
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Heuristics for Upwards

Upwards Big Client First UBCF

I Sorting clients by decreasing
request numbers, and
finding the server of minimal
available capacity to process
its requests.

I Choosing n2 for c1, n1 for c2

and n1 for c3

3 2 1

n2

n1 7

4



Heuristics for Multiple

A greedy heuristic MG, similar to
Pass 3 of the polynomial
algorithm for
Multiple/Homogeneous: fill all
servers as much as possible in a
bottom-up fashion

3 2 1

n2

n1 7

4

I MG affects 4 requests to n2, and then the remaining 2
requests to n1

I CTDLF better on this example: selects n1 only
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Heuristics for Multiple

I A top-down and a bottom-up heuristic in 2-passes
(MTD, MBU)

I Heuristic MixedBest MB which picks up best result over all
heuristics: solution for the Multiple policy



Plan of experiments

I Assess impact of the different access policies

I Assess performance of the polynomial heuristics

I Important parameter:

λ =

∑
i∈C ri∑

j∈N Wi

I 30 trees for each λ = 0.1, 0.2, ..., 0.9

I Problem size s = |C|+ |N | such that 15 ≤ s ≤ 400

I Computation of the LP lower bound for each tree
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Results - Percentage of success

I Number of solutions for each lambda and each heuristic
I No LP solution → No solution for any heuristic
I Homogeneous case
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Results - Solution cost

I Distance of the result (in terms of replica cost) of the
heuristic to the lower bound

I Tλ: subset of trees with a solution

I Relative cost:

rcost =
1

|Tλ|
∑
t∈Tλ

costLP(t)

costh(t)

I costLP(t): lower bound cost on tree t

I costh(t): heuristic cost on tree t; costh(t) = +∞ if h did not
find any solution
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Results - Solution cost

I Homogeneous results
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Results - Solution cost

I Heterogeneous results - similar to the homogeneous case

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

re
la

tiv
e 

co
st

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst
MultipleGreedy

MultipleTopDown
MultipleBottomUp

MixedBest



Results - Hierarchy
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Summary

I Striking effect of new policies: many more solutions to the
Replica Placement problem

I Multiple ≥ Upwards ≥ Closest: hierarchy observed within our
heuristics

I Best Multiple heuristic (MB) always at 85% of the lower
bound: satisfactory result
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Related work

I Several papers on replica placement, but...

I ...all consider only the Closest policy

I Replica Placement in a general graph is NP-complete

I Wolfson and Milo: impact of the write cost, use of a minimum
spanning tree for updates. Tree networks: polynomial solution

I Cidon et al (multiple objects) and Liu et al (QoS constraints):
polynomial algorithms for homogeneous networks.

I Kalpakis et al: NP-completeness of a variant with
bidirectional links (requests served by any node in the tree)

I Karlsson et al: comparison of different objective functions and
several heuristics. No QoS, but several other constraints.

I Tang et al: real QoS constraints

I Rodolakis et al: Multiple policy but in a very different context
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Conclusion

I Introduction of two new policies for the Replica
Placement problem

I Upwards and Multiple: natural variants of the standard
Closest approach → surprising they have not already been
considered

Theoretical side – Complexity of each policy, for homogeneous and
heterogeneous platforms

Practical side I Design of several heuristics for each policy
I Comparison of their performance
I Striking impact of the policy on the result
I Use of a LP-based lower bound to assess the

absolute performance, which turns out to be
quite good.
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