
Toward a Realistic Task Scheduling Model
Oliver Sinnen, Leonel Augusto Sousa, Senior Member, IEEE, and Frode Eika Sandnes

Abstract—Task scheduling is an important aspect of parallel programming. Most of the heuristics for this NP-hard problem are based

on a very simple system model of the target parallel system. Experiments revealed the inappropriateness of this classic model to obtain

accurate and efficient schedules for real systems. In order to overcome this shortcoming, a new scheduling model was proposed that

considers the contention for communication resources. Even though the accuracy and efficiency improved with the consideration of

contention, the new contention model is still not good enough. The crucial aspect is the involvement of the processor in

communication. This paper investigates the involvement of the processor in communication and its impact on task scheduling. A new

system model is proposed based on the contention model that is aware of the processor involvement. The challenges for the

scheduling techniques are analyzed and two scheduling algorithms are proposed. Experiments on real parallel systems show the

significantly improved accuracy and efficiency of the new model and algorithms.

Index Terms—Parallel processing, concurrent programming, scheduling and task partitioning, processor involvement, heterogeneous

system model.

�

1 INTRODUCTION

SCHEDULING is an important aspect of efficient parallel
computer utilization. In task scheduling, the program is

represented by a task graph, or Directed Acyclic Graph
(DAG), where the nodes represent the tasks of the program
and the edges the communications between the tasks. The
scheduling problem is to find the spatial and temporal
assignments of the tasks onto the processors of the target
system which results in the shortest possible execution time
of the program. In its general form, this problem is NP-hard
[28], [35]. Many heuristics have been proposed for the near
optimal solution of the problem [3], [4], [12], [14], [19], [22],
[26], [37], [38].

Unfortunately, most of the algorithms are based on a very
simple system model, which does not accurately reflect real
parallel systems. The main problematic assumptions are: 1) a
dedicated subsystem for the interprocessor communication,
2) completely concurrent communication, and 3) a fully
connected communication network. The last two assump-
tions avoid the consideration of contention for communica-
tion resources in task scheduling. Experiments [24], [31]
showed that the consideration of contention is essential for
the generation of accurate and efficient schedules. A conten-
tion aware task scheduling strategy that captures end-point
and network contention has been proposed in [34].

Even though the accuracy and efficiency of scheduling was
significantly improved through the consideration of conten-
tion in task scheduling, the experiments also demonstrated
that there is still one aspect regarding communication, which

is not sufficiently addressed by the new contention model,
namely, the involvement of the processors in communication,
which is in opposition to the assumption of a dedicated
subsystem for the interprocessor communication.

This paper investigates the involvement of the processor in

communication, its impact on task scheduling and how it can

be considered in task scheduling. A new system model for
scheduling that considers the involvement of the processor in

communication is proposed based on the contention model.
As a result, the new model is general and unifies the existing

scheduling models. The concept of edge scheduling, used in

contention aware scheduling, is extended to the scheduling of
the edges on the processors in order to reflect the processors’

involvement. Since scheduling under the new model requires
the adjustment of the existing techniques, it is shown how this

can be done for list scheduling and a new genetic algorithm

based heuristic is proposed. Experiments are performed
which demonstrate the greatly improved accuracy and

efficiency of the schedules produced under the new involve-
ment-contention model.

The remainder of this paper is organized as follows:
Section 2 establishes the background and definitions of task
scheduling under the classic and the contention model.
Section 3 generically analyzes the processor involvement in
communication. Based on this analysis, Section 4 investi-
gates the integration of the awareness for the processor
involvement in task scheduling. Section 5 discusses
scheduling heuristics based on the new model. Experi-
mental results are presented in Section 6 and this paper
concludes with Section 7.

2 TASK SCHEDULING

In task scheduling, the program to be scheduled is
represented by a directed acyclic graph.

Definition 1: Directed Acyclic Graph (DAG). A DAG is a
directed acyclic graph G ¼ ðV;E; w; cÞ representing a pro-
gram P. The nodes in V represent the tasks of P and the edges
in E the communications between the tasks. An edge eij 2 E

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006 263

. O. Sinnen is with the Department of Electrical and Computer Engineering,
University of Auckland, Private Bag 92019, Auckland, New Zealand.
E-mail: o.sinnen@auckland.ac.nz.

