
Steady-State Scheduling

Frédéric Vivien

e-mail: Frederic.Vivien@ens-lyon.fr

2 octobre 2006

Overview

1 The context

2 Routing packets with fixed communication routes

3 Resolution of the “fluidified” problem

4 Building a schedule

5 Routing packets with freedom on the communication paths

Overview

1 The context

2 Routing packets with fixed communication routes

3 Resolution of the “fluidified” problem

4 Building a schedule

5 Routing packets with freedom on the communication paths

Platform

Platform : heterogeneous and distributed :

I processors with different capabilities ;

I communication links of different characteristics.

Applications

Application made of a very (very) large number of tasks, the tasks
can be clustered into a finite number of types, all tasks of a same
type having the same characteristics.

Principle

When we have a very large number of identical tasks to execute, we
can imagine that, after some initiation phase, we will reach a (long)
steady-state, before a termination phase.

If the steady-state is long enough, the initiation and termination
phases will be negligible.

Overview

1 The context

2 Routing packets with fixed communication routes

3 Resolution of the “fluidified” problem

4 Building a schedule

5 Routing packets with freedom on the communication paths

The problem

Problem : sending a set of message flows.

In a communication network, several flow of packets must be dispat-
ched, each packet flow must be sent from a route to a destination,
while following a given path linking the source to the destination.

Notations

I (V,A) an oriented graph, representing the communication net-
work.

I A set of nc flows which must be dispatched.

I The k-th flow is denoted (sk, tk, Pk, nk), where

I sk is the source of packets ;
I tk is the destination ;
I Pk is the path to be followed ;
I nk is the number of packets in the flow.

We denote by ak,i the i-th edge in the path Pk.

Notations

I (V,A) an oriented graph, representing the communication net-
work.

I A set of nc flows which must be dispatched.

I The k-th flow is denoted (sk, tk, Pk, nk), where

I sk is the source of packets ;
I tk is the destination ;
I Pk is the path to be followed ;
I nk is the number of packets in the flow.

We denote by ak,i the i-th edge in the path Pk.

Notations

I (V,A) an oriented graph, representing the communication net-
work.

I A set of nc flows which must be dispatched.

I The k-th flow is denoted (sk, tk, Pk, nk), where

I sk is the source of packets ;
I tk is the destination ;
I Pk is the path to be followed ;
I nk is the number of packets in the flow.

We denote by ak,i the i-th edge in the path Pk.

Notations

I (V,A) an oriented graph, representing the communication net-
work.

I A set of nc flows which must be dispatched.

I The k-th flow is denoted (sk, tk, Pk, nk), where
I sk is the source of packets ;

I tk is the destination ;
I Pk is the path to be followed ;
I nk is the number of packets in the flow.

We denote by ak,i the i-th edge in the path Pk.

Notations

I (V,A) an oriented graph, representing the communication net-
work.

I A set of nc flows which must be dispatched.

I The k-th flow is denoted (sk, tk, Pk, nk), where
I sk is the source of packets ;
I tk is the destination ;

I Pk is the path to be followed ;
I nk is the number of packets in the flow.

We denote by ak,i the i-th edge in the path Pk.

Notations

I (V,A) an oriented graph, representing the communication net-
work.

I A set of nc flows which must be dispatched.

I The k-th flow is denoted (sk, tk, Pk, nk), where
I sk is the source of packets ;
I tk is the destination ;
I Pk is the path to be followed ;

I nk is the number of packets in the flow.
We denote by ak,i the i-th edge in the path Pk.

Notations

I (V,A) an oriented graph, representing the communication net-
work.

I A set of nc flows which must be dispatched.

I The k-th flow is denoted (sk, tk, Pk, nk), where
I sk is the source of packets ;
I tk is the destination ;
I Pk is the path to be followed ;
I nk is the number of packets in the flow.

We denote by ak,i the i-th edge in the path Pk.

Notations

I (V,A) an oriented graph, representing the communication net-
work.

I A set of nc flows which must be dispatched.

I The k-th flow is denoted (sk, tk, Pk, nk), where
I sk is the source of packets ;
I tk is the destination ;
I Pk is the path to be followed ;
I nk is the number of packets in the flow.

We denote by ak,i the i-th edge in the path Pk.

Hypotheses

I A packet goes through an edge A in a unit of time.

I At a given time, a single packet traverses a given edge.

Hypotheses

I A packet goes through an edge A in a unit of time.

I At a given time, a single packet traverses a given edge.

Objective

We must decide which packet must go through a given edge at a
given time, in order to minimize the overall execution time.

