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Abstract

This paper discusses algorithmic and implementation aspects of a distributed remote visualization system that optimally decomposes and
adaptively maps the visualization pipeline to a wide-area shared or dedicated network. The first node of the system typically generates or
stores raw data sets, and a remote client resides on the last node equipped with a display device ranging from a personal desktop to a
powerwall. Intermediate nodes include workstations, clusters, or rendering engines, which can be located anywhere on the network. We employ
a regression method to estimate the effective bandwidth of a transport path. Based on link measurements, node characteristics, and module
properties, we strategically organize visualization pipeline modules into groups and dynamically assign the groups to various network nodes
to achieve minimal total delay or maximal frame rate. We propose polynomial-time algorithms using the dynamic programming method to
compute optimal solutions for the problems of pipeline decomposition and network mapping under different constraint conditions. The proposed
remote visualization system is implemented and deployed at several geographically distributed nodes for experimental testing. The proposed
decomposition and mapping scheme is generic and can be applied to other distributed applications whose computing components form a linear
arrangement.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A remote visualization system can potentially enable an end
user equipped with a simple display device and network access
to visualize large volumes of scientific data residing or gen-
erated at remote sites. A typical remote visualization system
consists of a remote data source (DS) acting as a server, a local
rendering/display terminal acting as a client, zero or more in-
termediate hosts, and a network connecting them all together.
The performance of such systems critically relies on how effi-
ciently the visualization pipeline is decomposed or partitioned
and mapped to the network nodes. In this paper, we address
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both analytical and implementation aspects of realizing an opti-
mal visualization pipeline decomposition and adaptive network
mapping under various circumstances.

Many existing remote visualization systems [1,4,11] employ
a predetermined partition of the visualization pipeline and typ-
ically send fixed-type data streams such as raw data, geometric
primitives, or framebuffer (FB) to remote client nodes. While
such schemes are common, they are not always optimal for
high performance visualizations that typically deal with large
data sets with complex structures. Particularly over wide-area
connections, this problem is further compounded by limited
network bandwidths and time-varying dynamics of compet-
ing network traffic. A considerable amount of research efforts
have been made to implement flexible remote visualization
systems that distribute visualization modules across network
nodes. Bowman et al. [2] proposed a framework to predict the
processing times of visualization modules using linear models
and the network bandwidth using Network Weather Service
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[10]; these predictions are used to obtain a suitable mapping of
the visualization pipeline. Luke et al. [8] constructed Semotus
Visum, a flexible remote visualization framework capable of
multiple partition scenarios, which is tested and evaluated on
a local network. In these works, the mapping of visualization
modules to network nodes is accomplished by empirical test-
ing and manual configuration. Furthermore, most of these vi-
sualization systems are limited to a traditional client and server
mode with no intermediate nodes involved.

In this paper, we formulate a problem of optimizing the total
delay or frame rate of a visualization pipeline by considering the
times for data transmission, computation, and rendering. The
resultant computational model enables us to analyze the algo-
rithmic aspects such as complexity and optimality of mapping
the visualization pipeline onto a given network. The first node
serves as a DS with the capability of performing other tasks
such as filtering, geometry generation, or rendering. The last
node displays final images on the screen but also contains other
visualization components; it could be equipped with a simple
terminal or a more sophisticated device such as a powerwall
or a tiled display. The intermediate nodes could be worksta-
tions, computational clusters, or custom rendering engines that
are specially utilized to perform computation-intensive visual-
ization subtasks. We present several polynomial-time solutions
with increasingly stringent conditions based on dynamic pro-
gramming to compute optimal mappings with minimum total
delay or maximum frame rate. The time complexities of our
methods range from O(n × k) to O(n × |E|) under different
conditions, where n+1 is the number of visualization modules
in a pipeline, k + 1 is the number of network nodes arranged
linearly in a predetermined order, and |E| is the number of
edges in an arbitrary wide-area shared or dedicated network.