. L.A. Sousa is with INESC-ID, Instituto Superior Tecnico, Technical
University of Lisbon, Rua Alves Redol 9, P-1000-029 Lisboa, Portugal.
E-mail: las@inesc-id.pt.

. F.E. Sandnes is with the Department of Computer Science, Faculty of
Engineering, Oslo University College, PO Box 4, St. Olav Plass, N-0130
Oslo, Norway. E-mail: frode-eika.sandnes@iu.hio.no.

Manuscript received 1 July 2004; revised 15 Feb. 2005; accepted 7 May 2005;
published online 25 Jan. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0163-0704.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

represents the communication from node ni to node nj. The
positive weight wðnÞ associated with node n 2 V represents its
computation cost and the nonnegative weight cðeijÞ associated
with edge eij 2 E represents its communication cost.

All instructions or operations of one task are executed in
sequential order, there is no parallelism within a task. The
nodes are strict with respect to both their inputs and their
outputs: That is, a node cannot begin execution until all its
inputs have arrived and no output is available until the
computation has finished and at that time all outputs are
available for communication simultaneously.

The set fnx 2 V : exi 2 Eg of all direct predecessors of
ni is denoted by predðniÞ and the set fnx 2 V : eix 2 Eg of
all direct successors of ni, is denoted by succðniÞ. A node
n 2 V without predecessors, predðnÞ ¼ ;, is named source
node and if it is without successors, succðnÞ ¼ ;, it is
named sink node.

2.1 Basis

A schedule of a DAG is the association of a start time and a

processor with every node of the DAG. To describe a schedule
S of a DAGG ¼ ðV;E; w; cÞ on a target system consisting of a

set P of dedicated processors, the following terms are
defined: tsðn; P Þ denotes the start time and !ðn; P Þ the
execution time of node n 2 V on processor P 2 P. Thus, the

node’s finish time is given by tfðn; P Þ ¼ tsðn; P Þ þ !ðn; P Þ: In
a homogeneous system, the execution time is equivalent to

the computation cost of the node, thus !ðn; P Þ ¼ wðnÞ. In a
heterogeneous system, the computation cost wðnÞ of node n

describes its average computation cost. The processor to which
n is allocated is denoted by procðnÞ. Further, let tfðP Þ ¼
maxn2V:procðnÞ¼PftfðnÞg be the processor finish time of P and
let slðSÞ ¼ maxn2VftfðnÞg be the schedule length (or make-

span) of S, assuming minn2VftsðnÞg ¼ 0.
For such a schedule to be feasible, the following two

conditions must be fulfilled for all nodes in G.

Condition 1 (Processor Constraint (dedicated processor)).

For any two nodes ni,nj 2 V,

procðniÞ ¼ procðnjÞ ¼ P)
tfðni; P Þ � tsðnj; P Þ

or tfðnj; P Þ � tsðni; P Þ:

�
ð1Þ

Condition 2 (Precedence Constraint (node strictness)). For

ni; nj 2 V, eij 2 E, P 2 P,

tsðnj; P Þ � tfðeijÞ; ð2Þ

where tfðeijÞ is the edge finish time of the communication

associated with eij, which is defined later, depending on the

model.

The earliest time a node nj 2 V can start execution on
processor P 2 P, which is constrained by nj’s entering

edges (2), is called the Data Ready Time (DRT) tdr with

tdrðnj; P Þ ¼ max
eij2E;ni2predðnjÞ

ftfðeijÞg ð3Þ

and, hence,

tsðn; P Þ � tdrðn; P Þ ð4Þ

for all n 2 V. If predðnÞ ¼ ;, i.e., n is a source node,
tdrðnÞ ¼ tdrðn; P Þ ¼ 0, for all P 2 P.

2.2 Classic Scheduling

Most scheduling algorithms employ a strongly idealized
model of the target parallel system [3], [4], [12], [14], [19],
[22], [26], [37], [38]. This model, which shall be referred to as
the classic model, is defined in the following, including a
generalization toward heterogeneous processors.

Definition 2 (Classic System Model). A parallel system
Mclassic ¼ ðP; !Þ consists of a finite set of dedicated processors P
connected by a communication network. The processor hetero-
geneity, in terms of processing speed, is described by the
execution time function !. This dedicated system has the
following properties:

1. local communication has zero costs,
2. communication is performed by a communication

subsystem,
3. communication can be performed concurrently, and
4. the communication network is fully connected.