Lower bound on the duration of schedules

We call congestion of edge a ∈ A, and we denote by Ca, the total
number of packets which go through edge a :

Ca =
∑

k | a∈Pk

nk Cmax = max
a

Ca

Cmax is a lower bound on the execution time of any schedule.
C∗ ≥ Cmax

A “fluid” (fractional) resolution of our problem will give us a solution
which executes in a time Cmax.

Lower bound on the duration of schedules

We call congestion of edge a ∈ A, and we denote by Ca, the total
number of packets which go through edge a :

Ca =
∑

k | a∈Pk

nk Cmax = max
a

Ca

Cmax is a lower bound on the execution time of any schedule.
C∗ ≥ Cmax

A “fluid” (fractional) resolution of our problem will give us a solution
which executes in a time Cmax.

Lower bound on the duration of schedules

We call congestion of edge a ∈ A, and we denote by Ca, the total
number of packets which go through edge a :

Ca =
∑

k | a∈Pk

nk Cmax = max
a

Ca

Cmax is a lower bound on the execution time of any schedule.
C∗ ≥ Cmax

A “fluid” (fractional) resolution of our problem will give us a solution
which executes in a time Cmax.

Overview

1 The context

2 Routing packets with fixed communication routes

3 Resolution of the “fluidified” problem

4 Building a schedule

5 Routing packets with freedom on the communication paths

Fluidified (fractional) version : notations

Principle :

I we do not look for an integral solution but for a rational one.

I nk,i(t) (fractional) number of packets waiting at the entrance
of the i-th edge of the k-th path, at time t.

I Tk,i(t) is the overall time used by the edge ak,i for packets of
the k-th flow, during the interval of time [0; t].

Fluidified (fractional) version : notations

Principle :

I we do not look for an integral solution but for a rational one.

I nk,i(t) (fractional) number of packets waiting at the entrance
of the i-th edge of the k-th path, at time t.

I Tk,i(t) is the overall time used by the edge ak,i for packets of
the k-th flow, during the interval of time [0; t].

Fluidified (fractional) version : notations

Principle :

I we do not look for an integral solution but for a rational one.

I nk,i(t) (fractional) number of packets waiting at the entrance
of the i-th edge of the k-th path, at time t.

I Tk,i(t) is the overall time used by the edge ak,i for packets of
the k-th flow, during the interval of time [0; t].

Fluidified (fractional) version : writing the equations

1 Initiating the communications

nk,1(t) = nk − Tk,1(t), for each k

2 Conservation law

nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

3 Resource constraints∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A,∀t2 ≥ t1 ≥ 0

4 Objective

Minimize Cfrac =
∫ ∞

0
1

∑
k,i

nk,i(t)

 dt

Fluidified (fractional) version : writing the equations

1 Initiating the communications

nk,1(t) = nk − Tk,1(t), for each k

2 Conservation law

nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

3 Resource constraints∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A,∀t2 ≥ t1 ≥ 0

4 Objective

Minimize Cfrac =
∫ ∞

0
1

∑
k,i

nk,i(t)

 dt

Fluidified (fractional) version : writing the equations

1 Initiating the communications

nk,1(t) = nk − Tk,1(t), for each k

2 Conservation law

nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

3 Resource constraints∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A,∀t2 ≥ t1 ≥ 0

4 Objective

Minimize Cfrac =
∫ ∞

0
1

∑
k,i

nk,i(t)

 dt

Fluidified (fractional) version : writing the equations

1 Initiating the communications

nk,1(t) = nk − Tk,1(t), for each k

2 Conservation law

nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

3 Resource constraints∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A,∀t2 ≥ t1 ≥ 0

4 Objective

Minimize Cfrac =
∫ ∞

0
1

∑
k,i

nk,i(t)

 dt

Lower bound

I nk,1(t) = nk − Tk,1(t), for each k

I nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

I At any time t,
i∑

j=1

nk,j(t) = nk − Tk,i(t)

I For each edge a :∑
(k,i)|ak,i=a

i∑
j=1

nk,j(t) =
∑

(k,i)|ak,i=a

nk −
∑

(k,i)|ak,i=a

Tk,i(t) ≥ Ca − t

As long as t < Ca, there are packets in the system.

Therefore, Cfrac ≥ maxa Ca = Cmax

Lower bound

I nk,1(t) = nk − Tk,1(t), for each k

I nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

I At any time t,
i∑

j=1

nk,j(t) = nk − Tk,i(t)

I For each edge a :∑
(k,i)|ak,i=a

i∑
j=1

nk,j(t) =
∑

(k,i)|ak,i=a

nk −
∑

(k,i)|ak,i=a

Tk,i(t) ≥ Ca − t

As long as t < Ca, there are packets in the system.