The rest of the paper is organized as follows. In Section 2,
we describe a generic visualization pipeline and a framework
for the design of the distributed remote visualization system,
which together form a basis for our analytical model. In Sec-
tion 3, we describe a bandwidth measurement method based
on [15], and then present the optimal decomposition and map-
ping schemes using dynamic programming-based algorithms
for total delay minimization or frame rate maximization under
various constraint conditions. The implementation details and
test results are provided in Section 4. We finally conclude our
work in Section 5.

2. Visualization pipeline and analytical model

2.1. Visualization pipeline

Large volumes of data generated in scientific or medical
applications need to be appropriately retrieved and mapped onto
a 2D display device to be “visualized” by human operators.
This visualization process involves several steps that form the
so-called visualization pipeline or visualization network [12].

Fig. 1 shows a high-level abstraction of a visualization
pipeline along with the flow of data produced at each mod-
ule in the pipeline. In many scientific applications, the raw
data usually takes a multivariate format and is organized in

structures such as CDF, NetCDF, and HDF [3,7,9]. The fil-
tering module extracts the information of interest from the
raw data and performs necessary preprocessing to improve
the processing efficiency and save communication resources
as well. The transformation module typically uses a surface
fitting technique (such as isosurface extraction) to derive 3D
geometries (such as polygons), or uses transfer functions to
perform color and opacity classifications for each voxel based
on its attribute. Rendering module converts the transformed
geometric or composite volumetric data in 3D view coordi-
nates to a pixel-based image in 2D screen coordinates. In most
of the existing graphics systems, the visual properties of a
raster image such as color and opacity are stored and carried
in a FB for final display on an end device.

It is worth pointing out that the visualization pipelines in
real applications may significantly vary due to the disparate im-
plementation procedures and the use of different visualization
techniques; for instance, the rendering module itself might in-
volve several stages of vertex transformations in the OpenGL
environment.

2.2. Framework for design of distributed remote visualization
system

The block diagram in Fig. 2 illustrates a baseline frame-
work for the design of a distributed remote visualization sys-
tem that employs pipeline partitioning or decomposition and
automatic mapping to network nodes. Since many scientific ap-
plications generate terabyte or even petabyte data sets, it is cur-
rently very difficult to execute all visualization modules on a
single desktop computer. Hence we first exploit the parallelism
within the modules and the computational capability provided
by the nodes with High-Performance Computing (HPC) re-
sources, such as clusters. The connection bandwidths over the
underlying transport network are estimated using active traf-
fic measurements. Based on the computing node capabilities,
bandwidth estimates, sizes of data sets to be processed, and
computational complexities of visualization modules, the vi-
sualization pipeline is decomposed into groups. These groups
are then mapped one-to-one to the computing nodes distributed
over a transport network.

In a practical implementation, we generally start with the
computing node deployment and network topology construc-
tion. For example, the site of DS is a priori known, and the
location of a remote client is determined whenever a “visual-
ization” connection to the server is initiated. The information
collected on networking and computing resources can be used
to select optional intermediate nodes with specific visualiza-
tion and/or computing capabilities. In this paper, we consider
several problems of pipeline decomposition and network map-
ping with different optimization goals under various constraint
conditions, as tabulated in Fig. 3.

2.3. Analytical model

We now describe an analytical model for the gen-
eral problem of visualization pipeline decomposition and
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Fig. 2. Framework for design of remote visualization system.

its network mapping. As shown in Fig. 4, the visual-
ization pipeline consists of n + 1 sequential modules,
M1, M2, . . . , Mu−1, Mu, . . . , Mv−1, . . . , Mw, . . . , Mx−1, Mx,

. . . , Mn+1, where M1 is a DS. Module Mj, j = 2, . . . , n + 1
performs a computational task of complexity cj on data of size
mj−1 received from module Mj−1 and generates data of size
mj , which is then sent over the network link to module Mj+1
for further processing. An underlying transport network con-
sists of k + 1 geographically distributed computing nodes de-
noted by v1, v2, . . . , vk, vk+1. Node vi, i = 1, 2, . . . , k, k + 1
has a normalized computing power pi

