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Abstract

This paper addresses the problem of efficient execu-

tion of a batch of data-intensive tasks with batch-shared

I/O behavior, on coupled storage and compute clusters.

Two scheduling schemes are proposed: 1) a 0-1 Integer

Programming (IP) based approach, which couples task

scheduling and data replication, and 2) a bi-level hy-

pergraph partitioning based heuristic approach (BiPar-

tition), which decouples task scheduling and data repli-

cation. The experimental results show that: 1) the IP

scheme achieves the best batch execution time, but has

significant scheduling overhead, thereby restricting its

application to small scale workloads, and 2) the BiPar-

tition scheme is a better fit for larger workloads and sys-

tems – it has very low scheduling overhead and no more

than 5-10% degradation in solution quality, when com-

pared with the IP based approach.

1 Introduction

Several scientific applications store datasets in col-

lections of files. A request for data analysis specifies a

subset of data files, either as a parameter of the request

or through an index lookup that locates the files (or file

segments) that satisfy the request. The data of interest is

retrieved from the storage system and transformed into a

data product, which is more suitable for examination by

the scientist. However, unlike traditional compute inten-

sive jobs, data analysis tasks may require access to large

numbers of files and high data volume. When mapping

tasks to compute nodes, scheduling mechanisms need to

take into account not only their computation times, but

the staging of files should also be carefully coordinated

to minimize the I/O overheads.

This paper addresses the efficient execution of a batch

of data-intensive tasks exhibiting batch-shared I/O be-

havior [14] on coupled storage and compute clusters.
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Batch-shared I/O simply means that the same file may

be required by multiple tasks in a batch. In a coupled

storage-compute cluster system, a group of machines

with a large local disk pool form the storage cluster.

This cluster is connected to a compute cluster over a

local area network. The files required by the tasks are

initially resident on the storage cluster. If tasks can be

executed on the storage nodes, the cost of data staging

can be avoided. However, often it is not feasible to exe-

cute tasks on storage nodes – the access policies may not

allow user tasks to execute on storage nodes, or the stor-

age nodes may be designed to maximize storage space

and I/O bandwidth, forgoing computation power. In this

work, we assume that tasks cannot be scheduled on stor-

age nodes – when a task is scheduled on a processing

node, the files accessed by the task must be staged on

the processing node before the task is executed. A file

can be staged on a node either through a remote transfer

from the storage cluster or by copying it from another

compute node that already has it, thereby reducing con-

tention on the storage cluster. We also model disk space

constraints on the compute cluster.

We approach the problem as a three stage process.

The first stage, called sub-batch selection, partitions a

batch of tasks into sub-batches such that the total size

of the files required for a sub-batch does not exceed the

available aggregate disk space on the compute cluster.

The second stage accepts a sub-batch as input and yields

an allocation of the tasks in the sub-batch onto the nodes

of the compute cluster to minimize the sub-batch execu-

tion time. The third stage orders the tasks allocated to

each node at runtime and dynamically determines what

file transfers need to be performed and how they should

be scheduled to minimize the end-point contention on

the storage cluster.

We propose two approaches to solve this three stage

problem. The first approach formulates the sub-batch

selection problem using a 0-1 Integer Programming (IP)

formulation. The second stage is also modeled as a 0-

1 IP formulation to determine the mapping of tasks to

nodes, source and destination nodes for all replications,

and the destination nodes for all remote transfers. The

second approach, called BiPartition, employs a bi-level
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hypergraph partitioning based scheduling heuristic that

formulates the sharing of files among tasks as a hyper-

graph. The BiPartition strategy uses a two level parti-

tioning approach to address the first and the second stage

of the problem. The first level partitioner is used to di-

vide the batch of tasks into sub-batches, whose data re-

quirement fits into the available disk space on the com-

pute cluster. The second phase yields a load balanced,

cut minimizing partition of tasks on the compute cluster.

We carry out an experimental evaluation of these algo-

rithms, comparing them against a MinMin based heuris-

tic and a decoupled computation and data scheduling

approach [13]. Application emulators from two appli-

cation domains are used – analysis of remotely-sensed

data and biomedical imaging.

2 Problem Definition

We target batches which consist of independent se-

quential programs. Each task requests a subset of data

files from a dataset and can be executed on any of the

nodes in the compute cluster. The data files required by

a task should be staged to the compute node where the

task is allocated for the task to execute correctly; a data

file is the unit of I/O transfer from the storage cluster to

the compute cluster. The tasks in the batch may share a

number of files. If a file is required for processing by one

or more tasks on a particular node, it may be retrieved

either from the remote storage system or from another

compute node which already has the file. The decision

to replicate1 a file in this way depends on the mapping

of the tasks that require the file and vice-versa. We as-

sume a single port model wherein multiple requests to

the same storage node are serialized and that a compute

node can receive a file after it has finished storing the

previously received file on local disk.

Our objective is, given a batch of tasks and a set of

files required by these tasks, 1) to find a mapping of tasks

to nodes, 2) to decide which files need to be remotely

transferred and their corresponding destination nodes,

and 3) to determine which files need to be replicated and

their corresponding source and destination nodes, so as

to minimize the batch execution time. Figure 1 depicts

an illustration of this problem. Each task in the batch is

represented by a computation weight, a list of input files,

and their file sizes.

We have evaluated our approach using application

scenarios from two application classes; analysis of re-

mote sensing data and biomedical image analysis: (1)

1In the context of this work, we use the term replication to denote

only the file transfers between pairs of compute nodes, one of which

acts as the source and the other the destination. Staging of files from

the storage system can also create replicas of files on the compute

cluster. For such transfers, we use the term remote transfers and do

not associate them with replication.
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Figure 1. Scheduling problem.