Based on this system model, the edge finish time only
depends on the finish time of the origin node and the
communication time.

Definition 3 (Edge Finish Time). The edge finish time of eij 2
E is given by

tfðeijÞ ¼ tfðniÞ þ
0 if procðniÞ ¼ procðnjÞ
cðeijÞ otherwise:

�
ð5Þ

Thus, communication can overlap with the computation
of other nodes, an unlimited number of communications
can be performed at the same time, and communication has
the same cost cðeijÞ, regardless of the origin and the
destination processor, unless the communication is local.

2.3 Contention Aware Scheduling

The classic scheduling model (Definition 2) does not consider
any kind of contention for communication resources. To
make task scheduling contention aware, and thereby more
realistic, the communication network is modeled by a graph,
where processors are represented by vertices and the edges
reflect the communication links. The awareness for conten-
tion is achieved by edge scheduling [29], i.e., the scheduling of
the edges of the DAG onto the links of the network graph, in a
very similar manner to how the nodes are scheduled on the
processors.

The details of contention aware scheduling are out of the
scope of this paper, the interested reader should refer to [34].
The network model proposed in [34] captures network [29],
[32] as well as end-point contention [6], [17] and can represent
heterogeneous communication links. This is achieved by
using different types of edges and by using switch vertices in
addition to processor vertices. Here, it suffices to define the
topology network graph to beTG ¼ ðP;LÞ, where P is a set of
vertices representing the processors and L is a set of edges
representing the communication links. The system model is
then defined as follows:

Definition 4 (Target Parallel System—Contention Model).

A target parallel system MTG ¼ ðTG; !Þ consists of a set of

264 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

possibly heterogeneous processors P connected by the commu-
nication network TG ¼ ðP;LÞ. This dedicated system has the
following properties:

1. local communications have zero costs and
2. communication is performed by a communication

subsystem.

The notions of concurrent communication and a fully
connected network found in the classic model (Definition 2)
are substituted by the notion of scheduling the edges E on
the communication links L. Corresponding to the schedul-
ing of the nodes, tsðe; LÞ and tfðe; LÞ denote the start and
finish time of edge e 2 E on link L 2 L, respectively.

When a communication, represented by the edge e, is
performed between two distinct processors Psrc and Pdst,
the routing algorithm of TG returns a route from Psrc to
Pdst: R ¼ hL1; L2; . . . ; Lli, Li 2 L for i ¼ 1; . . . ; l. The edge e
is scheduled on each link of the route.

This only affects the scheduling of the nodes with an
altered definition of the edge finish time (Definition 3).

Definition 5 (Edge Finish Time—Contention Model). Let
G ¼ ðV;E; w; cÞ be a DAG and MTG ¼ ððP;LÞ; !Þ a parallel
system. Let R ¼ hL1; L2; . . . ; Lli be the route for the commu-
nication of eij 2 E, ni; nj 2 V, if procðniÞ 6¼ procðnjÞ. The
finish time of eij is

tfðeijÞ ¼
tfðniÞ if procðniÞ ¼ procðnjÞ
tfðeij; LlÞ otherwise:

�
ð6Þ

Thus, the edge finish time tfðeijÞ is now the finish time of
eij on the last link of the route, Ll, unless the communication
is local.

2.4 Scheduling Heuristics

The scheduling problem is to find a schedule with minimal
length. As this problem is NP-hard, under the classic model
[28], [35] as well as under the contention model [34], many
heuristics have been proposed for its solution.

A heuristic must schedule a node on a processor so that it
adheres to all resource (1) and precedence constraints (2).
The following Condition 3 ensures this. The notion of a free
node, used in the condition, is a node whose predecessors
have already been scheduled, which is a requisite for the
calculation of the DRT.

Condition 3 (Scheduling Condition). Let G ¼ ðV;E; w; cÞ be
a DAG and Mclassic ¼ ðP; !Þ a parallel system. Let ½A;B�,
A;B 2 ½0;1�, be an idle time interval on P 2 P, i.e., an

interval in which no node is executed. A free node n 2 V can
be scheduled on P within ½A;B� if

maxfA; tdrðn; P Þg þ !ðn; P Þ � B: ð7Þ

So, Condition 3 allows node n to be scheduled between
already scheduled nodes (insertion technique) [18], i.e.,
½A;B� ¼ ½tfðnPl ; P Þ; tsðnPlþ1

; P Þ� or after the finish time of
processor P (end technique) [1], i.e., ½A;B� ¼ ½tfðP Þ;1�.

