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Abstract. We consider the (preemptive bipartite scheduling problem PBS) (Crescenzi et al., “On approximating
a scheduling problem,” Journal of Combinatorial Optimization, vol. 5, pp. 287–297, 2001) arising in switching
communication systems, where each input and output port can be involved in at most one communication at the
same time. Given a set of communication tasks to be communicated from the transmitters to the receivers of
such a system, we aim to find a schedule minimizing the overall transmission time. To achieve this, we allow the
preemption of communication tasks. However, in practice preemption comes with a cost, d, and this renders the
problem NP-hard (Gopal et al., “An optimal switching algorithm for multibeam satellite systems with variable
bandwidth beams,” IEEE Trans. Commun., vol. 30, pp. 2475–2481, 1982). In this paper, we present a 2 − 1

d+1
approximation algorithm, which is the first one for the PBS problem with approximation ratio strictly less than
two. Furthermore, we propose a simple optimal polynomial time algorithm for a subclass of instances of the PBS
problem.
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1. Introduction

Switching networks are widely used in many communication (Goudreau et al., 1996) and
multiprocessor systems (Gopal et al., 1982). In such a context, a set of communication
devices communicate through the switching network by exchanging messages. A switching
network is composed by a set of transmitters (input ports), a set of receivers (output ports),
and a set of properly connected 2 × 2 switching elements. A transmitter (resp. receiver)
cannot transmit (resp. receive) more than one messages at a time. Of course, the transmission
of messages between different transmitters and receivers can take place simultaneously. The
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objective is to minimize the total transmission time. The problem can be formalized by a
weighted bipartite graph whose bipartition classes correspond to the transmitters, and the
receivers. Messages (communication tasks) are represented by the (weighted) edges of this
bipartite graph. A parallel transmission step is a communication phase during which we have
simultaneous transmissions between several transmitters and receivers, and corresponds
to a matching in the bipartite graph. A usual approach in order to minimize the overall
transmission time is to allow preemption, i.e. the possibility to interrupt the transmission of
a message and complete it later. In graph-theoretic terms, each edge can be subdivided into
many edges adding up to the edge’s original weight. However in practice, there is a non
negligible cost for the set-up of a new parallel transmission step referred to set-up delay.
Therefore, the total transmission time for a given traffic pattern will be equal to the schedule
length of the (eventually) preempted messages plus the number of parallel transmission steps
(matchings) multiplied by the set-up delay. This problem has been studied in the literature,
and it is known as the Preemptive Bipartite Scheduling (PBS) problem (Crescenzi et al.,
2001).

1.1. Formulation of the problem

The problem can be formulated in terms of a weighted bipartite graph G = (V ∪ U, E, w),
where the sets V and U represent the senders and the receivers respectively. The set of edges
E represent the communication tasks and a positive integer weight w(e) associated to any
edge e ∈ E represents the transmission time required by the corresponding communication
task. The set-up delay for a transmission will be denoted by d.

In this context the Preemptive Bipartite Scheduling (PBS) problem can be stated as
follows:

Find a collection {M1, M2, . . . , Ms} of matchings of G and corresponding weights
w(M1), w(M2), . . . , w(Ms) (recall that an edge e can be split among several matchings
and let wk(e) be its portion belonging to matching Mk) such that:

(i)
∑s

k=1 wk(e) = w(e), for each e ∈ E , and
(ii)

∑s
k=1 w(Mk) + s · d is minimized, where w(Mk) = max{wk(e) | e ∈ Mk}.

An alternative way to represent the input as well as the solution is by using a traffic matrix
A = (ai j ), where every element ai j is equal to the transmission time from sender i to receiver
j . Our goal is to find a collection of switching matrices (i.e. with at most one non zero entry
in each row and in each column) A1, A2, . . . , As , such that (i) A1 + A2 + · · · + As = A,
and (ii)

∑s
k=1 w(Ak) + s · d is minimized, where w(Ak) = max{ai j | ai j ∈ Ak}.

1.2. Previous results

PBS was proven to be NP-hard for the very restricted class of bipartite graphs where the
weights appearing are among the numbers 1, 2 or 3 and even for graphs where the maximum
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degree of any node is less than 4 (Even et al., 1976; Gopal et al., 1982). Furthermore approx-
imating the problem by a factor less than 7/6 is impossible, unless P = N P (Crescenzi
et al., 2001). Up to our knowledge, the best performance ratio found so far for PBS is
equal to two (Crescenzi et al., 2001). Indeed, the authors of Crescenzi et al. (2001) have
proposed two different polynomial time approximation algorithms proving that both have a
performance ratio equal to two (however one of them behaves better in practice (Crescenzi
et al., 2001)). In the case where all the weights of the edges are equal the problem is already
proven to be solvable in polynomial time since it is equivalent to the bipartite edge coloring
problem. In this paper, we propose a polynomial-time algorithm for the PBS problem with
performance guarantee 2 − 1

d+1 , which is strictly less than 2. The performance ratio of the
algorithm tends asymptotically to 2 when d goes to infinity, but it gives good results for
small values of d (e.g. 3

2 for d = 1, 4
3 for d = 2).