Satellite data processing. Remotely sensed data is

either continuously acquired or captured on-demand

via sensors attached to satellites orbiting the earth [7].

Datasets of remotely sensed data can be organized into

multiple files. Each file contains a subset of data ele-

ments acquired within a time period and a region of the

earth. When multiple scientists access these datasets,

there will likely be overlaps among the set of files re-

quested because of ”hot spots” such as a particular re-

gion or time period that scientists may want to study. (2)

Biomedical Image Analysis. Biomedical imaging is a

powerful method for disease diagnosis and for monitor-

ing therapy. State-of-the-art studies make use of large

datasets, which consist of time dependent sequences of

images from multiple imaging sessions. Systematic de-

velopment of image analysis techniques requires an abil-

ity to efficiently invoke candidate image quantification

methods on large collections of images. A researcher

may apply several different image analysis methods on

image datasets to assess ability to predict outcome or ef-

fectiveness of a treatment across patient groups.

3 Related Work

Relatively little research has so far addressed the co-

scheduling of task execution and data replication. Min-

Min [12] is a well-known algorithm for job schedul-

ing, and can be applied to our problem scenario by

incorporating the cost of data access. When comput-

ing the expected minimum completion time (MCT) of a

task on a node, MinMin takes into account the files al-

ready available on the node and files already available on

other compute nodes which can therefore act as alternate

sources for creating file replicas other than the remote

storage system. When a task is scheduled on a node, all

of its files are staged on the corresponding node. This

leads to an implicit replication policy as multiple copies

of files may be created on different nodes of the compute

cluster. Each file required for a task is staged from one
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of the replicas or from the storage cluster such that the

time to transfer the file is minimized.

Ranganathan et. al. [13] proposed a decoupled ap-

proach to scheduling of computations and data for data-

intensive applications in a grid environment, and evalu-

ated its effectiveness via simulation studies. The algo-

rithm combines a scheduling scheme, called Job Data

Present with a replication heuristic, referred to as Data

Least Loaded, in a decoupled fashion. In this algorithm,

a single file per task is employed which means that ei-

ther a compute node stores the file required by a task

or it does not. The algorithm incorporates a notion of

eligible nodes for each task, which are the set of nodes

that store the file required by the task. It works by se-

lecting a task from a FIFO queue and assigning it to the

node that already has the required data. If more than one

compute node is an eligible candidate, then it chooses

the least loaded node. The replication mechanism Data

Least Loaded is decoupled from the scheduling policy.

The replication mechanism keeps track of the popular-

ity of files, and when the popularity of a file exceeds a

threshold, it is replicated on the least loaded node in the

compute cluster. For the applications considered here,

multiple files may be accessed by a task which means

that there may exist compute nodes which store subsets

of the files required by a job. This essentially amounts

to allocating a job to a node such that the expected data

transfer time to stage in the set of files required by a

task is minimized. Moreover, since we are focusing on

scheduling of a batch of tasks, a local FIFO schedul-

ing policy is not meaningful since all tasks arrive at the

same time. We apply a simple local scheduling policy

based on the least expected earliest completion time of

the tasks to adapt the aforesaid scheme to our scenario.

While the approach of Ranganathan et. al. [13] was

shown to be well suited to an online environment where

tasks arrive over time and there is a lack of knowledge

about file access patterns of future jobs, we show that

our proposed approaches which seek to exploit global

inter-task file affinity information are more effective in

the batch context we consider. We experimentally com-

pare our approach against MinMin scheduling with im-

plicit replication of files and a batch-mode variant of the

Job Data Present with Data Least Loaded approach pro-

posed by Ranganathan et al. [13].

Casanova et al. [4] modified the MinMin, MaxMin,

and Sufferage job scheduling heuristics to take into ac-

count the cost of inter-site file access, in the context

of scheduling parameter sweep applications in a Grid

environment. Our work targets an environment with a

compute cluster and storage cluster, and explicitly mod-

els the effect of file replication. Desprez et al. [8] pro-

posed an algorithm that combines data management and

scheduling using a steady state approach. Their model

does not incorporate any limited disk space constraints.

However, our formulation takes into account the fact that

the aggregate disk space may be not be sufficient to con-

currently store at least one copy of each file. The work

of Bent et al. [1] also focuses on the problem of coor-

dination of data movement and computation schedul-

ing. However, they assume that a task accessing mul-

tiple files can be split into a set of subtasks accessing

a single file each, that can be allocated and scheduled

independently. We use a more general model with sin-

gle/multiple files per task.

In earlier work [10], we modeled the sharing of files

among tasks as a hypergraph and employed hypergraph

partitioning to obtain a computationally load-balanced

mapping of tasks onto compute nodes that reduced re-

mote I/O operations for file transfers. Our earlier work

assumed that a compute node had enough disk space to

hold all of the files staged on that node (i.e., assumed

infinite disk cache space on each compute node) and did

not consider replication of files. In contrast to our earlier

work, here we allow explicit replication of files on com-

pute nodes, and also incorporate disk space constraints

on the compute nodes.

4 0-1 Integer Programming-based Ap-

proach

We approach the overall problem as a 3 stage pro-

cess: The first stage is sub-batch selection; the second

stage handles allocation of tasks; and the third stage im-

plements scheduling of file transfers. We assume that

each node on the compute cluster has a local disk, which

can be used as a disk cache for files staged from storage

nodes. We first present the IP formulation for the unlim-

ited disk cache space case. In this case, each compute

node has enough space to store at least one copy of each

file requested by the tasks in the batch. We then describe

an extension to handle limited disk cache space.