1 and is connected to
its neighbor node vj , j = 1, 2, . . . , k, k + 1, j �= i with a
network link Li,j of bandwidth bi,j and minimum link delay
di,j . The minimum link delay is mostly contributed by the
link propagation and queuing delay, and is in general much
smaller than the bandwidth-constrained delay of transmitting
a large message of size m given by m/bi,j . The transport

1 For simplicity, we use a normalized quantity to reflect a node’s overall
computing power without detailing its memory size, processor speed, and
presence of co-processors, which may result in different performances for
both numeric and graphics computations.

network is represented by a graph G = (V , E), |V | = k + 1,
where V denotes the set of nodes (vertices) and E denotes the
set of links (edges). The transport network may or may not be
a complete graph, depending on whether the node deployment
environment is the Internet or a dedicated network.

We consider a path P of q nodes from a source node
vs to a destination node vd in the transport network, where
q ∈ [2, min(k + 1, n + 1)] and path P consists of nodes
vP [1] = vs, vP [2], . . . , vP [q−1], vP [q] = vd. The visualization
pipeline is decomposed into q visualization groups denoted by
g1, g2, . . . , gq−1, gq , which are mapped one-to-one onto the q

nodes on transport path P . The data exchanged between two
adjacent groups is produced by the last module in the upstream
group; for example in Fig. 4, we have m(g1) = mu−1, m(g2) =
mv−1, . . . , m(gq−1) = mx−1. The client residing on the last
node vd sends control messages such as simulation parameters,
filter types, visualization modes, and view parameters to one
or more preceding visualization groups to support interactive
operations. However, since the size of control messages is typ-
ically in the order of bytes or kilobytes, which is often much
smaller than the size of visualization data, its transport time is
assumed to be negligible.

Minimal total delay: An important requirement in many col-
laborative visualization applications is the interactivity of the
system. For remote visualizations, we account for this quantity
by minimizing the total delay:

Ttotal(Path P of q nodes) = Tcomputing + Ttransport

=
q∑

i=1

Tgi
+

q−1∑
i=1

TLP [i],P [i+1]

=
q∑

i=1

⎛
⎝ 1

pP [i]

∑
j∈gi ,j �2

(
cjmj−1

)⎞⎠

+
q−1∑
i=1

(
m(gi)

bP [i],P [i+1]

)
. (1)

Here, our goal is to minimize the total time incurred on the
forward links from the source node to the destination node to
achieve the fastest response. Note that in Eq. (1), we assume
that the transport time between modules within a single group
on the same computing node is negligible.

Maximal frame rate: We also consider another goal of max-
imizing the frame rate by minimizing the time incurred on
a bottleneck link/node for applications with streaming data,
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Fig. 3. Problem category of pipeline decomposition and network mapping.
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Fig. 4. Mathematical model for pipeline partitioning and network mapping.

given as in Eq. (2):

Tbottleneck(Path P of q nodes)

= max
Path P of q nodes

i=1,2,...,q−1

⎧⎪⎪⎨
⎪⎪⎩

Tcomputing(gi),

Ttransport(LP [i],P [i+1]),

Tcomputing(gq)

⎫⎪⎪⎬
⎪⎪⎭

= max
Path P of q nodes

i=1,2,...,q−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

pP [i]
∑

j∈gi and j �2

(
cjmj−1

)
,

m(gi)

bP [i],P [i+1]
,

1

pP [q]
∑

j∈gq and j �2

(
cjmj−1

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(2)

3. Design of distributed remote visualization system

In this section, we first present a linear regression model to
estimate the connection bandwidth and minimum delay using
active traffic measurement, and propose solutions based on dy-
namic programming for the visualization pipeline partitioning
and mapping problems under various conditions.