A similar condition is formulated for the scheduling of the
edges on the links [34], additionally considering routing
aspects and the causality of the communication along the
route.

3 PROCESSOR INVOLVEMENT IN COMMUNICATION

Experimental results demonstrated that the utilization of
the contention aware model in scheduling heuristics
significantly improves the accuracy and efficiency of the
produced schedules [33]. Yet, the experiments also showed
that the contention model is still not sufficiently realistic in
terms of communication [31].

The contention model (Definition 4) supposes, as does
the classic model (Definition 2), a dedicated communication
subsystem to be present in the target system. With the
assumed subsystem, computations can overlap with com-
munications because the processor is not involved in
communication. However, many parallel systems do not
possess such a subsystem [10]. Therefore, in many systems
the processors are involved, in one way or the other, in
interprocessor communication. Furthermore, the involve-
ment of the processor also serialises communication, even if
the network interfaces were capable of performing multiple
message transfers at the same time since a processor can
only handle one communication at a time. For example, a
processor can usually only perform one memory copy at a
time. Thus, considering the processors’ involvement in task
scheduling is of utmost importance as it serializes the
communication and, more importantly, prevents the over-
lap of computation and communication.

3.1 Involvement Types

In the context of the processor involvement, interprocessor
communication can be divided into three basic types: two-

sided, one-sided, and third party, as illustrated in Fig. 1.
Two-sided. In two-sided interprocessor communication

both the source and the destination processor are involved
in the communication (Fig. 1a). For example in a PC cluster,

SINNEN ET AL.: TOWARD A REALISTIC TASK SCHEDULING MODEL 265

Fig. 1. The three types of interprocessor communication. (a) Two-sided. (b) One-sided. (c) Third party.

the TCP/IP-based communication over the LAN involves
both processors. The sending processor must divide a
message into packages and wrap them into TCP/IP
protocol envelopes before setting up the network card for
the transfer. On the receiving side, the processor is involved
in the unwrapping and assembling of the packages into the
original message [10].

One-sided. Communication is said to be one-sided, if
only one of the two participating processors is involved
(Fig. 1b). Thus, this type of communication is limited to
shared memory systems: either the source processor writes
the data into its destination location (shared memory “put”)
or the destination processor reads the data from its source
location (shared memory “get”). For example, on the Cray
T3E a processor can read from or write into remote memory
using special registers [10].

Third party. In third party interprocessor communica-
tion, the data transfer is performed by dedicated commu-
nication devices, as illustrated in Fig. 1c. The processor only
informs the communication device of the memory area it
wants transfered and the rest of the communication is
performed by the device, usually employing some kind of
Direct Memory Access (DMA). Examples for machines that
possess such subsystems are Meiko CS-2 [5] or IBM SP-2
[15]. Task scheduling, both under the classic and under the
contention model, assumes the third-party type of inter-
processor communication (Definitions 2 and 4).

It is important to note that the software layer employed
in parallel programming strongly affects the type of
communication used. For example, in a shared memory
system, communication can be one-sided, but the software
layer might use a common buffer (one processor writes, the
other reads) which turns it into two-sided communication.
This effect is not uncommon, as shown by the analysis of
MPI implementations on common parallel systems in [16].
Task scheduling should of course reflect the effective type
of involvement, taking into account the software layer
employed in the code generation.

3.2 Involvement Characteristics

The classification of interprocessor communication into
three different types can be refined with the notions of
overhead and direct involvement.

Overhead. The first component of the processor’s
involvement is the communication setup or overhead. From
the initiation of the communication process until the first
data item is put onto the network, the processor is engaged
in preparing the communication. An overhead is in general
also imposed on the destination processor from after the
data has arrived until it can be used by the receiving task.
The overhead consists mainly of the path through the
communication layers (e.g., MPI [25], Active Messages [36],
TCP/IP) and, hence, is usually of constant time on both
processors. In some environments, however, data might be
copied into and from a buffer, which is an operation taking
time proportional to the data size. Examples are some MPI
implementations as described in [16]. Note, the overhead
does not arise for communication between tasks executed
on the same processor. Therefore, it cannot be made part of
the computation reflected by the origin and the destination
tasks of the communication.