Therefore, Cfrac ≥ maxa Ca = Cmax

Lower bound

I nk,1(t) = nk − Tk,1(t), for each k

I nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

I At any time t,
i∑

j=1

nk,j(t) = nk − Tk,i(t)

I For each edge a :∑
(k,i)|ak,i=a

i∑
j=1

nk,j(t) =
∑

(k,i)|ak,i=a

nk −
∑

(k,i)|ak,i=a

Tk,i(t)

≥ Ca − t

As long as t < Ca, there are packets in the system.

Therefore, Cfrac ≥ maxa Ca = Cmax

Lower bound

I nk,1(t) = nk − Tk,1(t), for each k

I nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

I At any time t,
i∑

j=1

nk,j(t) = nk − Tk,i(t)

I For each edge a :∑
(k,i)|ak,i=a

i∑
j=1

nk,j(t) =
∑

(k,i)|ak,i=a

nk −
∑

(k,i)|ak,i=a

Tk,i(t) ≥ Ca − t

As long as t < Ca, there are packets in the system.

Therefore, Cfrac ≥ maxa Ca = Cmax

Lower bound

I nk,1(t) = nk − Tk,1(t), for each k

I nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

I At any time t,
i∑

j=1

nk,j(t) = nk − Tk,i(t)

I For each edge a :∑
(k,i)|ak,i=a

i∑
j=1

nk,j(t) =
∑

(k,i)|ak,i=a

nk −
∑

(k,i)|ak,i=a

Tk,i(t) ≥ Ca − t

As long as t < Ca, there are packets in the system.

Therefore, Cfrac ≥ maxa Ca = Cmax

Lower bound

I nk,1(t) = nk − Tk,1(t), for each k

I nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

I At any time t,
i∑

j=1

nk,j(t) = nk − Tk,i(t)

I For each edge a :∑
(k,i)|ak,i=a

i∑
j=1

nk,j(t) =
∑

(k,i)|ak,i=a

nk −
∑

(k,i)|ak,i=a

Tk,i(t) ≥ Ca − t

As long as t < Ca, there are packets in the system.

Therefore, Cfrac ≥ maxa Ca = Cmax

A candidate for the solution

For t ≤ Cmax

I Tk,i(t) =
nk

Cmax
t, for each k and i.

I nk,1(t) = nk − Tk,1(t) = nk −
nk

Cmax
t = nk

(
1− t

Cmax

)
, ∀k

I nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

I Tk,i(t) = nk

I nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to show
that it is feasible.

A candidate for the solution

For t ≤ Cmax

I Tk,i(t) =
nk

Cmax
t, for each k and i.

I nk,1(t) = nk − Tk,1(t) = nk −
nk

Cmax
t = nk

(
1− t

Cmax

)
, ∀k

I nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

I Tk,i(t) = nk

I nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to show
that it is feasible.

A candidate for the solution

For t ≤ Cmax

I Tk,i(t) =
nk

Cmax
t, for each k and i.

I nk,1(t) = nk − Tk,1(t) = nk −
nk

Cmax
t = nk

(
1− t

Cmax

)
, ∀k

I nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

I Tk,i(t) = nk

I nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to show
that it is feasible.

A candidate for the solution

For t ≤ Cmax

I Tk,i(t) =
nk

Cmax
t, for each k and i.

I nk,1(t) = nk − Tk,1(t) = nk −
nk

Cmax
t = nk

(
1− t

Cmax

)
, ∀k

I nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

I Tk,i(t) = nk

I nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to show
that it is feasible.

A candidate for the solution

For t ≤ Cmax

I Tk,i(t) =
nk

Cmax
t, for each k and i.

I nk,1(t) = nk − Tk,1(t) = nk −
nk

Cmax
t = nk

(
1− t

Cmax

)
, ∀k

I nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

I Tk,i(t) = nk

I nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to show
that it is feasible.

A candidate for the solution

For t ≤ Cmax

I Tk,i(t) =
nk

Cmax
t, for each k and i.

I nk,1(t) = nk − Tk,1(t) = nk −
nk

Cmax
t = nk

(
1− t

Cmax

)
, ∀k

I nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

I Tk,i(t) = nk

I nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to show
that it is feasible.