4.1 Unlimited Disk Cache Space

For this case, the sub-batch selection problem need

not be solved, since the disk space on the compute clus-

ter is not a constraint. Therefore, we directly solve for

the second stage.

In the following discussion we use subscripts i and j
for compute nodes, k for tasks and ℓ for files. For each

task tk the set of files accessed by that task is denoted by

Accessk . The set of tasks accessing a particular file fℓ

is denoted by Requireℓ . Let Xℓi be a binary variable

where Xℓi =1, if file fℓ is stored on node ci , and 0 other-

wise. Let Yijℓ be a binary variable where Yijℓ =1 if file

fℓ on compute node ci is replicated on compute node

cj , 0 otherwise. Let Rℓi be a binary variable where
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Rℓi =1 if file fℓ is remotely transferred to node ci , 0

otherwise. Let Tki be a binary variable where Tki =1 if

task tk is allocated to node ci , 0 otherwise. The objec-

tive function is the minimization of the overall batch ex-

ecution time under a set of constraints. The constraints

are as follows:

A compute node can only replicate a file on another

compute node if the former has the file present locally.

(∀i)(∀j, j 6= i)(∀ℓ)Yijℓ <= Xℓi (1)

A file is copied to (i.e., replicated on) a compute

node, only if a task requiring the file is allocated to that

node.

(∀i)(∀j, j 6= i)(∀ℓ)Yijℓ ≤
∑

k∈ Requireℓ

Tkj (2)

For a particular node ci and a file fℓ stored on one

or more other compute nodes, the file will be copied to

(replicated onto) ci from only one of the other com-

pute nodes. Note that in the limited cache space case,

a file fℓ may need to be copied to a node ci multiple

times, if the file is evicted due to cache space constraints

and is required by tasks allocated to ci in the future. In

the unlimited cache space case, however, files are never

evicted. Thus, a file is replicated on a node only once.

Constraints represented by equations 3– 5 obey this con-

dition.

(∀i)(∀ℓ)
∑

∀j,j 6=i

Yjiℓ ≤ 1 (3)

The storage of a file on a node is either the result of a

remote transfer or a replication.

(∀i)(∀ℓ)Xℓi = Rℓi +
∑

∀j,j 6=i

Yjiℓ (4)

Both a remote transfer and a replication for a particu-

lar file on a particular destination node are not allowed.

(∀i)(∀ℓ)Rℓi +
∑

∀j,j 6=i

Yjiℓ ≤ 1 (5)

Each task is allocated to only a single node in the

system.

(∀k)
∑

∀i

Tki = 1 (6)

The allocation of a task to a node entails the staging

of all the files required by the task onto the node.

(∀i)(∀k)(∀ℓ ∈ Accessk)Tki ≤ Xℓi (7)

Every file requested by the tasks in the batch will be

retrieved from remote storage nodes at least once. We

assume that initially all the files are resident on only the

remote storage cluster. Thus, each file needs to have at

least one remote transfer.

(∀ℓ)
∑

∀i

Rℓi ≥ 1 (8)

Given these constraints, the objective is to minimize

the batch execution time Batch Exec T ime , which is

the maximum of the execution time of each node. The

execution time of a node ci is defined as Execi . It is

the sum of three components: the replication cost asso-

ciated with that node (Replicationi ), the computation

cost of tasks allocated to that node (Computationi ),

and the remote transfer cost of files transfered to that

node (Remotei ).

Replicationi =
∑

(∀ℓ)(∀j,j 6=i)

(Yjiℓ+Yijℓ)×trep×fsize(fℓ)

(9)

Computationi =
∑

∀k

Compk × Tki (10)

Remotei =
∑

∀ℓ

Rℓi × trem × fsize(fℓ) (11)

Execi = Replicationi + Remotei + Computationi

(12)

Batch Exec T ime = max
∀i
{Execi} (13)

In these equations, trep is the replica creation cost

per byte; trem is the per byte remote transfer time;

Compk represents the computation cost of task tk , and

fsize(fℓ) is the size of the file fℓ .

There can be overlap between communication and

computation across different nodes in the system, i.e.,

a task may be executing on a compute node, while files

for another task are being staged on another compute

node. We assume a single port model wherein multiple

requests to the same storage node are serialized and that

a compute node can receive a file after it has finished

storing the previously received file on local disk. In ad-

dition, no files are staged on a compute node while a

task is executing on the node. Equation 12 reflects these

constraints.

The IP formulation effectively exploits the global

task-file sharing information and yields a one-step so-

lution which comprises of both mapping of tasks and

placement of files. However, it does not provide a so-

lution when disk cache space is limited. To address the

problem of limited cache space, we propose a 2-stage IP

formulation as described in the next section.

4.2 Limited Disk Cache Space: A Two-
stage 0-1 IP Solution

In the limited disk cache space case, we assume that

there is enough space on each compute node to store all
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the files required for any single task. Since the aggregate

available disk space on the compute cluster is not suffi-

cient to stage in all the files required by the batch under

consideration, a disk file eviction mechanism is needed

in conjunction with the IP based scheduling approach.

The file eviction mechanism is discussed in more detail

in Section 4.3.

The first stage of the two-stage IP solution takes as

input a set of tasks and yields a subset of the tasks,

referred to here as a sub-batch, such that the size of the

files required for a sub-batch is less than or equal to the

aggregate available disk space on the compute cluster.