Direct involvement. After the communication has been
prepared by the processor during the overhead, any further

participation in communication is the direct involvement of
the processor. It is characterized by the circumstance that
data is already in transit on the communication network.
Fig. 2 features both the overhead and the direct involvement
of the processor and thereby illustrates their differences.
From now on, the term involvement means the direct
involvement of the processor and the term overhead is used
for the pre and postphases discussed above.

The distinction between communication types becomes
obsolete if the communication is described in terms of
overhead and involvement, even when the processors’
participation is only partial. Therefore, it is assumed that
overhead and involvement are imposed on both the source
and the destination processor. Then, one communication
type differs from another merely by the length of the two
components. Logically, the involvement time is zero on
some processors, namely, on both in third party commu-
nication and on one—either the sending or the receiving
processor—in one-sided communication. In contrast, the
overhead is a common part of interprocessor communica-
tion, independent of the type of communication. Thus, third
party communication is affected just as much as two and
one-sided communication, in terms of overhead.

The separation into overhead and involvement is also
more general than the approach taken by the LogP model
[9] and the computational overhead of communication
considered in [28], which is discussed in detail in [30].

4 INVOLVEMENT SCHEDULING

The notions of overhead and involvement discussed in the
last section are the key concept to enhance task scheduling
toward the awareness of the processor involvement in
communication. In the first step, a new target system model
is defined.

Definition 6 (Target Parallel System—Involvement-Con-
tention Model). A target parallel system M ¼ ðTG; !; o; iÞ
consists of a set of possibly heterogeneous processors P
connected by the communication network TG ¼ ðP;LÞ. This
dedicated system has the following property:

1. local communication has zero costs.

So, in comparison with the contention model (Defini-
tion 4), the involvement-contention model departs from
the assumption of a dedicated communication subsystem.
Instead, the role of the processors in communication is
described by the new components o—for overhead—and
i—for (direct) involvement.

Let R ¼ hL1; L2; . . . ; Lli be the route for the communica-
tion of edge e 2 E from Psrc 2 P to Pdst 2 P, Psrc 6¼ Pdst.

266 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

Fig. 2. The decomposing of the processor’s participation in commu-

nication into overhead and direct involvement.

Overhead. osðe; PsrcÞ is the computational overhead, i.e.,
the execution time, incurred by processor Psrc for preparing
the transfer of the communication associated with edge e
and orðe; PdstÞ is the overhead incurred by processor Pdst
after receiving e.

Involvement. isðe; L1Þ is the computational involvement,
i.e., execution time, incurred by processor Psrc during the
transfer of edge e and irðe; LlÞ is the computational
involvement incurred by Pdst during the transfer of e.

This is the general definition of overhead and involve-
ment for heterogeneous arbitrary systems. Therefore, the
overhead is made a function of the processor and the
involvement a function of the utilized communication link.
As discussed in the previous section, the overhead depends
largely on the employed communication environment and
is thereby normally unaffected by the utilized communica-
tion resources. In contrast, the involvement depends to a
large extent on the capabilities of the utilized communica-
tion resources. Hence, the processor involvement is char-
acterized by the outgoing or incoming link utilized for a
communication.

With the distinction between the sending (os, is) and the
receiving side (or, ir) of communication, all three types of
communication—third party, one-sided, two-sided—can be
precisely represented. The corresponding functions are
simply defined accordingly, e.g., isðe; LÞ ¼ irðe; LÞ ¼ 0 for
involvement-free third party communication.

Note, for homogeneous systems or systems that have
homogeneous parts, the definition of overhead and in-
volvement can be significantly simplified. For example, in a
systems with a homogenous network, the involvement
functions can be defined globally, i.e., is;rðe; LÞ ¼ is;rðeÞ.

4.1 Scheduling Edges on the Processors

Incorporating overhead and involvement into contention
aware task scheduling is accomplished by extending edge
scheduling so that edges are not only scheduled on the links
but also on the processors.