2. Approximation algorithms

2.1. Preliminary definitions

We define the weight w(u) of a node u of G to be the sum of the weights of all edges incident
to node u, i.e. w(u) = ∑

(u,v)∈E w(u, v). By W (G) we denote the maximum w(u) over all
vertices, i.e. W (G) = max{w(u) | u ∈ V ∪ U }. By �(G) we denote the maximum degree
of G, i.e. �(G) = max{d(v) | v ∈ V ∪ U }. A straightforward lower bound for the solution
of PBS is W (G)+d ·�(G). This is because the sum of weights w(Mk) of all the matchings
must cover the largest node weight of the graph, i.e.

∑s
k=1 w(Mk) ≥ W (G). Furthermore,

there must be at least as many matchings as the largest number of edges incident to a node,
i.e. s ≥ �(G).

2.2. The algorithm A-PBS(α)

The algorithm is in three steps:

1. Round up the weight of every edge of the initial graph G = (V ∪ U, E, w) to a multiple
of a given value α. Call the obtained graph G ′ = (V ∪ U, E, w′).

2. Split every edge ei j of G ′ into w′(ei j )/α edges having each a weight equal to α. Call the
induced graph Gα .

3. Find exactly W (Gα )
α

matchings in Gα (covering all edges of Gα).

Notice that the weights in Gα are all equal to α.

Example 1. Consider the graph having the following traffic matrix A, with d = 1.

A =
3 7 1
5 0 3
1 2 5
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For α = 2, A-PBS(2) gives rise, in its first step, to the following matrix A′ corresponding
to G ′:

A′ =
4 8 2
6 0 4
2 2 6

A solution obtained by A-PBS(2) is the following one:

A′ =
0 2 0
2 0 0
0 0 2

+
0 2 0
2 0 0
0 0 2

+
0 2 0
0 0 2
0 0 0

+
2 0 0
0 0 2
0 2 0

+
2 0 0
0 0 0
0 0 2

+
0 2 0
2 0 0
0 0 0

+
0 0 2
0 0 0
2 0 0

The cost of this solution 2 · 7 + 1 · 7 = 21, while the lower bound for the original graph
G was 11 + 3 = 14. An optimal solution for this instance is given below:

A =
3 0 0
0 0 3
0 2 0

+
0 7 0
5 0 0
0 0 5

+
0 0 1
0 0 0
1 0 0

The cost of this solution is (3 + 7 + 1) + 1 · 3 = 14 and it is optimal since it achieves the
lower bound.

Theorem 1. Algorithm A-PBS(d + 1) provides a solution for PBS within 2 − 1
d+1 of the

optimal.

Proof: For Gα the weight of each matching is α, therefore W (Gα )
α

matchings have a total
cost

W (Gα)

α
· α + W (Gα)

α
· d

(for both the transmission and the total set-up delay).
But W (Gα) ≤ W (G) + (α − 1)�(G), and thus the total cost of A-PBS(α) is bounded

above by:

W (G) + (α − 1)�(G) + W (G) + (α − 1)�(G)

α
· d

= d + α

α
· (W (G) + (α − 1))�(G)) (1)

Assuming that α = d + 1, we get by (1) that the total cost of the solution obtained by
A-PBS(d + 1) is at most:

2d + 1

d + 1
· (W (G) + d�(G)).
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Given now that a lower bound of the total cost of any algorithm is given by W (G) +
d�(G), we get that the performance ratio of A-PBS(d + 1) is bounded above by 2d+1

d+1 =
2 − 1

d+1 , as stated above.

Unfortunately, Algorithm A-PBS(α) is a pseudo-polynomial one as its running time
is linear in W (Gα) (the algorithm finds W (Gα )

α
matchings in Gα). Next proposition turns

A-PBS(α) into a polynomial one by applying a technique which have been also used in
Bongiovanni et al. (1981) and Crescenzi et al. (2001).

Proposition 1. There exists a (2 − 1
d+1 ) polynomial-time approximation algorithm for

PBS.