The second stage applies on each sub-batch the 0-1 IP

formulation for the unlimited disk space with one addi-

tional constraint. The additional constraint is required

to account for the fact that the space on a compute node

may not be sufficient to store all the files required by

the sub-batch. After a sub-batch is executed, the two

stages are applied on the remaining set of pending tasks.

This is repeated until all tasks in the batch are executed.

We note that subsequent iterations of this two stage

solution also model the fact that copies of some files

have already been created on the compute cluster due to

previous sub-batch executions.

First Stage: Sub-batch Selection. The primary goal

of this stage is to divide a batch of tasks into subsets of

tasks such that the tasks in a subset can execute on the

compute cluster without the need for any file eviction.

It also aims to minimize the number of sub-batches so

that the scheduling overhead of multiple sub-batch exe-

cutions is reduced. This is achieved by choosing a maxi-

mally sized subset of tasks at each sub-batch selection

step, i.e., the sub-batch is formed with the maximum

number of tasks which do not violate the disk space con-

straints. This essentially amounts to choosing a subset

of tasks which have high degree of file sharing among

themselves. In addition, allocation of the tasks in the

sub-batch across compute nodes should be computation-

ally balanced. The objective function of the IP formula-

tion is then to choose a load balanced, maximally sized

subset of tasks which do not violate disk space con-

straints.

Objective Function = max
(∀i)(∀j)

∑
Tij (14)

The constraints of the IP formulation are as follows. The

allocation of a task to a node entails the staging of all the

files required by the task onto the node.

(∀i)(∀k)(∀ℓ ∈ Accessk)Tki ≤ Xℓi (15)

The total storage space for files stored on a particular

node should not exceed the disk space available on that

node.

(∀i)
∑

∀ℓ

Xℓi × fsize(fℓ) ≤ DiskSpacei (16)

A task cannot be allocated to more than one node in

the system. Note that for sub-batch selection, we do not

enforce the constraint that all tasks be allocated in the

system, since we may be unable to do so with limited

disk space.

(∀k)
∑

∀i

Tki ≤ 1 (17)

In order to achieve a load balanced mapping of tasks

in a sub-batch to compute nodes, we enforce a constraint

that the computation time on any node should be within

a certain tolerance Thresh of the average computation

time over all the nodes. Essentially what it means is that

the sub-batch should be chosen in such a way that the

eventual sub-batch allocation in the second stage leads

to a load balanced solution. In the following equations,

Avg Comp time denotes the average of the computa-

tion times over all the nodes and C is the number of

compute nodes.

(∀i)Computationi <= Avg Comp Time×(1+Thresh)
(18)

Computationi =
∑

∀k

Compk × Tki (19)

Avg Comp Time =
1

C
×

∑

∀i

Computationi (20)

Second Stage: Sub-batch Allocation Optimized for

Overall Execution Time. The sub-batch selection

phase yields a subset of tasks and their allocations.

However, it does not take into account the fact that

some of the files may have already been copied to com-

pute nodes (for previous sub-batches) and that fetch-

ing a file from a nearby compute node is less expensive

than fetching it from the remote storage system. Thus,

to achieve the best possible allocation for a given sub-

batch, the set of tasks in the sub-batch is input to the 0-1

IP algorithm given in Section 4.1 with one additional

constraint on disk space: The total storage space taken

by files allocated to a particular node should not exceed

the disk space available on that node.

(∀i)
∑

∀ℓ

Xℓi × fsize(fℓ) ≤ DiskSpacei (21)

This second stage of the algorithm yields a schedule and

data placement information for the sub-batch.

4.3 File Eviction Policy

Once a sub-batch finishes execution, a disk file evic-

tion mechanism is invoked, which marks files for dele-

tion in increasing order of their popularity. At the end
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of this phase, each node has as much storage space as

required to execute at least a single task. This phase is

followed by the 2-stage process explained before - with

the input being the set of remaining pending tasks. The

popularity of a file, Popularityℓ , is calculated as fol-

lows.

Popularityℓ =
Access Freqℓ × fsize(fℓ)

Numcopiesℓ

(22)

Access Freqℓ represents the number of pending re-

quests to the file. This information can be easily ob-

tained from the original batch and the set of tasks which

have already finished execution. fsize(fℓ) represents

the size of the file fℓ . Numcopiesℓ represents the num-

ber of copies of file fℓ in the compute cluster. If two files

have the same probability of access and the same size,

the file with fewer copies gets a higher popularity, since

deleting that file is more likely to result in remote file

transfer when the file is needed. The intuition behind

including the file size in the popularity computation is

that the greater the size of the file, greater the cost of

getting the file back to a node. The algorithm deletes

smaller files, since the cost of staging such files again in

the future is lower.

We have integrated this mechanism into our proposed

approach as well as MinMin with Implicit Replication.

For the algorithm Job Data Present with Data Least

Loaded, we employ an LRU based mechanism as de-

scribed in [13].

5 Bi-level Hypergraph-based Approach

In recent work [11], a bi-level hypergraph partition-

ing based approach was developed in the context of ef-

ficient execution of parallel out-of-core applications op-

erating on block-sparse data. In this work, we extend

this idea with an intelligent method to assign weights to

vertices of a hypergraph, while taking into account node-

to-node data replication in the compute cluster. We also

couple this bi-level task mapping approach with task or-

dering and file staging (see Section 6) for a complete

end-to-end solution. In the bi-level hypergraph parti-

tioning approach, the task-file sharing interactions are

modeled using a hypergraph. The first level of parti-

tioning divides the batch of tasks into multiple disjoint

sub-batches such that the storage space requirement of

each sub-batch does not exceed the available aggregate

disk space on the compute cluster. The second level of

partitioning takes as input a sub-batch and computes a

load-balanced cut minimizing mapping of the tasks in

the sub-batch onto the compute nodes of the cluster.