3.1. Bandwidth measurement

Due to complex traffic distribution over wide-area networks
and the non-linear nature of transport protocol dynamics (in
particular TCP), the throughput achieved in actual message
transfers is often different from both the link and available
bandwidths, and typically contains a random component. We
consider the effective path bandwidth (EPB) as the throughput
achieved by a flow using a given transport module under given
cross traffic conditions. The notion of EPB is specific to the
transport protocol employed by the transport daemon. The ac-
tive measurement technique we apply here estimates the EPB
and minimum delay for connection. Note that a connection may
consist of multiple underlying physical links from possibly dif-
ferent networks.

There are three main types of delays involved in the
message transmission over computer networks, namely, link
propagation delay dp imposed at the physical layer level,
equipment-associated delay dq mostly incurred by process-
ing and buffering at the hosts and routers, and bandwidth-
constrained delay dBW. The delay dq often experiences a high
level of randomness in the presence of time-varying cross traffic
and host loads. Also, since the transport protocol reacts to the
competing traffic on the links, the delay dBW may also exhibit
randomness particularly over congested wide-area connections.
We use Eq. (3) to estimate the end-to-end delay in transmitting a
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Fig. 5. End-to-end message transmission delay measurements between LSU
and ORNL.

message of size r on a path P with l links:

d(P, r) = dBW(P, r) +
l∑

i=1

(dp,i (P ) + dq,i (P , r)). (3)

Due to the large size of data transfer in high-performance vi-
sualization applications, only the first term of Eq. (3) is signifi-
cant and therefore the delay d(P, r) of transmitting a message
of size r along path P can be approximated by a linear model:
d(P, r) ≈ r/EPB(P ). The active measurement technique gen-
erates a set of test messages of various sizes, sends them to
a destination node through the connection (for example, using
TCP), and measures the end-to-end delays, on which we apply a
linear regression to estimate the EPB. The delay measurements
between Louisiana State University (LSU) and Oak Ridge Na-
tional Laboratory (ORNL) as well as the corresponding linear
regression are illustrated in Fig. 5, from which we estimate the
EPB on this path to be about 1.0 Mbps. We emphasize that the
same transport method used for collecting measurements will
be used by the visualization modules. If measurements are col-
lected by tools such as Iperf, or NWS [10], they must be ap-
propriately translated into the effective bandwidth seen by the
visualization pipeline. If the bandwidth measurements do not
use the same transport module or the same transport parame-
ters as the visualization modules, it is not sufficient to simply
“plug-in” their estimates in Eqs. (1) and (2).

3.2. Pipeline partition and network mapping

We propose solutions based on dynamic programming to
solve the visualization pipeline partition and mapping problems
with the minimal total delay or maximal frame rate. Intuitively,
a more general version of these problems is quite similar to the
classical graph clustering problem, which is NP-complete and
may be solved approximately, for example, using the branch-
and-bound technique [6]. However, by exploiting the linear
arrangement of visualization modules, we are able to achieve
optimal solutions to these problems in polynomial time.

3.2.1. Minimal total delay
We consider Problems 2, 3, and 4 in Fig. 3 for total de-

lay minimization under different stringent levels of constraint

conditions. Problem 2 decomposes the modules of the visualiza-
tion pipeline into a fixed number of groups that are then mapped
onto a pre-selected linear arrangement of network nodes. Prob-
lem 3 maps all the modules in the visualization pipeline one-
to-one to different nodes in an arbitrary network, i.e. each node
executes a single module. Problem 4 addresses a general case
where the pipeline can be decomposed into any number of
groups and the available computing nodes form an arbitrary
network.

Surjective mapping with linearly arranged network nodes:
In this scenario, all k + 1 nodes in the computer network are
pre-selected and linearly arranged for mapping. We aim to de-
compose n + 1 modules into k + 1 groups and map them onto
k + 1 nodes to achieve the minimal total delay of the visual-
ization pipeline. There are n messages flowing between n + 1
visualization modules with sizes mj , j = 1, 2, . . . , n, and k

network links with bandwidths bi, i = 1, 2, . . . , k connecting
k + 1 computing nodes, each of which has processing speed
ps, s = 1, 2, . . . , k + 1.