A candidate for the solution

For t ≤ Cmax

I Tk,i(t) =
nk

Cmax
t, for each k and i.

I nk,1(t) = nk − Tk,1(t) = nk −
nk

Cmax
t = nk

(
1− t

Cmax

)
, ∀k

I nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

I Tk,i(t) = nk

I nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to show
that it is feasible.

A candidate for the solution

For t ≤ Cmax

I Tk,i(t) =
nk

Cmax
t, for each k and i.

I nk,1(t) = nk − Tk,1(t) = nk −
nk

Cmax
t = nk

(
1− t

Cmax

)
, ∀k

I nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

I Tk,i(t) = nk

I nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to show
that it is feasible.

Checking the solution (for t ≤ Cmax)

1 nk,1(t) = nk − Tk,1(t), for each k
Satisfied by definition.

2 nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k
Tk,i(t)− Tk,i+1(t) = nk

Cmax
t− nk

Cmax
t = 0 = nk,i+1(t)

3

∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A,∀t2 ≥ t1 ≥ 0∑
(k,i) | ak,i=a

Tk,i(t2) − Tk,i(t1) =
∑

(k,i) | ak,i=a

nk

Cmax
(t2 − t1) =

Ca

Cmax
(t2 − t1) ≤ t2 − t1

Checking the solution (for t ≤ Cmax)

1 nk,1(t) = nk − Tk,1(t), for each k
Satisfied by definition.

2 nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k
Tk,i(t)− Tk,i+1(t) = nk

Cmax
t− nk

Cmax
t = 0 = nk,i+1(t)

3

∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A,∀t2 ≥ t1 ≥ 0∑
(k,i) | ak,i=a

Tk,i(t2) − Tk,i(t1) =
∑

(k,i) | ak,i=a

nk

Cmax
(t2 − t1) =

Ca

Cmax
(t2 − t1) ≤ t2 − t1

Checking the solution (for t ≤ Cmax)

1 nk,1(t) = nk − Tk,1(t), for each k
Satisfied by definition.

2 nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k
Tk,i(t)− Tk,i+1(t) = nk

Cmax
t− nk

Cmax
t = 0 = nk,i+1(t)

3

∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A,∀t2 ≥ t1 ≥ 0∑
(k,i) | ak,i=a

Tk,i(t2) − Tk,i(t1) =
∑

(k,i) | ak,i=a

nk

Cmax
(t2 − t1) =

Ca

Cmax
(t2 − t1) ≤ t2 − t1

Overview

1 The context

2 Routing packets with fixed communication routes

3 Resolution of the “fluidified” problem

4 Building a schedule

5 Routing packets with freedom on the communication paths

Definition of a round

I Ω ≈ duration of a round (will be defined later).

I mk : number of packets of k-th flow distributed in a single
round.

mk =
⌈

nkΩ
Cmax

⌉
.

I Da =
∑

(k,i)|ak,i=a 1 = |{k|a ∈ Pk}|

Dmax = max
a

Da ≤ nc

I Period of the schedule : Ω + Dmax.

Definition of a round

I Ω ≈ duration of a round (will be defined later).

I mk : number of packets of k-th flow distributed in a single
round.

mk =
⌈

nkΩ
Cmax

⌉
.

I Da =
∑

(k,i)|ak,i=a 1 = |{k|a ∈ Pk}|

Dmax = max
a

Da ≤ nc

I Period of the schedule : Ω + Dmax.

Definition of a round

I Ω ≈ duration of a round (will be defined later).

I mk : number of packets of k-th flow distributed in a single
round.

mk =
⌈

nkΩ
Cmax

⌉
.

I Da =
∑

(k,i)|ak,i=a 1 = |{k|a ∈ Pk}|

Dmax = max
a

Da ≤ nc

I Period of the schedule : Ω + Dmax.

Definition of a round

I Ω ≈ duration of a round (will be defined later).

I mk : number of packets of k-th flow distributed in a single
round.

mk =
⌈

nkΩ
Cmax

⌉
.

I Da =
∑

(k,i)|ak,i=a 1 = |{k|a ∈ Pk}|

Dmax = max
a

Da ≤ nc

I Period of the schedule : Ω + Dmax.

Schedule

During the time interval [j(Ω + Dmax); (j + 1)(Ω + Dmax)] :

The link a forwards mk packets of the k-th flow if there exists
i such that ak,i = a.

The link a remains idle for a duration of :

Ω + Dmax −
∑

(k,i)|ak,i=a

mk

(If less than mk packets are waiting in the entrance of a at
time j(Ω + Dmax), a forwards what is available and remains
idle longer.)