5.1 Hypergraph Partitioning

A hypergraph H=(V,N ) is defined as a set of ver-

tices V and a set of nets (hyper-edges) N among those

vertices. Every net nj ∈ N is a subset of vertices, i.e.,

nj ⊆ V . The size of a net nj is equal to the number

of vertices it has, i.e., sj = |nj | . Weights can be as-

signed to the vertices (wi for vi ∈ V ) and nets (cj for

nj ∈ N ) of the hypergraph. Π = {V1, V2, . . . , VP } is

a P-way partition of H if 1) each part is a nonempty

subset of V , 2) parts are pairwise disjoint and 3) union

of P parts is equal to V . In the traditional hypergraph

partitioning problem, a partition is said to be balanced

if Wp ≤ Wavg(1 + ǫ) for 1 ≤ p ≤ P , where

Wp =
∑

vi∈Vp
wi is the sum of the vertex weights of

part Vp , Wavg = (
∑

vi∈V wi)/P denotes the weight of

each part under the perfect load balance condition, and ǫ
represents the predetermined maximum imbalance ratio

allowed. In a partition Π of H , connectivity λj of a net

nj denotes the number of parts connected by nj . A net

nj is said to be cut if it connects more than one part, i.e.

λj > 1 . The cost of a partition Π is computed as:

χ(Π) =
∑

nj∈NE

cj(λj − 1) (23)

where NE is the set of cut nets and each cut net nj

contributes cj(λj − 1) to the cutsize. This cost met-

ric is also known as connectivity-1 metric. The hyper-

graph partitioning problem can be defined as the task of

dividing a hypergraph into two or more parts such that

the cutsize is minimized, while a given balance crite-

rion among the part weights is maintained. Algorithms

based on the multi-level paradigm, such as PaToH [5],

have been shown to compute good partitions quickly for

this NP-hard problem.

To address the limited storage space constraint, we

employ a different flavor of the hypergraph partitioning

problem called the Bounded Incident Net Weight (BINW)

Partitioning [11]. In BINW partitioning, the cost of

a partition is again computed using the connectivity-1

cut-size definition (Eq. 23), but the constraint on the

partitioning is different. Let Π = {V1, V2, ..., VP } be

the P -way partition of hypergraph H and I(Vi) de-

note the nets that are incident on vertices in Vi , i.e.,

I(Vi) = {nj |vk ∈ nj ,∀vk ∈ Vi} . The BINW parti-

tioning is defined as finding a minimum cost partition

where each part’s incident net weight sum is bounded

by a predetermined weight constraint D :

∑

nj∈I(Vi)

c(nj) ≤ D (24)

Note that P is not predetermined in this problem; how-

ever, minimizing the connectivity-1 cost while obeying

the incident net weight constraint would also minimize

the number of parts.

In this work, we have used the BINW partitioner pro-

posed in [11] as a modification of the successful multi-
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level hypergraph partitioner PaToH [6]. PaToH achieves

P -way partitioning through recursive bisection. BINW

partitioning necessitates revisiting all three phases of

multilevel partitioning; coarsening, initial partitioning

and refinement, as well as the recursive bisection core of

PaToH. During the recursive bisection, after each bisec-

tion the nets that are in the cut are split into two nets in

order to achieve correct accounting of the connectivity-

1 cost metric. In PaToH, the default action for size-1

nets is to discard them, since they cannot be in the cut

for a future bisection. However, since our weight con-

straint is based on incident net weights, we have modi-

fied the code so that the sum of the weights of such size-

1 nets are accumulated in a separate weight variable for

each vertex. These additional weights need to be prop-

agated during the coarsening phase – while computing

the weight constraint in the initial partitioning and re-

finement phases, those weights are aggregated with the

sum of the internal net weights to compute a part’s inci-

dent net weight.

5.2 First-level Partitioning: Sub-batch
Selection

We employ the hypergraph model together with the

BINW partitioning to solve the sub-batch selection

problem. In our hypergraph formulation, each task ti
is represented by a vertex vi in the hypergraph. Each

hyper-edge nj represents a file fj and connects the ver-

tices that require this file as input. The expected execu-

tion time of the task ti and the size of the file fj are

used as the weights of the vertex vi and net nj , respec-

tively. An example batch of tasks and its hypergraph

representation are illustrated in Figure 2.

Let Π = {V1, V2, ..., VP } be the P -way BINW par-

tition of hypergraph H , where the weight constraint D
is set to the aggregate available disk space of the com-

pute cluster. Each partition obtained by the BINW par-

titioning corresponds to a sub-batch. Since the files that

are required by each task is represented by nets con-

nected to that task, the files required by the tasks of a

partition Vi constitute the incident net set I(Vi) . By the

definition of the BINW partitioning and the associated

constraint (Eq. 24), we know that the total sum of the

net weights (the sizes of the files) corresponding to files

required by the partition Vi is less than D . Hence, all

the files required by a sub-batch of tasks corresponding

to Vi will fit into the aggregate disk space of the com-

pute cluster. This essentially means that each sub-batch

can execute on the compute cluster without disk space

constraint violation. Minimizing the connectivity-1 met-

ric corresponds to minimizing the number of times that a

file is shared among the sub-batches thereby minimizing

the I/O cost because of files shared among sub-batches.

a) A sample batch of tasks

b) Hypergraph representation

Figure 2. Hypergraph representation of a

sample batch of tasks. The numbers indi-

cate tasks. The letters are files required by

the tasks.