Let T (i, j) denote the minimal total delay with the first
j messages (namely the first j + 1 visualization modules)
mapped onto the first i network links. The dynamic program-
ming method uses the following recursion to compute T (i, j):

T (i, j)
i=1 to k,j=2 to n,i � j

= min

{
T (i − 1, j − 1) + mj/bi + cj+1mj/pi+1,

T (i, j − 1) + cj+1mj/pi+1,

(4)

where the base conditions are computed as T (0, t) =∑t
i=1 ci+1mi/p1, t = 1, 2, . . . , n in the first row and T (t, t) =∑t
i=1 mi/bi + ∑t

i=1 ci+1mi/pi+1, t = 1, 2, . . . , k on the di-
agonal line. Note that the first module is assumed to be a DS
that does not introduce computing time. The complexity of
this algorithm is in the order of O(n × k).

We now establish the correctness of Eq. (4). At each step
of the recursion, T (i, j) takes the minimal of two subcases
as illustrated in Fig. 6. In the first subcase, the last message
mj is mapped to the last link bi so that the transport time on
this mapped link together with the computing time of the last
module on the last node is added to T (i − 1, j − 1), which is
the subproblem of size i − 1 and j − 1. In the second subcase,
we do not map the last message mj on any link, which means
that the last two modules are both executed on the last node,
and then the problem directly reduces to the subproblem of size
i and j − 1 with the addition of the computing time of the last
module on the last node.

Fig. 7 shows the dynamics of 2D matrix construction for
computing T (i, j). The entries of the diagonal line and first
row are entered beforehand as the base conditions. In order to
fill up the whole upper triangle, the calculation sweeps across
the matrix from left to right first and from top to bottom af-
terwards. For example, let us consider the back tracing path of
T (3, 4). We first visit T (2, 3) and T (3, 3), of which T (3, 3) is
already known from the base case and T (2, 3) is calculated from
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T (2, 2) and T (1, 2), which is in turn calculated from T (1, 1)

and T (0, 1). Once the base cases are reached, the tracing pro-
cess will stop and bounce back to its starting point. On the
diagonal line with an equal number of links and messages, we
simply map all messages one-to-one onto links in a linear order.
For each comparison step, the mapping scheme matrix either
inherits the mapping scheme from that of T (i, j −1) by adding
module Mj+1 to the last group, or appends a separate group
with module Mj+1 to the mapping scheme of T (i − 1, j − 1).
Note that an additional matrix is needed to record the map-
ping scheme for the winner of each comparison along with the
computation.

Injective mapping with arbitrary network: In this scenario,
all n + 1 visualization modules are individually mapped to
a set of n + 1 nodes in an arbitrary network of k + 1 nodes
with the first module mapped to vs, and the last module
mapped to vd. That is, we consider a mapping path P of
q = n + 1 nodes and n hops. The mapping of intermediate
modules to network nodes needs to be decided such that the
total delay time is minimized. Since no grouping of visual-
ization modules is allowed, the pipeline partition is actually
predetermined.

With appropriate adjustments made on the evaluation of the
objective function, this problem turns into an n-hops shortest

M1 M2 M3 Ml Ml+1

vs

u1

vi

m2 ml

c1 c2 c3 cl cl+1

m1

u2

pvi

pvs

pu

bu,vi

T l−1(u)

T l (vi)

Fig. 8. Illustration of n-hops shortest path algorithm.

path problem. Let T l(vi) denote the minimal delay of a path
with l hops from the source node vs to the node vi un-
der consideration. We have the following recursion leading
to T n(vd):

T l(vi)
l=1 to n,vi∈V

=
{

min
u∈adj(vi )

(
T l−1(u)+cl+1ml/pvi

+ml/bu,vi

)}
. (5)

As Fig. 8 shows, this recursion follows from the observation
that the minimal delay to vi with l hops is the minimum of the
delays to its neighbor with l − 1 hops plus the cost incurred by
that link. The base conditions are computed as

T 1(vi)
vi∈V and vi �=vs

=
{

c2m1/pvi
+ m1/bvs,vi

∀evs,vi
∈ E,

∞ otherwise.