Proof: We add new edges and nodes to G ′ in order to produce a weight regular graph
Ḡ ′ where the total weight of edges incident to any node is equal to W (G ′). Then, the
algorithm is as follows: Find a perfect matching M in the induced graph Ḡ ′ and set w(M) =
min{w′(e) | e ∈ M}. For every edge e ∈ M , we reduce its weight by w(M), and we remove
the edges with weight 0. The obtained graph is still weight-regular and we repeat the same
procedure until all the edges to be removed. The complexity of this algorithm is clearly
O(|E |), since at each step at least one of the edges of G ′ is completely removed. Thus,
the graph G ′ will be partitioned in at most |E | matchings each one containing at least one
whole edge. Since the weight of each edge of the graph G ′ is a multiply of d +1, any output
of this algorithm can be transformed to an output of Algorithm A-PBS(d + 1) of greater or
equal cost. Therefore, the approximation factor of (2 − 1

d+1 ) still holds.

Notice that Proposition 1, besides of reducing the number of iterations, reduces the
number of preemptions as well, giving a solution that may be closer to the optimal than the
solution obtained by A-PBS(d + 1).

Remark 1. The upper bound established by the previous theorem is tight. Indeed, consider
an instance of the problem where the graph G is just a matching where every edge has a
weight equal to one. A-PBS(d + 1) will have a cost of 2d + 1 while the optimum is d + 1.

2.3. The choice of α

A natural question arises: is it possible to get an improvement on the performance ratio of
A-PBS(α) by choosing a different value of α?

The following proposition shows that this is not possible.

Proposition 2. The best performance ratio that we can expect from A-PBS(α) is 2 − 1
d+1 ,

i.e. there is no α turning the performance ratio of the algorithm smaller than 2 − 1
d+1 .

Proof: By (1), in the proof of Theorem 1, we know that the total cost of A-PBS(α) is
bounded above by d+α

α
· (W (G) + α − 1)�(G). Given that the lower bound is indepen-

dent from α, we get that the minimization of the performance ratio will be obtained for
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a value of α that minimizes the total cost. Elementary computations give that this mini-

mization is obtained for α =
√

d(W (G)−�(G))
�(G) . For this value of α, the total cost becomes

(
√

W (G) − �(G) + √
d�(G))2, and thus the performance ratio is given by the following

function:

(
√

W (G) − �(G) + √
d�(G))2

W (G) + d�(G)
= 1 + 2

√
(W (G) − �(G))d�(G) − �(G)

W (G) + d�(G)

where W (G) ≥ �(G) ≥ 1 and d ≥ 1. What we need now, in order to prove the claim of
the proposition, is to find the maximum value of the function f = 2

√
(W (G)−�(G))d�(G)−�(G)

W (G)+d�(G) .
This task is simplified by observing that f is an homogeneous function of degree 0 with
respect to �(G) and W (G). By substituting W (G) by �(G)(1 + dx2), with x > 0, we
have to maximize the expression 2dx−1

1+d+dx2 . If d is fixed then the maximum1 is obtained for
x = d+1

d , and it is 1 − 1
d+1 . Thus the best performance ratio of A-PBS(α), for any α, is

2 − 1
d+1 .

2.4. A special case: Weights multiples of a same value

It is interesting to point out that the performance ratio of A-PBS becomes more favorable
for instances with weights satisfying the following property: after dividing the weights by
d, every edge, say e, has a weight of the form w(e) = b(e) ·m, b(e), m ∈ N. In other words,
all edges have weights which are multiples of the same value m, and d = 1. The problem
remains NP-hard even in this special case since otherwise the general case of integer
weights would also be polynomial (divide all edge weights by m). A-PBS(m) produces an
(m + 1)/m-approximation algorithm.

Theorem 2. If the normalized by d weights are of the form w(e) = b(e) ·m, b(e), m ∈ N,
then A-PBS(m) yields a solution within (m + 1)/m times the optimal.

Proof: It is clear that W (Gα) = W (Gm) = W (G) and �(Gα) = �(Gm) = W (G)/m.
The total cost for the solution provided by the algorithm is

W (Gα) + �(Gα) = W (Gm) + W (Gm)/m = m + 1

m
W (Gm)

= m + 1

m
W (G) ≤ m + 1

m
(W (G) + �(G)).

Given now that after normalization we have d = 1, the lower bound for any algorithm is
W (G) + �(G). Hence, A-PBS(m) is an (m + 1)/m-approximation algorithm.

Notice, that for m = 1 the performance ratio is equal to 2, but as m gets bigger, the
performance ratio is improved.
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3. A class of graphs with polynomial solution to the problem

In this section we present a polynomial time algorithm for the PBS problem when restricted
to a subclass of weighted bipartite graphs, that we call unvarying weighted bipartite graphs.

Definition. A weighted bipartite graph will be called unvarying if the number of edges of
any specific weight w incident to any node u is less than or equal to the number of edges
of the same weight, which are incident to the node with the maximum degree.

Example 2. Consider the graphs with input matrices A and B:

A =
3 3 1
0 3 0
1 0 0

B =
3 3 1
3 2 2
1 0 0

A corresponds to an unvarying graph as the maximum number of edges having a weight
equal to 3 is 2 (the node corresponding to the first line is of maximum degree) and no row
or column has more than two such edges, while the number of edges with weight equal to
1 does not in any case exceed one (the number of edges with weight 1 for the first row).