5.3 Second-level Partitioning: Task
Mapping

The second level of partitioning divides a sub-batch

across the nodes of the compute cluster such that the

remote data transfer cost is minimized while load bal-

ance across compute nodes is maintained. We model

the problem of locality-aware load-balancing as a hy-

pergraph partitioning problem. A task is represented by

a vertex and a file by a net in the hypergraph. The ex-

pected execution time of tasks and the size of files are

used as weights of respective vertices and nets.

The expected execution time of a task is calculated

as the sum of I/O overhead (the transfer time of files ei-

ther through remote transfer or replication plus the I/O

time to read files from local disk) and the computation

cost of the task. To employ an existing hypergraph par-

titioner without any modification, we use a probabilistic

approach when computing the execution time ExecTi

of task ti as vertex weights in the partitioner. Let the set

of files a task ti needs be Fi and the number of compute

nodes in the system be K . The cost of transferring one
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byte of file fj , Trj , for task ti is equal to

Trj =
ProbFNE

BWs

+(1−ProbFNE)∗
(1− ProbFE)

min (BWs, BWc)
(25)

Here, BWs is the minimum of I/O and network band-

width between any storage and compute node pair, BWc

is the bandwidth between any two compute nodes of a

cluster, ProbFNE is the probability that task ti will be

the first task to execute in its group that requires fj , and

ProbFE is the probability that ti executes on a node, to

which file fj has already been transferred. In our cur-

rent implementation, we assume a uniform probability

distribution, ProbFNE = 1
sj

and ProbFE =
sj

T
∗ 1

K
.

sj denotes the number of tasks that share the file fj and

T denotes the number of tasks in the sub-batch. With the

assumption that computation time is linearly correlated

with the size of the input files, the estimated execution

time of task ti is computed as

ExecTi =
∑

fj∈Fi

fsize(fj)× (Trj +
1

BWℓ

+C) (26)

where BWℓ is the I/O bandwidth from local disk on

a compute node and C is the compute cost of one

byte [10]. By assigning file sizes as hyper-edge weights

and the estimated execution times as vertex weights, the

proposed method reduces the task mapping problem to

the K -way hypergraph partitioning problem according

to the connectivity-1 cutsize definition [5].

Note that the sub-batch which is given by the first

level partitioner satisfies the aggregate disk space con-

straint on the compute cluster. A second level partition-

ing of such a sub-batch may lead to violation of disk

space constraint on individual nodes of the cluster. To

address this issue, we employ a simple heuristic. For

each node of the cluster, we sort the list of files fj to be

staged onto it in the order of increasing sj values where

sj is the number of tasks that share the file fj . We re-

move files from this list in the specified order as long as

the disk space requirements of the files in the list do not

violate the disk space constraint. Finally, we remove any

tasks assigned to this node if one or more of its files have

been removed from the list. The tasks thus removed are

then executed in subsequent batches.

6 Ordering of Tasks and Staging of Files

The proposed scheduling schemes exploit global

task-file sharing information to minimize transfers of the

same file multiple times. However, two tasks that are

mapped to different compute nodes may have their input

files stored on the same set of nodes. Thus, ordering of

tasks in each group and transfer of files should be done

in such a way to minimize end-point contention on the

storage cluster as well as the compute cluster. We use a

strategy in which tasks allocated to each compute node

are scheduled based on their earliest completion time.

The earliest completion time of a task is computed iter-

atively and dynamically based on the availability of re-

sources. The algorithm maintains a Gantt chart for stor-

age nodes and compute nodes. For each file required by

a task which is not present locally, the algorithm chooses

to stage the file from one of its multiple possible sources

so that the file transfer completion time is minimized.

This is accompanied by reserving time slots on the se-

lected source of the file as well as the destination node.

The earliest estimated completion time of a task ti
is computed as the sum of 1) the completion time of its

file transfers, 2) the I/O time to read the files on local

disk, and 3) the CPU time to process the files. If all of

the input files are already in the compute node, then the

completion time of file transfers is the current time. Oth-

erwise, it is the completion time for the transfer of the

last input file to the compute node. The transfer com-

pletion time for each file fj ∈ Fi (TCTj ) is estimated

as the sum of the earliest time a transfer can start and

the actual transfer time (size of fj divided by the band-

width). For a remote transfer, the bandwidth is the mini-

mum of remote disk bandwidth and network bandwidth,

whereas for replications, the bandwidth is the node to

node bandwidth in the compute cluster. The file fj with

the minimum TCTj is selected and tentatively sched-

uled for transfer. The TCT s of the remaining input

files are recomputed and the next file with the minimum

TCT is selected and tentatively scheduled. This process

is repeated until all of the input files are scheduled. The

transfer completion time for the task is the TCT of the

last file scheduled The scheduling algorithm determines

the task with the least completion time in each group,

and the task ti with the lowest earliest completion time

out of these is scheduled first. Once ti is scheduled,

from the other task groups (excluding the one containing

ti ), the task with the minimum earliest completion time

is selected and scheduled. When a running task com-

pletes, the task with the earliest completion time from

that group is scheduled.