The complexity of this algorithm is O(n × |E|).
A general mapping scheme: Now we consider a general map-

ping scheme that removes the previous constraints imposed on
the visualization pipeline and computer network. The objective
of pipeline partition and network mapping is to minimize the
total delay by decomposing the visualization pipeline into any
number of groups and mapping them to an arbitrary network.
This scenario imposes the least restrictions and is the most gen-
eral case for our problem. Let T j (vi) denote the minimal total
delay with the first j messages (namely the first j + 1 visu-
alization modules) mapped to a path from the source node vs
to node vi under consideration in the computer network. Then,
we have the following recursion leading to T n(vd):

T j (vi)
j=2 to n,vi∈V

= min

⎧⎨
⎩

T j−1(vi) + cj+1mj/pvi
,

min
u∈adj(vi )

(
T j−1(u) + cj+1mj/pvi

+ mj/bu,vi

)
,

(6)
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with the base conditions computed as

T 1(vi)
vi∈V and vi �=vs

=
{

c2m1/pvi
+ m1/bvs,vi

∀evs,vi
∈ E,

∞ otherwise

on the first column and T t (vs) = ∑t
i=1

(
ci+1mi/pvs

)
, t =

1, 2, . . . , n on the first row in the 2D matrix of dynamic pro-
gramming as shown in Fig. 9.

In Eq. (6), at each step of the recursion, T j (vi) takes the
minimal of two subcases. In the first subcase, we do not map
the last message mj to any network link; instead we directly
place the last module Mj+1 at node vi itself. Therefore, we
only need to add the computing time of Mj+1 on node vi to
T j−1(vi), which is a subproblem of node vi of size j −1. This
subcase is represented by the direct inheritance link from its left
neighbor element in the 2D matrix. In the second subcase, the
last message mj is mapped to one of the incident network links
from its neighbor nodes to node vi . The set of neighbor nodes
of node vi is enclosed in a cloudy area in Fig. 9. We calculate
the total delay for each mapping of an incident link of node vi

and choose the one with the minimum delay, which is further
compared with the one calculated in the first subcase. For each
comparison step, the mapping scheme of T j (vi) is obtained
as follows: we either directly inherit the mapping scheme of
T j−1(vi) by simply adding module Mj+1 to the last group, or
create a separate group for module Mj+1 and append it to the
mapping scheme T j−1(u) of the neighbor nodes u ∈ adj(vi)

of node vi . The complexity of this algorithm is O(n × |E|).

3.2.2. Maximal frame rate
In visualization applications producing streaming data such

as animations with a number of time steps, visualization data of
the same modality is continuously generated, manipulated, and
rendered in a pipelined manner. The maximal frame rate that
a pipelining system can achieve is limited by the slowest (bot-
tleneck) transport link or computing node along the pipeline.
Due to the similarity of the recursive processes in achieving

optimization goals for surjective and injective mapping
schemes, only the most general case is discussed here.

We adapt the above dynamic programming method to this
problem by introducing necessary modifications. Let 1/T j (vi)

denote the maximal frame rate with the first j messages (namely
the first j + 1 visualization modules) mapped to a path from
source node vs and node vi in an arbitrary computer network.
Let Sj (vi) represent the sum of the message sizes of all mod-
ules on node vi with the first j messages mapped from node
vs to vi . We have the following recursion leading to T n(vd):

T j (vi)
j=2 to n,vi∈V

= min

⎧⎨
⎩

max
(
T j−1(vi),

(
Sj−1 (vi) +cj+1mj

)
/pvi

)
,

min
u∈adj(vi )

(
max

(
T j−1(u), cj+1mj/pvi

, mj/bu,vi

))
,

(7)

with the base conditions computed as

T 1(vi)
vi∈V and vi �=vs

=
{

max
(
c2m1/pvi

, m1/bvs,vi

) ∀evs,vi
∈ E

∞ otherwise

and T t (vs) =
t∑

i=1

(
ci+1mi/pvs

)
, t = 1, 2, . . . , n.

