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Overview

@ The context



Platform

Platform : heterogeneous and distributed :
> processors with different capabilities ;

» communication links of different characteristics.



Applications

Application made of a very (very) large number of tasks, the tasks
can be clustered into a finite number of types, all tasks of a same
type having the same characteristics.



Principle

When we have a very large number of identical tasks to execute, we
can imagine that, after some initiation phase, we will reach a (long)
steady-state, before a termination phase.

If the steady-state is long enough, the initiation and termination
phases will be negligible.



Overview

© Routing packets with fixed communication routes



The problem

Problem : sending a set of message flows.

In a communication network, several flow of packets must be dispat-
ched, each packet flow must be sent from a route to a destination,
while following a given path linking the source to the destination.
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work.
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Notations

» (V, A) an oriented graph, representing the communication net-
work.

» A set of n. flows which must be dispatched.

» The k-th flow is denoted (s, tx, Pk, ng), where

|

>
>
>

sk is the source of packets;

t). is the destination;

Py is the path to be followed ;

ng is the number of packets in the flow.

We denote by ay; the i-th edge in the path F;.
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Hypotheses

» A packet goes through an edge A in a unit of time.

> At a given time, a single packet traverses a given edge.



Objective

We must decide which packet must go through a given edge at a
given time, in order to minimize the overall execution time.
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Lower bound on the duration of schedules

We call congestion of edge a € A, and we denote by C,, the total
number of packets which go through edge a :

Crp = g g Chax = max C,
a
k | ac€Py

Chax is a lower bound on the execution time of any schedule.
C* Z Crnax

A “fluid” (fractional) resolution of our problem will give us a solution
which executes in a time Cpax.
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© Resolution of the “fluidified” problem
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Fluidified (fractional) version : notations

Principle :

» we do not look for an integral solution but for a rational one.

> nyi(t) (fractional) number of packets waiting at the entrance
of the i-th edge of the k-th path, at time ¢.

> Tj,i(t) is the overall time used by the edge ay; for packets of
the k-th flow, during the interval of time [0;¢].
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Fluidified (fractional) version : writing the equations

@ Initiating the communications
np1(t) = ng — Tr1(t), for each k
@ Conservation law
Nk,i+1(t) = Th,i(t) — Thit1 (), for each k
© Resource constraints

> Thilte) = Tra(t) Sta—t1,Ya € AVt > 1 >0

(k) | ag:=a

@ Objective

o0
MINIMIZE Chrac = / 1 an,i(t) dt
0 ki
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> npa(t) =nk — Tra(t), for each k
> i1 (t) = Thi(t) — Thita (), for each k

(2
» At any time ¢, Zn;w-(t) = ng — Tr(t)
j=1
» For each edge a :

> i:n,w-(t): S o= Y Teilt) = Co—t

(kyi)lak,;=a =1 (kd)laki=a  (ki)lag,;=a
As long as t < (Y, there are packets in the system.

Therefore, Ciac > max, Cy = Chax
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For t < Cinax
> Tji(t) = an t, for each k and i.

max

t
> g1 (t) = np — Tia(t) = ng — Czkaxt =ny (1 - Cmax>' Vk
> ny;(t) =0, for each k and ¢ > 2.
For t > Chax

> Ti(t) = ny
> ngi(t) =0



A candidate for the solution

For t < Cinax
> Tji(t) = an t, for each k and i.

max
n t
t= 1-— . Vk
Cmax " ( Cmax)
> ny;(t) =0, for each k and ¢ > 2.

> nk71(t) = M = Tk71(t) =

For t > Chax
> Ti(t) = ny
> ny,i(t) =0

This solution is a schedule of makespan Cl,ax. We still have to show
that it is feasible.
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Checking the solution (for ¢ < Cax)

Q 11 (t) = ng — T (), for each k
Satisfied by definition.

Q npit1(t) = Thi(t) — Thyit1(2), for each k
Ty i(t) — Thip1(t) = C_?f;t = C—?nka—xt =0 =npi41(t)

@ ) Thilta) —Thi(t) <ta—t1,Va € AV >t >0

(ky) | agi=a
n
S Tlty) = Thit) = ) b (ty —t1) =
(k) | Ak, ;=0 (k) | ag ;=a max
Ce

to—t1) <t2—11
O 2= )
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Definition of a round

» 2 =~ duration of a round (will be defined later).

» my : number of packets of k-th flow distributed in a single

round.
— n 2
k N Cmax ’

> Do = Xk)lag=a 1 = {kla € P}

Doy = max D, < ne
a

» Period of the schedule : Q + Dax.
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Schedule

During the time interval [j(Q + Dmax); (j + 1)(2 + Dmax)] :

The link a forwards my, packets of the k-th flow if there exists
© such that a;; = a.