The proposed task ordering solution is applied as a

subsequent step to the mapping approaches. Since the

IP based solution also gives information about data stag-

ing (replications or remote transfers), we apply the dy-

namic scheduling strategy with a minor modification.

For each file, the algorithm uses the current state of the

Gantt chart and computes the transfer completion time

for staging the file based on the IP based solution. It

does not consider multiple options for staging the file; it

just uses the solution provided by the IP based approach.
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7 Experimental Results

We now present an experimental evaluation of the

proposed strategies along with the MinMin algorithm

with implicit replication and the Job Data Present

with Data Least Loaded approach [13]. The proposed

IP approach used a publicly available solver called

lp solve [2].

For evaluation, we used two application classes:

satellite data processing and biomedical image analysis.

To generate datasets for the satellite data processing ap-

plication (referred to here as SAT), we employed an em-

ulator developed in [15]. The application [7] operates on

data chunks that are formed by grouping subsets of sen-

sor readings that are close to each other in spatial and

temporal dimensions. These chunks can be organized

into multiple files. In our emulation, we assigned one

data chunk per file. A satellite data analysis task spec-

ifies the data of interest via a spatio-temporal window.

For the image analysis application (referred to here as

IMAGE), we implemented a program to emulate studies

that involve analysis on images obtained from MRI and

CT scans (captured on multiple days as follow-up stud-

ies). An image dataset consists of a series of 2D images

obtained for a patient and is associated with meta-data

describing patient and study related information (in our

case, we used patient id and study id as the meta-data).

Each image in a dataset is associated with an imaging

modality and the date of image acquisition, and is stored

in a separate file. An image analysis program can select

a subset of images based on a set of patient ids and study

ids, image modality, and a date range.

We employed three different types of workloads;

high overlap, medium overlap, and low overlap, repre-

senting different amounts of file sharing among tasks in

a batch. For SAT, we simulated queries directed to ge-

ographically distant parts of the world. Four sets were

generated, representing queries directed to 4 hot spot re-

gions. Across the sets, there was no overlap between the

queries, and in each set, queries were adjusted such that

for high overlap workload, they resulted in 85% overlap

on average, in terms of files requested by different tasks

in the batch. Similarly, we generated medium and low

overlap workloads with 40% and 10% overlap, respec-

tively. For IMAGE, different degrees of overlap were

achieved by varying the values of patient and time at-

tributes across requests by different tasks. We generated

workloads with 85%, 40%, and 0% overlap for high,

medium, and low overlap cases, respectively.

We generated 20 days worth of data, about 50 GB for

SAT. The data was distributed across the storage nodes

using a Hilbert-curve based declustering method [9].

Each file in the dataset was 50 MB. In the high over-

lap case, each task accessed on an average 8 files. In the

medium and low overlap cases, each task accessed on an

average 14 files. For IMAGE, the 2 Terabyte dataset cor-

responded to a dataset of 2000 patients and images ac-

quired over several days from MRI and CT scans. Each

task on an average accessed 8 files. The sizes of images

were 4 MB and 64 MB for MRI and CT scans, respec-

tively. Images for each patient were distributed among

all the storage nodes in a round robin fashion. The IM-

AGE and the SAT application typically involve compu-

tations equivalent to two floating point operations per

word and this translates to a processing time of approx-

imately 0.001s/MB of data in our test-bed.

Our experiments were carried out using two systems.

The first system (OSC) is a coupled compute and stor-

age cluster system at the Ohio Supercomputer Center.

The compute cluster consists of dual-processor nodes

equipped with 2.4 GHz Intel P4 Xeon processors and

4 GB of memory, interconnected by an 8 Gbps Infini-

band Switch. The compute cluster is connected to the

storage system over another Infiniband Switch. The stor-

age system consists of networked nodes (XIO), each of

which is connected to an array of IBM FASTt600s over

a Fiber Channel Switch [3]. Each node has a local file

system that resides on FASTt600 storage units. The disk

bandwidth available on these storage nodes is around

210 MB/sec. The second system employs the same com-

pute cluster as the first but uses another cluster as a stor-

age cluster – consisting of 933 MHz Pentium III nodes

(OSUMED) equipped with 512MB of memory. These

nodes are connected through a Switched 100 Mbps Eth-

ernet. The disk bandwidth available on these storage

nodes varies from 18 MB/sec to 25 MB/sec. The band-

width of the shared link between the OSUMED and

OSC clusters is around 100 Mbps.

Figures 3 and 4 show the relative performance of the

various scheduling/replication schemes on workloads

with different degrees of shared I/O among tasks. These

experiments were conducted using 4 compute nodes and

4 storage nodes for both IMAGE and SAT. Both the IM-

AGE workload and the SAT workload consisted of 100

tasks each. As is seen from the figures, the IP based

strategy and the BiPartition approach performs better

than the other algorithms for all the cases. This is be-

cause the IP formulation is able to leverage the global

task-file affinity information by incorporating it into its

goal function of minimizing the batch execution time.