Every transport link or computer node is a potential bottleneck
and needs to be checked. At each step of the recursion, the bot-
tleneck times for all possible schemes are computed and the
scheme with the minimal bottleneck time is chosen as the op-
timal result for maximal frame rate. One inherent problem for
the maximal frame rate algorithm is that since our algorithm
does not exclude loops in network path selection, loops may
compromise the optimality of frame rate for streaming data due
to the non-exclusive computing node possession by different
modules at the same time. If loops appear, optimality cannot
be guaranteed for the maximal frame rate. However, such situ-
ations rarely occur.

It is worth pointing out that some additional constraints may
arise in practical applications. For example, the maximal num-
ber of modules on a specific node may be limited, or some
nodes are only capable of executing certain visualization mod-
ules. Such constraints can be conveniently handled by impos-
ing feasibility checks at each step of the dynamic programming
recursions described in Eqs. (4)–(7). The scenario with failed
feasibility check is simply discarded. Note that a solution in this
situation is not guaranteed, especially when all scenarios fail in
the feasibility checks. This feasibility checking feature makes
our system versatile in meeting diverse practical requirements.

4. Implementation and case study

Our distributed remote visualization system is implemented
in C++ on the Linux platform using GTK+ for client GUI de-
sign. We selected three Internet hosts, boba.sinrg.cs.utk.edu at
University of Tennessee at Knoxville (UT), ozy4.csm.ornl.gov
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at ORNL, and robot.rrl.lsu.edu at LSU for system deployment,
as shown in Fig. 10. The hosts ozy4 at ORNL and robot at LSU
are Linux workstations with common system configurations
including a 3 GHz CPU. The host boba deployed at UT is a
cluster, on which we use four nodes for parallel visualization
computations in our experiment. Our system provides various
visualization functionalities such as isosurface extraction, vol-
ume rendering, linear integral convolution (LIC), and stream-
line. Data transmission is currently carried out via TCP/IP
sockets.

4.1. Experimental tests

Our system consists of four virtual component nodes, namely
the client, central management (CM), DS, and computing ser-
vice (CS), which are connected together by network links to
form a closed loop. A visualization loop always starts at a client
that initiates a particular visualization task by sending a request
(containing data file, variable name, visualization method, view
parameters, etc.) to a designated CM node. CM determines
the best system configuration to accomplish the visualization
task.

Based on the global knowledge of data source and system
resource distributions within its service area, CM strategically
partitions the pipeline of the selected visualization method into
groups and selects an appropriate set of CS nodes to execute
the visualization modules. The computation for pipeline parti-
tioning and network mapping results in a visualization routing
table, which is delivered sequentially over the rest of the loop

Data source
ozy4.csm.ornl.gov

Client
robot.rrl.lsu.edu

Cluster
boba.sinrg.cs.utk.edu

LSU

ORNL UT

Fig. 10. Remote visualization system deployment.

Raw data Send data 
Isosurface
extraction

Rendering Display 
Interactive

response (sec)
Hand (5.24MB) 27.07

Engine (7.21MB) ozy4 @ ORNL robot @ LSU
41.53

Hand (5.24MB) 15.21
Engine (7.21MB) ozy4 @ ORNL robot @ LSU

27.37
Hand (5.24MB) 5.84

Engine (7.21MB)
ozy4 @ ORNL boba @ UT robot @ LSU

8.15

Fig. 11. Experimental results.

to establish the communication channel for the requested visu-
alization task. Each CS node along the path receives intermedi-
ate results from upstream node, and executes the visualization
modules designated by the routing table. Computation results
are forwarded to the downstream node for further processing.
This loop ends at the client node for final image display.