Schedule

During the time interval [j(Ω + Dmax); (j + 1)(Ω + Dmax)] :

The link a forwards mk packets of the k-th flow if there exists
i such that ak,i = a.

The link a remains idle for a duration of :

Ω + Dmax −
∑

(k,i)|ak,i=a

mk

(If less than mk packets are waiting in the entrance of a at
time j(Ω + Dmax), a forwards what is available and remains
idle longer.)

Schedule

During the time interval [j(Ω + Dmax); (j + 1)(Ω + Dmax)] :

The link a forwards mk packets of the k-th flow if there exists
i such that ak,i = a.

The link a remains idle for a duration of :

Ω + Dmax −
∑

(k,i)|ak,i=a

mk

(If less than mk packets are waiting in the entrance of a at
time j(Ω + Dmax), a forwards what is available and remains
idle longer.)

Schedule

During the time interval [j(Ω + Dmax); (j + 1)(Ω + Dmax)] :

The link a forwards mk packets of the k-th flow if there exists
i such that ak,i = a.

The link a remains idle for a duration of :

Ω + Dmax −
∑

(k,i)|ak,i=a

mk

(If less than mk packets are waiting in the entrance of a at
time j(Ω + Dmax), a forwards what is available and remains
idle longer.)

Feasibility of the schedule

∑
(k,i)|ak,i=a

mk

=
∑

(k,i)|ak,i=a

⌈
nkΩ
Cmax

⌉

≤
∑

(k,i)|ak,i=a

(
nkΩ
Cmax

+ 1
)

≤ Ca

Cmax
Ω + Da

≤ Ω + Dmax

Feasibility of the schedule

∑
(k,i)|ak,i=a

mk =
∑

(k,i)|ak,i=a

⌈
nkΩ
Cmax

⌉

≤
∑

(k,i)|ak,i=a

(
nkΩ
Cmax

+ 1
)

≤ Ca

Cmax
Ω + Da

≤ Ω + Dmax

Feasibility of the schedule

∑
(k,i)|ak,i=a

mk =
∑

(k,i)|ak,i=a

⌈
nkΩ
Cmax

⌉

≤
∑

(k,i)|ak,i=a

(
nkΩ
Cmax

+ 1
)

≤ Ca

Cmax
Ω + Da

≤ Ω + Dmax

Feasibility of the schedule

∑
(k,i)|ak,i=a

mk =
∑

(k,i)|ak,i=a

⌈
nkΩ
Cmax

⌉

≤
∑

(k,i)|ak,i=a

(
nkΩ
Cmax

+ 1
)

≤ Ca

Cmax
Ω + Da

≤ Ω + Dmax

Feasibility of the schedule

∑
(k,i)|ak,i=a

mk =
∑

(k,i)|ak,i=a

⌈
nkΩ
Cmax

⌉

≤
∑

(k,i)|ak,i=a

(
nkΩ
Cmax

+ 1
)

≤ Ca

Cmax
Ω + Da

≤ Ω + Dmax

Behavior of the sources

I Nk,i(t) : number of packets of the k-th flow waiting at the
entrance of the i-th edge, at time t.

I ak,1 sends mk packets during [0,Ω + Dmax].
Nk,1(Ω + Dmax) = nk −mk

I ak,1 sends mk packets during [Ω + Dmax, 2(Ω + Dmax)].
Nk,1(2(Ω + Dmax)) = nk − 2mk

I We let T =
⌈

Cmax

Ω

⌉
(Ω + Dmax)

Nk,1(T) ≤ nk −
T

Ω + Dmax
mk ≤ nk −

nkΩ
Cmax

Cmax

Ω
= 0

Behavior of the sources

I Nk,i(t) : number of packets of the k-th flow waiting at the
entrance of the i-th edge, at time t.

I ak,1 sends mk packets during [0,Ω + Dmax].
Nk,1(Ω + Dmax) = nk −mk

I ak,1 sends mk packets during [Ω + Dmax, 2(Ω + Dmax)].
Nk,1(2(Ω + Dmax)) = nk − 2mk

I We let T =
⌈

Cmax

Ω

⌉
(Ω + Dmax)

Nk,1(T) ≤ nk −
T

Ω + Dmax
mk ≤ nk −

nkΩ
Cmax

Cmax

Ω
= 0

Behavior of the sources

I Nk,i(t) : number of packets of the k-th flow waiting at the
entrance of the i-th edge, at time t.