So, the start time of an edge e 2 E on a processor P 2 P
is denoted by tsðe; P Þ. Let R ¼ hL1; L2; . . . ; Lli be the route
for the communication of edge e 2 E from Psrc 2 P to
Pdst 2 P, Psrc 6¼ Pdst. The finish time of e on Psrc is

tfðe; PsrcÞ ¼ tsðe; PsrcÞ þ osðe; PsrcÞ þ isðe; L1Þ ð8Þ

and on Pdst it is

tfðe; PdstÞ ¼ tsðe; PdstÞ þ orðe; PdstÞ þ irðe; LlÞ: ð9Þ

Fig. 3 illustrates scheduling under the involvement-
contention model. The execution time of an edge on a
processor is the sum of the overhead and the involvement
(see (8) and (9)).

As an edge scheduled on a processor represents
computation, precisely the computation necessary for the
communication of the edge, its scheduling must fulfil the
processor constraint as formulated in Condition 1. For a
meaningful and feasible schedule, the scheduling of the
edges on the processors must obey this condition:

Condition 4 (Causality in Involvement Scheduling). Let
R ¼ hL1; L2; . . . ; Lli be the route for the communication of
edge eij 2 E, ni; nj 2 V; from Psrc 2 P to Pdst 2 P,
Psrc 6¼ Pdst.

To assure the node strictness of ni

tsðeij; PsrcÞ � tfðni; PsrcÞ: ð10Þ

Edge eij can be transfered on the first link L1 only after the
overhead completed on the source processor Psrc:

tsðeij; L1Þ � tsðeij; PsrcÞ þ osðeij; PsrcÞ: ð11Þ

To assure the causality of the direct involvement on the
destination processor Pdst

tsðeij; PdstÞ � tfðeij; LlÞ � irðeij; LlÞ: ð12Þ

The three inequalities can be observed in effect in Fig. 3.
Edge eAB starts onP1 after the origin nodeA finishes ((10)). On
the first link L1, eAB starts after the overhead finishes on P1

((11)), at which time the involvement of P1 begins. And last,
eAB starts on P2 so that the involvement finishes at the same
time as eij on L2 ((12)).

Condition 4 leaves scheduling algorithms some freedom
for the node-edge order on the processor. An edge leaving a
processor does not have to start immediately after the
processor (10)—other edges or nodes can be executed before.
The same principle holds on the destination processor (12).

4.1.1 Scheduling

Just as for the scheduling of the nodes on the processors
(Section 2.4, Condition 3), a scheduling condition is
formulated for the correct choice of an idle time interval
into which an edge can be scheduled on a processor, with
either the end or insertion scheduling technique.

Condition 5 (Edge Scheduling Condition on a Processor).
Let G ¼ ðV;E; w; cÞ be a DAG, M ¼ ððP;LÞ; !; o; iÞ a
parallel system and R ¼ hL1; L2; . . . ; Lli the route for the
communication of edge eij 2 E, ni; nj 2 V, from Psrc 2 P to
Pdst 2 P, Psrc 6¼ Pdst. Let ½A;B�, A;B 2 ½0;1�, be an idle
time interval on P , P 2 fPsrc; Pdstg. Edge eij can be scheduled
on P within ½A;B� if

B�A � osðeij; PsrcÞ þ isðeij; L1Þ if P ¼ Psrc
orðeij; PdstÞ þ irðeij; LlÞ if P ¼ Pdst

�
ð13Þ

B � tfðni; PsrcÞ þ osðeij; PsrcÞ þ isðeij; L1Þ if P ¼ Psrc
tfðeij; LlÞ þ orðeij; PdstÞ if P ¼ Pdst:

�

ð14Þ

SINNEN ET AL.: TOWARD A REALISTIC TASK SCHEDULING MODEL 267

Fig. 3. Scheduling under the involvement-contention model: edges are

also scheduled on the processors; (S—switch or other processor).

This condition ensures that the time interval ½A;B�
adheres to the inequalities (10) and (12) of the causality
Condition 4. For an idle time interval ½A;B� adhering to
Condition 5, the start time of eij on Psrc and Pdst is

tsðeij; P Þ ¼
maxfA; tfðniÞg if P ¼ Psrc
maxfA; tfðeij; LlÞ � irðeij; LlÞg if P ¼ Pdst:

�

ð15Þ

So, the edge is scheduled as early as possible within the
limits of the interval. Of course, the choice of the interval
should follow the same policy on the links and on the
processors, i.e., either end or insertion scheduling should
be used.