The link a remains idle for a duration of :

Q4+ Dmax - Z mg

(k,i)|ak,i=a

(If less than my, packets are waiting in the entrance of a at
time j(Q + Dmax), a forwards what is available and remains
idle longer.)
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Feasibility of the schedule

> om= S |E

(k,i)|ak,i=a (k,i)|ak,i=a

s > (g

(k,i)|ag,i=a

< Ca Q+ D,

max

§Q+Dmax
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Behavior of the sources

» Ni(t) : number of packets of the k-th flow waiting at the
entrance of the i-th edge, at time t.

> a1 sends my, packets during [0, Q + Dpax].
]\]k,l(Q + Dmax) =N — Mg

> a1 sends my, packets during [ + Dmax, 2(2 4+ Diax)]-
Bl A D)) = Gy — P

> We let T = [Cgﬂ (Q 4 Dinax)

T < nkQ Cmax
T e
Q+ Dimax "= Coax Q2

Np1(T) <ny — =0



Propagation delay

> a1 sends my, packets during [0, + Diax].
Nk,l(Q+DmaX) =N — Mg Nk72(Q+Dmax) = mg
Nk,i23(Q + Dmax) =0

> a1 sends my, packets during [ + Dmax, 2(2 4+ Diax)]-
Ni1(2(2+ Dmax)) = nk —2mi, - N 2(2(Q + Dmax)) = my,
Ni3(2(2 + Dimax)) = 1 Nii>4(2(2 + Diax)) = 0

» The delay between the time a packet traverses the first edge of
the path P and the time it traverses its last edge is, at worst :
(IPk] = 1)(€2 + Dimax)
We let L = maxy, | Pg|.
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Makespan of the schedule

Ctotal < T+ ( )(Q + Dmax)

= [Cmﬂ (Q + Dmax) + (L — 1)(Q + Dinax)

0
< (CI“T“ + 1) (2 + Dmax) + (L — 1)(22 + Dmax)

Dmax Cmax

LQ
Q F

= Cpmax + LDmax +

Dmax Cmax

The lower bound is minimized by 2 = i3

Ctotal < Cmax +2 CmaxDmaxL + DmaxL



Asymptotic optimality

Cmax < C* < C’total < Cmax + 2 CmaxDmaxL + DmaxL

C'total DmaxL DmaxL
1< <1+2
= Coax =V Car * Cona
Dmax max
With @ = |/ ZmaxCmax

L



Resources needed

Z my, < Z <an DmaxLCmax + 1)
max

(k’i)‘ak,i:avkEQ (k7i)|ak,i:a7k22
/ Dmaxcmax
S T + Dmax



Conclusion

» We forget the initiation and termination phases

» Rational resolution of the steady-state
» Round whose size is the square-root of the solution :
» Each round “loses” a constant amount of time
» The sum of the waisted times increases less quickly than the

schedule
» Buffers of size the square-root of the solution
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Problem

» Same problem than previously, but the communication paths
are not fixed.

» A set of n. collection of packets which must be dispatched.

» Each collection of packets is dispatched through a set of flows
(the packets of a same collection may follow different paths).

» n®! the total number of packets to be dispatched from % to [.

> J : the total number of packets to be dispatched from k to
l and which go through the edge (i, 7).
Congestion : C; ; = Z nk]l Crax = max; ; C; ;.
(k1) |nkt>0
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© Initiating the communications

Jl(k.j)EA

@ Receiving the messages sent

Z nzl =n

i|(3,l) €A

© Conservation law

Yo b= ST nb kD), £ k£

il(i,)€A i(j,i)eA
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Writing yhe equations (2)

@ Congestion
_ k.l
Cij = 2k )inkt>0 i j

© Defining the objective

Crnax > Ci,j7 VZ?]

@ Objective function
Minimiser Cryax

Linear program in rational numbers : can be solved in polynomial
time by any linear program solver.
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Routing algorithm

@ Compute the optimal value Ci, . of the previous linear program.

Q Let Q be some value later defined.
During the interval [pQ2, (p + 1)Q?], the edge (i, j) forwards :

k.l
mEl = N5 Q
d Cmax

packets which go from k& to [.
© Starting at time :

Cmax

T = ’V A -‘QSC’max—i—Q
Q

we process the M remaining sequentially, which takes a time

ML (at worst) where L is the maximal length of a simple path

in the network.



The schedule is feasible




Makespan

» We define Q by : Q = \/Chaxne.
» The total number of packets remaining in the network at time

T is at worst :
2| A|/ Cmaxnc + |A|ne

» The makespan is then

Cyrize & c* < Chrpszt V Cmaxnc+2|A| V Cmaxnc|vl+|A|nc|V|
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