I ak,1 sends mk packets during [0,Ω + Dmax].
Nk,1(Ω + Dmax) = nk −mk

I ak,1 sends mk packets during [Ω + Dmax, 2(Ω + Dmax)].
Nk,1(2(Ω + Dmax)) = nk − 2mk

I We let T =
⌈

Cmax

Ω

⌉
(Ω + Dmax)

Nk,1(T) ≤ nk −
T

Ω + Dmax
mk ≤ nk −

nkΩ
Cmax

Cmax

Ω
= 0

Behavior of the sources

I Nk,i(t) : number of packets of the k-th flow waiting at the
entrance of the i-th edge, at time t.

I ak,1 sends mk packets during [0,Ω + Dmax].
Nk,1(Ω + Dmax) = nk −mk

I ak,1 sends mk packets during [Ω + Dmax, 2(Ω + Dmax)].
Nk,1(2(Ω + Dmax)) = nk − 2mk

I We let T =
⌈

Cmax

Ω

⌉
(Ω + Dmax)

Nk,1(T) ≤ nk −
T

Ω + Dmax
mk ≤ nk −

nkΩ
Cmax

Cmax

Ω
= 0

Propagation delay

I ak,1 sends mk packets during [0,Ω + Dmax].
Nk,1(Ω + Dmax) = nk −mk Nk,2(Ω + Dmax) = mk

Nk,i≥3(Ω + Dmax) = 0

I ak,1 sends mk packets during [Ω + Dmax, 2(Ω + Dmax)].
Nk,1(2(Ω + Dmax)) = nk − 2mk Nk,2(2(Ω + Dmax)) = mk

Nk,3(2(Ω + Dmax)) = mk Nk,i≥4(2(Ω + Dmax)) = 0

I The delay between the time a packet traverses the first edge of
the path Pk and the time it traverses its last edge is, at worst :

(|Pk| − 1)(Ω + Dmax)
We let L = maxk |Pk|.

Makespan of the schedule

Ctotal ≤ T + (L− 1)(Ω + Dmax)

=
⌈

Cmax

Ω

⌉
(Ω + Dmax) + (L− 1)(Ω + Dmax)

≤
(

Cmax

Ω
+ 1
)

(Ω + Dmax) + (L− 1)(Ω + Dmax)

= Cmax + LDmax +
DmaxCmax

Ω
+ LΩ

The lower bound is minimized by Ω =

√
DmaxCmax

L

Ctotal ≤ Cmax + 2
√

CmaxDmaxL + DmaxL

Makespan of the schedule

Ctotal ≤ T + (L− 1)(Ω + Dmax)

=
⌈

Cmax

Ω

⌉
(Ω + Dmax) + (L− 1)(Ω + Dmax)

≤
(

Cmax

Ω
+ 1
)

(Ω + Dmax) + (L− 1)(Ω + Dmax)

= Cmax + LDmax +
DmaxCmax

Ω
+ LΩ

The lower bound is minimized by Ω =

√
DmaxCmax

L

Ctotal ≤ Cmax + 2
√

CmaxDmaxL + DmaxL

Makespan of the schedule

Ctotal ≤ T + (L− 1)(Ω + Dmax)

=
⌈

Cmax

Ω

⌉
(Ω + Dmax) + (L− 1)(Ω + Dmax)

≤
(

Cmax

Ω
+ 1
)

(Ω + Dmax) + (L− 1)(Ω + Dmax)

= Cmax + LDmax +
DmaxCmax

Ω
+ LΩ

The lower bound is minimized by Ω =

√
DmaxCmax

L

Ctotal ≤ Cmax + 2
√

CmaxDmaxL + DmaxL

Makespan of the schedule

Ctotal ≤ T + (L− 1)(Ω + Dmax)

=
⌈

Cmax

Ω

⌉
(Ω + Dmax) + (L− 1)(Ω + Dmax)

≤
(

Cmax

Ω
+ 1
)

(Ω + Dmax) + (L− 1)(Ω + Dmax)

= Cmax + LDmax +
DmaxCmax

Ω
+ LΩ

The lower bound is minimized by Ω =

√
DmaxCmax

L

Ctotal ≤ Cmax + 2
√

CmaxDmaxL + DmaxL

Makespan of the schedule

Ctotal ≤ T + (L− 1)(Ω + Dmax)

=
⌈

Cmax

Ω

⌉
(Ω + Dmax) + (L− 1)(Ω + Dmax)

≤
(

Cmax

Ω
+ 1
)

(Ω + Dmax) + (L− 1)(Ω + Dmax)