Note, the size of the involvement does not depend on the
contention in the network. The assumption is that if the
processor has to wait to send or receive a communication
due to contention, this wait is passive or nonblocking,
which means it can perform other operations in the
meantime.

4.2 Node and Edge Scheduling

Few alterations are imposed by the new model on the edge
scheduling on the links and on the scheduling of the nodes.

Edge scheduling on links. The Causality Condition 4 of
Involvement Scheduling only imposes a constraint on the
scheduling of an edge on the first link of its communication
route. This is formulated in (11), which requires that edge
eij must not start on the first link L1of its route until after
the overhead has finished on the source processor Psrc,
tsðeij; L1Þ � tsðeij; PsrcÞ þ osðeij; PsrcÞ. In comparison, under
the contention model edge eij can start on the first link L1

immediately after its origin node ni has finished,
tsðeij; L1Þ � tfðniÞ.

Note, the rest of the edge scheduling procedure is
completely unaffected by the scheduling of the edges on the
processors and remains unchanged.

Node scheduling. To adapt the scheduling of the nodes
to the new model, it is only necessary to redefine the finish
time of the edge.

Definition 7 (Edge Finish Time). Let G ¼ ðV;E; w; cÞ be a
DAG and M ¼ ððP;LÞ; !; o; iÞ a parallel system. The finish
time of eij 2 E, ni; nj 2 V is

tfðeijÞ ¼
tfðniÞ if procðniÞ ¼ procðnjÞ
tfðeij; procðnjÞÞ otherwise:

�
ð16Þ

4.3 NP-Completeness

Scheduling under the involvement-contention model re-
mains an NP-hard problem. This is easy to see, as the
involvement model is based on the contention model, which
is NP-hard. It is proven with the straightforward reduction
from the NP-complete decision problem C-SCHED (G,
MTG) associated with the scheduling under the contention
model [30].

Theorem 1 (NP-Completeness—Involvement-Contention
Model). Let G ¼ ðV;E; w; cÞ be a DAG and M ¼
ððP;LÞ; !; o; iÞ a parallel system. The decision problem
IC-SCHED (G, M) associated with the scheduling problem
is as follows: Is there a schedule S for G on M with length
slðSÞ � T; T 2 QQþ? IC-SCHED (G, M) is NP-complete.

The formal proof is given in [30].

5 SCHEDULING ALGORITHMS

In contrast to scheduling on the links, the scheduling of the
edges on the processors, which seems at first sight a simple
extension, has a strong impact on the operating mode of
scheduling algorithms. Essentially, the problem is that at
the time a free node n is scheduled, it is generally unknown
to where its successor nodes will be scheduled. It is not
even known if the corresponding outgoing communications
will be local or remote. Thus, no decision can be taken
whether to schedule n’s leaving edges on its processor or
not. Later, at the time a successor is scheduled, the period of
time directly after node n might have been occupied with
other nodes. Hence, there is no space left for the scheduling
of the corresponding edge. Scheduling under the LogP
model faces the same problem with the scheduling of o for
each communication [17].

Two approaches to scheduling under the involvement-
contention model are proposed, namely, 1) direct schedul-
ing and 2) scheduling based on a given processor allocation.
Both approaches are investigated in the next sections,
followed by the proposal of two scheduling heuristics, one
for each approach.

5.1 Direct Scheduling

Direct scheduling means that the processor allocation and
the start/finish time attribution of a node are done in one
single step. The application of the scheduling method from
contention scheduling is inadequate under the new model,
since the decision whether a communication is remote or
local is made too late. Consequently, it is necessary to
investigate how edges can be scheduled earlier.

The most viable solution is to reserve an appropriate
time interval after a node for the postponed scheduling of
the leaving edges. This must be done in a worst case
fashion, which means the interval must be large enough to
accommodate all leaving edges. A straightforward manner
to do so is to schedule all leaving edges on the source
processor, directly after the origin node. The scheduling of
the edges on the links and the destination processors can
take place when the destination node is scheduled. If the
destination node is scheduled on the same processor as the
origin node, the corresponding edge, which was provision-
ally scheduled with the origin node, is simply removed
from that processor.