In addition, while minimizing the I/O overheads, the

IP approach also maintains computational load balance

across the nodes. The BiPartition approach tries to clus-

ter tasks that share files together, thereby attempting to

avoid the transfer of the same file multiple times. In

addition, the partitioning heuristic ensures load balance

across nodes. The IP based approach performs slightly
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(a) (b)

Figure 3. Batch execution time achieved by different algorithms on (a) OSUMED storage cluster

and (b) XIO storage cluster, for the IMAGE application

(a) (b)

Figure 4. Batch execution time achieved by different algorithms on (a) OSUMED storage cluster

and (b) XIO storage cluster, for the SAT application

better than the BiPartition approach because it solves the

problem of scheduling and replication in an integrated

fashion and thus it is able to explore a larger search space

thereby achieving a better global solution. The benefit

of the proposed approaches is greatest for the high over-

lap workload and reduces as the degree of overlap de-

creases, as expected. The base schemes do not perform

as well as the two proposed approaches because they are

greedy heuristics and hence make local decisions with-

out exploiting the inter-task affinities arising out of file

sharing. Among the base schemes, Job Data Present

coupled with Data Least Loaded does better than Min-

Min with Implicit Replication. This is because the Job

Data Present strategy favors data locality and hence is

able to make good use of the data replication of popular

datasets performed by the Data Least Loaded. For the

low overlap case, the IP based scheme performs slightly

worse than the BiPartition scheme for some of the ex-

periments. In the low overlap case, end-point contention

increases due to a significantly higher number of remote

file transfers. In the IP approach, we obtain both the task

mappings and file transfer information (where from and

where to replicate) statically and then realize this solu-

tion at run-time. In BiPartition, only the task mappings

are obtained statically and the decision of where to fetch

the file from for each file transfer is made dynamically

at run-time. The IP based scheme however does a better

global modeling of the overall problem as compared to

BiPartition since it captures the differential between the

remote and replica access as well as the parallelism in

the system. We conjecture that the effects of contention

outweigh the advantage of better modeling of the IP ap-

proach when tasks do not have affinities among them-

selves.

Figure 5(a) quantifies the benefit which can be ob-

tained through replication. This experiment was con-

ducted on 8 OSC compute nodes and 4 OSUMED stor-

age nodes. The workloads employed for both applica-

tion classes was 100 task high overlap batches. The No

Replication in Figure 5(a) refers to the case when there

is no replication. The results show that replication gives

significant performance improvement because it exploits

the choice of using one of many sources of a file thereby

reducing contention on the storage cluster.

Figure 5(b) demonstrates how the proposed scheme

and the base schemes perform with respect to varia-
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(a) (b)

Figure 5. (a) Benefit of compute node to compute node data replication over no replication. (b)

Variation of batch execution time with increasing batch size.

(a) (b)

Figure 6. (a) Performance of different algorithms for IMAGE with varying number of compute

nodes. (b) Scheduling overhead with varying number of compute nodes.

tion in batch size. This experiment was conducted on

4 OSC compute nodes and 4 XIO storage nodes using

a high overlap IMAGE workload. The number of tasks

in the IMAGE workload was varied from 500 to 4000.

The disk space on each machine of the compute cluster

is 40GB. The aggregate data requirements of the batch

vary from around 40GB for the 500 task batch to around

330GB for the 4000 task batch. Here, the aggregate

data requirements refer to the total disk space required

to store one copy of each file. Here, we only show re-

sults for the BiPartition approach and the base schemes

because for such large batch sizes, the IP based scheme

has significant scheduling overhead. The results show

that as the batch size increases, the base schemes show

a greater increase in the batch execution time. The Bi-

Partition scheme does the best. This is expected, since

the base schemes suffer a lot of file evictions on the com-

pute cluster as the batch size increases and the disk space

becomes a constraint. The BiPartition approach makes

efficient allocations of tasks and files and therefore, suf-

fers considerably lesser evictions.

To analyze the scalability of the proposed scheme

with respect to the number of compute nodes, we ran

experiments with a high overlap workload consisting of

1000 high overlap IMAGE tasks. These experiments

were run using 8 storage nodes of the XIO cluster. The

number of compute nodes was varied from 2 to 32.

Figure 6(a) shows the results with varying number of

compute nodes. As is seen from the figure, BiPartition

achieves the best performance. An increase in the num-

ber of compute nodes is likely to increase contention on

the storage nodes; hence the batch execution time in-

creases at 32 compute nodes for all approaches. We ob-

serve that the volume of data transferred increases with

increasing number of compute nodes since tasks are dis-

tributed across more nodes, thereby increasing the prob-

ability that two tasks sharing files will be mapped to dif-

ferent nodes.

Figure 6(b) shows the per task scheduling times (in

milliseconds) for various schemes. The graph shows that

the BiPartition scheme has very little scheduling over-

head. The IP based scheme has high scheduling over-

head for larger configurations, due to the exponential

complexity of the search. The scheduling time of Min-

Min is higher than Job Data Present. This is because

MinMin involves iterating over all task-host pairs at ev-
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ery scheduling step. The Job Data Present scheme is a

dynamic scheme and at each step picks up the next task

from a queue and schedules it.

8 Conclusions

The paper developed two strategies for schedul-

ing a collection of batch-shared data intensive tasks -

one approach formulating the problem of coordinating

scheduling and replication using a 0-1 Integer Program-

ming and another using a bi-level hypergraph partition-

ing strategy. Both approaches also model disk storage

space constraints at the compute cluster. The perfor-

mance results show that our strategies achieve signifi-

cant performance improvement over MinMin with Im-

plicit replication and JobDataPresent with Data Least

Loaded. The base schemes do not explicitly consider

inter-task dependencies arising out of file-sharing and

thus make local decisions based on greedy heuristics.

Among the proposed algorithms, the IP formulation re-

sults in the best batch execution time. However, it suf-

fers from high scheduling time. The BiPartition ap-

proach results in slightly longer batch execution times,

but is much faster than the IP based approach. Our

conclusion is that the IP based approach is attractive

for small workloads, while the BiPartition approach is

preferable for large scale workloads and system config-

urations.
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