= Cmax + LDmax +
DmaxCmax

Ω
+ LΩ

The lower bound is minimized by Ω =

√
DmaxCmax

L

Ctotal ≤ Cmax + 2
√

CmaxDmaxL + DmaxL

Makespan of the schedule

Ctotal ≤ T + (L− 1)(Ω + Dmax)

=
⌈

Cmax

Ω

⌉
(Ω + Dmax) + (L− 1)(Ω + Dmax)

≤
(

Cmax

Ω
+ 1
)

(Ω + Dmax) + (L− 1)(Ω + Dmax)

= Cmax + LDmax +
DmaxCmax

Ω
+ LΩ

The lower bound is minimized by Ω =

√
DmaxCmax

L

Ctotal ≤ Cmax + 2
√

CmaxDmaxL + DmaxL

Asymptotic optimality

Cmax ≤ C∗ ≤ Ctotal ≤ Cmax + 2
√

CmaxDmaxL + DmaxL

1 ≤ Ctotal

Cmax
≤ 1 + 2

√
DmaxL

Cmax
+

DmaxL

Cmax

With Ω =

√
DmaxCmax

L

Resources needed

∑
(k,i)|ak,i=a,k≥2

mk ≤
∑

(k,i)|ak,i=a,k≥2

(
nk

Cmax

√
DmaxCmax

L
+ 1

)

≤
√

DmaxCmax

L
+ Dmax

Conclusion

I We forget the initiation and termination phases

I Rational resolution of the steady-state
I Round whose size is the square-root of the solution :

I Each round “loses” a constant amount of time
I The sum of the waisted times increases less quickly than the

schedule
I Buffers of size the square-root of the solution

Overview

1 The context

2 Routing packets with fixed communication routes

3 Resolution of the “fluidified” problem

4 Building a schedule

5 Routing packets with freedom on the communication paths

Problem

I Same problem than previously, but the communication paths
are not fixed.

I A set of nc collection of packets which must be dispatched.

I Each collection of packets is dispatched through a set of flows
(the packets of a same collection may follow different paths).

I nk,l the total number of packets to be dispatched from k to l.

I nk,l
i,j : the total number of packets to be dispatched from k to

l and which go through the edge (i, j).

Congestion : Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j .

Problem

I Same problem than previously, but the communication paths
are not fixed.

I A set of nc collection of packets which must be dispatched.

I Each collection of packets is dispatched through a set of flows
(the packets of a same collection may follow different paths).

I nk,l the total number of packets to be dispatched from k to l.

I nk,l
i,j : the total number of packets to be dispatched from k to

l and which go through the edge (i, j).

Congestion : Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j .

Problem

I Same problem than previously, but the communication paths
are not fixed.

I A set of nc collection of packets which must be dispatched.

I Each collection of packets is dispatched through a set of flows
(the packets of a same collection may follow different paths).

I nk,l the total number of packets to be dispatched from k to l.

I nk,l
i,j : the total number of packets to be dispatched from k to

l and which go through the edge (i, j).

Congestion : Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j .

Problem

I Same problem than previously, but the communication paths
are not fixed.

I A set of nc collection of packets which must be dispatched.

I Each collection of packets is dispatched through a set of flows
(the packets of a same collection may follow different paths).

I nk,l the total number of packets to be dispatched from k to l.

I nk,l
i,j : the total number of packets to be dispatched from k to

l and which go through the edge (i, j).

Congestion : Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j .

Problem

I Same problem than previously, but the communication paths
are not fixed.

I A set of nc collection of packets which must be dispatched.

I Each collection of packets is dispatched through a set of flows
(the packets of a same collection may follow different paths).

I nk,l the total number of packets to be dispatched from k to l.

I nk,l
i,j : the total number of packets to be dispatched from k to

l and which go through the edge (i, j).

Congestion : Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j .

Problem

I Same problem than previously, but the communication paths
are not fixed.

I A set of nc collection of packets which must be dispatched.

I Each collection of packets is dispatched through a set of flows
(the packets of a same collection may follow different paths).

I nk,l the total number of packets to be dispatched from k to l.

I nk,l
i,j : the total number of packets to be dispatched from k to

l and which go through the edge (i, j).
Congestion : Ci,j =

∑
(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j .