Several experiments are conducted with the ozy4 host at
ORNL as the DS node, the boba cluster at UT as the CS node,
and the robot host at LSU as both the client and the CM node.
We established three different routing tables for isosurface vi-
sualization of two raw data sets as shown in Fig. 11. Each
column indicates corresponding computing node for that com-
puting module.

In the first case, the raw data set was sent out by the ozy4 host
directly to the client end. The robot host at LSU received the
raw data and performed local isosurface extraction and render-
ing. Significant end-to-end delays were observed for this case
due to large data set transmission on a low-bandwidth link. In
the second case, the ozy4 host performed isosurface extraction
and off-screen rendering, and final image was shipped to the
robot host for final display. End-to-end delays were reduced
approximately by half of the first case. In the third case, the
ozy4 host pushed raw data to the boba cluster for parallel iso-
surface extraction and off-screen rendering using four comput-
ing nodes. The resulted image was transmitted from the boba
cluster to the robot host. Due to the speedup gained by the par-
allel processing, end-to-end delays were only about one-third
of the second case.

In dealing with large data sets, the final image is preferably
sent to the client especially when the available bandwidth is
limited. The size of image generated by the rendering process
is mainly decided by the width and height of the display screen
regardless of the data set volume. In case of very low bandwidth
links, the display window may need to be suitably scaled down
to reduce the image size, and in addition, a lower level of image
resolution may be chosen.

As the third case shows, adding intermediate parallel process-
ing nodes can potentially accelerate the visualization pipeline.
However, this may not be true if the benefit of time savings on
parallel processing is offset by the overhead incurred for extra
communications. Our system is self-adaptive so that an optimal
visualization network configuration is always automatically se-
lected by the dynamic programming-based core algorithm in
the beginning of the visualization task.

Even during the same visualization session, any drastic con-
dition changes might trigger re-computing the routing table
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and therefore adaptively reconstructing the routing path. Such
condition changes take place in the following circumstances:
(i) a selected network link is more or less congested due to
the increase or decrease in cross traffic, i.e., the effective BW
changes; (ii) a new CPU-intensive process is concurrently ex-
ecuted on one selected node, i.e., the computing time changes;
(iii) the user modifies isovalue, or viewing angles, or source
data sets, which could affect both the transport and comput-
ing times; (iv) new system resources are added to the net-
work, e.g., a new cluster is installed, a dedicated channel is
brought up, one of the hosts is upgraded, or duplicate data
sets are found at a closer site. All these network and host
conditions are estimated and sent to the CM node for system
reconfiguration on a periodical basis or at the time of event
occurrence.

5. Conclusion and future plan

In this paper, we proposed a framework and a mathe-
matical model for automatically mapping a visualization
pipeline to a computer network. Our objectives are to min-
imize the total delay or maximize the frame rate of the vi-
sualization system. Dynamic programming-based approaches
are proposed to compute optimal schemes for grouping and
mapping the visualization modules onto a computer net-
work, which could either be the Internet or a dedicated
network.

It would be of our future interest to study various formula-
tions of this class of problems from the viewpoint of computa-
tional criteria and practical implementation. The routing table
is manually generated in our current implementation. In the
future, we plan to strengthen our implementation to support
automatic routing table construction after network condition
monitoring daemon is embedded, and also deploy our system
over dedicated networks, such as DOE UltraScience Net [5],
for experimental testing.

As the data set sizes reach terabytes, the transport delays
within the pipeline could be prohibitively high even over ded-
icated high-throughput networks. One obvious solution is to
speed up the transport process. But most existing remote visu-
alization systems (including ours) use the default TCP for both
data and control message transmission. Newer transport proto-
cols based on stochastic approximation methods for throughput
stabilization and maximization [13,14] have been developed
to overcome the limitations of default TCP or UDP in terms
of throughput, stability and dynamics. We plan to incorporate
these new transport methods in our remote visualization system
at a later stage.
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