B corresponds to a graph that is not unvarying. The number of 2’s in row 2 exceeds the
number of 2’s in row 1 and the number of ones in row 1 exceeds the number of ones in row
2 (notice that both rows 1 and 2 correspond to the nodes with the maximum degree).

Algorithm A-PBS-UN:

1. Split the unvarying graph in |W | graphs, each having edges of the same weight, where
|W | is the number of different edge weights appearing in G. Call these graphs G1,
G2, . . . , G |W |.

2. Find exactly �(Gi ) matchings in each graph Gi so that the union of these matchings
covers all edges of Gi .

3. The union of the matchings found for the |W | graphs is an optimal solution for PBS.

Theorem 3. Algorithm A-PBS-UN produces the optimal solution for unvarying weighted
bipartite graphs.

Proof: Suppose the edge weights are numbers in the range 1, 2, . . . , a. Let G be the
unvarying graph and G1, . . . , Ga be the graphs described in Step 1 (some of the Gi ’s may
be ∅).

Suppose that u is a node of maximum degree. From the fact that G is unvarying, we
get that there are exactly �(G1) edges with weight one, �(G2) edges with weight two,
. . . , �(Ga) edges with weight a, incident to node u. (�(Gi ) may be zero for some i .)

Therefore �(G1) + �(G2) + · · · + �(Ga) = �(G) and w(u) = �(G1) + 2�(G2) +
· · · + a�(Ga).
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Consequently, W(G)≥ �(G1) + 2�(G2) + · · · + a�(Ga)
The cost for each of the graphs is d�(Gk) + k�(Gk), k = 1, 2, . . . , a; �(Gk) for the

number of matchings and k�(Gk) for the transmission time. Consequently the cost for all
subgraphs is

((d�(G1) + �(G1)) + (d�(G2) + 2�(G2)) + · · · + (d�(Ga) + a�(Ga))

= d(�(G1) + �(G2) + · · · + �(Ga)) + �(G1) + 2�(G2) + · · · + a�(Ga)

= d�(G) + (�(G1) + 2�(G2) + · · · + a�(Ga))

≤ d�(G) + W (G)

It is then clear that the algorithm is optimal since the lower bound is exactly d�(G) +
W (G).

Acknowledgments

We would like to thank Charles Delorme for helpful discussions.

Note

1. Details of the computation for the maximum of 2dx−1
1+d+dx2 :

f ′ = 2d(1 + d + x − dx2)

(1 + d + dx2)2

f ′ = 0 gives x = −1 and x = 1 + d

d

f ′′ = 2d(1 + d(1 − 6x − 3x2) + 2d2x(x2 − 3))

(1 + d + dx2)3

f ′′(x = −1) = 2d(1 + 4d + 4d2)

(1 + 2d)3
> 0, minimum

f ′′
(

x = 1 + d

d

)
= − 2d3

(1 + d)2(1 + 2d)
< 0, maximum

f

(
x = 1 + d

d

)
= d

d + 1

References

G. Bongiovanni, D. Coppersmith, and C.K. Wong, “An optimal time slot assignment for an SS/TDMA system
with variable number of transponders,” IEEE Trans. Commun., vol. 29, pp. 721–726, 1981.

P. Crescenzi, X. Deng, and C.H. Papadimitriou, “On approximating a scheduling problem,” Journal of Combina-
torial Optimization, vol. 5, pp. 287–297, 2001.

S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and multicommodity flow problems,” SIAM J.
Comput., vol. 5, pp. 691–703, 1976.

I.S. Gopal, G. Bongiovanni, M.A. Bonucelli, D.T. Tang, and C.K. Wong, “An optimal switching algorithm for
multibeam satellite systems with variable bandwidth beams,” IEEE Trans. Commun., vol. 30, pp. 2475–2481,
1982.



SCHEDULING IN SWITCHING NETWORKS WITH SET-UP DELAYS 57

I.S. Gopal and C.K. Wong, “Minimizing the number of switchings in an SS/TDMA system,” IEEE Trans. Commun.,
vol. 33, pp. 497–501, 1985.

M. Goudreau, K. Lang, S.B. Rao, T. Suel, and T. Tsantilas, “Towards efficiency and portability: Programming
with the BSP model,” in Proc. SPAA, 1996.

T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,” IEEE Trans. Commun., vol. 27, pp. 1449–1455,
1979.

K.S. Natarajan and S.B. Calo, “Time slot assignment in an SS/TDMA system with minimum switchings,” IBM
Res. Rep., 1981.

L.G. Valiant, “A bridging model for parallel computation,” Comm. ACM, vol. 33, pp. 103–111, 1990.