Writing the equations (1)

1 Initiating the communications∑
j|(k,j)∈A

nk,l
k,j = nk,l

2 Receiving the messages sent∑
i|(i,l)∈A

nk,l
i,l = nk,l

3 Conservation law∑
i|(i,j)∈A

nk,l
i,j =

∑
i|(j,i)∈A

nk,l
j,i ∀(k, l), j 6= k, j 6= l

Writing the equations (1)

1 Initiating the communications∑
j|(k,j)∈A

nk,l
k,j = nk,l

2 Receiving the messages sent∑
i|(i,l)∈A

nk,l
i,l = nk,l

3 Conservation law∑
i|(i,j)∈A

nk,l
i,j =

∑
i|(j,i)∈A

nk,l
j,i ∀(k, l), j 6= k, j 6= l

Writing the equations (1)

1 Initiating the communications∑
j|(k,j)∈A

nk,l
k,j = nk,l

2 Receiving the messages sent∑
i|(i,l)∈A

nk,l
i,l = nk,l

3 Conservation law∑
i|(i,j)∈A

nk,l
i,j =

∑
i|(j,i)∈A

nk,l
j,i ∀(k, l), j 6= k, j 6= l

Writing yhe equations (2)

4 Congestion
Ci,j =

∑
(k,l)|nk,l>0 nk,l

i,j

5 Defining the objective

Cmax ≥ Ci,j , ∀i, j

6 Objective function
Minimiser Cmax

Linear program in rational numbers : can be solved in polynomial
time by any linear program solver.

Writing yhe equations (2)

4 Congestion
Ci,j =

∑
(k,l)|nk,l>0 nk,l

i,j

5 Defining the objective

Cmax ≥ Ci,j , ∀i, j

6 Objective function
Minimiser Cmax

Linear program in rational numbers : can be solved in polynomial
time by any linear program solver.

Writing yhe equations (2)

4 Congestion
Ci,j =

∑
(k,l)|nk,l>0 nk,l

i,j

5 Defining the objective

Cmax ≥ Ci,j , ∀i, j

6 Objective function
Minimiser Cmax

Linear program in rational numbers : can be solved in polynomial
time by any linear program solver.

Writing yhe equations (2)

4 Congestion
Ci,j =

∑
(k,l)|nk,l>0 nk,l

i,j

5 Defining the objective

Cmax ≥ Ci,j , ∀i, j

6 Objective function
Minimiser Cmax

Linear program in rational numbers : can be solved in polynomial
time by any linear program solver.

Routing algorithm

1 Compute the optimal value Cmax of the previous linear program.

2 Let Ω be some value later defined.
During the interval [pΩ, (p + 1)Ω], the edge (i, j) forwards :

mk,l
i,j =

⌊
nk,l

i,jΩ
Cmax

⌋
packets which go from k to l.

3 Starting at time :

T ≡
⌈

Cmax

Ω

⌉
Ω ≤ Cmax + Ω

we process the M remaining sequentially, which takes a time
ML (at worst) where L is the maximal length of a simple path
in the network.

Routing algorithm

1 Compute the optimal value Cmax of the previous linear program.

2 Let Ω be some value later defined.
During the interval [pΩ, (p + 1)Ω], the edge (i, j) forwards :

mk,l
i,j =

⌊
nk,l

i,jΩ
Cmax

⌋
packets which go from k to l.

3 Starting at time :

T ≡
⌈

Cmax

Ω

⌉
Ω ≤ Cmax + Ω

we process the M remaining sequentially, which takes a time
ML (at worst) where L is the maximal length of a simple path
in the network.

Routing algorithm

1 Compute the optimal value Cmax of the previous linear program.

2 Let Ω be some value later defined.
During the interval [pΩ, (p + 1)Ω], the edge (i, j) forwards :

mk,l
i,j =

⌊
nk,l

i,jΩ
Cmax

⌋
packets which go from k to l.

3 Starting at time :

T ≡
⌈

Cmax

Ω

⌉
Ω ≤ Cmax + Ω

we process the M remaining sequentially, which takes a time
ML (at worst) where L is the maximal length of a simple path
in the network.

The schedule is feasible

∑
(k,l)

mk,l
i,j ≤

∑
(k,l)

nk,l
i,jΩ

Cmax
=

Ci,jΩ
Cmax

≤ Ω

Makespan

I We define Ω by : Ω =
√

Cmaxnc.

I The total number of packets remaining in the network at time
T is at worst :

2|A|
√

Cmaxnc + |A|nc

I The makespan is then

Cmax ≤ C∗ ≤ Cmax+
√

Cmaxnc+2|A|
√

Cmaxnc|V |+|A|nc|V |

	The context
	Routing packets with fixed communication routes
	Resolution of the ``fluidified'' problem
	Building a schedule
	Routing packets with freedom on the communication paths