Fig. 4 shows an example. First, A is scheduled on P1,
together with its three leaving edges (Fig. 4a), hence, the
worst case that B, C, and D are going to be scheduled on P2

is assumed. Indeed, node B is scheduled on P2, which
includes the preceding scheduling of eAB on the link and on
P2. Next, C is scheduled on P1, hence, eAC is removed from
P2 (Fig. 4b). Finally, D is scheduled on P2 with the
respective scheduling of eAD on the link and P2 (Fig. 4c).

On heterogeneous systems, provisional scheduling of an
edge on its source processor must take the fact that the
involvement depends on the first link of the utilized route
into consideration. Again, as the route is unknown during
the scheduling, the worst case must be assumed. So, the
provisional finish time of edge eij 2 E on its source
processor P ¼ procðniÞ, P 2 P, is

tfðeij; P Þ ¼ tsðeij; P Þ þ osðeij; P Þ þ is;maxðeij; P Þ; ð17Þ

268 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

where is;maxðeij; P Þ ¼ maxL2L:L leaving Pfisðeij; LÞg. When the
destination node nj is scheduled, the finish time must be
reduced, if applicable, to the correct value.

With the reservation of a time interval for the outgoing
edges on the processor, the remaining scheduling can be
performed as under the contention model. The disadvan-
tage of this approach is the gaps left behind by removed
edges, which can make a schedule less efficient. This
shortcoming can be relieved using the insertion technique
in scheduling. Inserting a node or an edge into a gap, is very
likely to separate edges from their origin or destination
node, but this is allowed by the causality Condition 4.
Further, the gaps can be eliminated, i.e., the schedule is
compacted, by repeating the scheduling. In this reschedul-
ing, the nodes and their edges must be scheduled in the
exact same order as in the first run, because as under the
contention model the scheduling order of the edges matters.
Then, with the processor allocation taken from the
completed schedule, the provisional scheduling of edges
becomes obsolete and the gaps are avoided.

5.2 Scheduling with Given Processor Allocation

The second approach to involvement scheduling assumes a
given processor allocation, also referred to as a mapping, of
the nodes to the processors as a prerequisite to the
scheduling procedure. Hence, for every node it is known
to where its successors will be scheduled. With a given
mapping, the schedule is constructed with a list scheduling
heuristic (Section 5.3), where the processor choice is simply
a lookup from the given mapping.

The scheduling of an edge eij can be divided into three
parts: scheduling on the source processor Psrc, on the links of
the route R, and on the destination processor Pdst. On the
source processor, an edge must be scheduled together with its
origin node ni, as the foregoing considerations in the context
of the direct scheduling showed. The scheduling on the links
and on the destination processor can take place with either the
origin node ni or the destination node nj. Hence, there are
three alternatives for the scheduling of an edge eij.

1. The first alternative is identical to the approach of
direct scheduling, where the edge eij is scheduled on
the links of R and on the destination processor Pdst,
when its destination node nj is scheduled.

2. In this alternative, eij is not only scheduled on Psrc,
but also on the links, when ni is scheduled. This
way, the edges are scheduled on the links of R in the
scheduling order of their origin nodes, while in the

first alternative the edges are scheduled on the links
in the order of their destination nodes. There is no
clear advantage of the first over the second
alternative or vice versa. Which one is better, i.e.,
more realistic, depends on the way the communica-
tion is realized in the target parallel system, whether
it is initiated by the receiving (first alternative) or by
the sending side (second alternative).

3. Edge eij is completely scheduled (i.e., on Psrc, R, and
Pdst), when its origin node ni is scheduled. This
alternative is likely to produce the best scheduling
alignment of the edge on the source processor, the
links and the destination processor, as the schedul-
ing is done at once. Unfortunately, it has the
disadvantage that the scheduling of the edges on
their destination processors might prevent the
efficient scheduling of the nodes. The early schedul-
ing of the edges on their destination processors
rapidly increases their finish times, leaving large idle
gaps. Therefore, the conjoint scheduling of an edge
on all resources is only sensible with the insertion
scheduling technique.

The processor allocation can originate from any heuristic
or can be extracted from a given schedule. For example, a
schedule produced under the classic or contention model
might serve as the input. In Section 5.4, a genetic algorithm is
proposed for the determination of the processor allocation.

5.3 List Scheduling

In this section, list scheduling [1] is adapted for the
involvement-contention model, using the direct scheduling
approach (Section 5.1). In the simple, but common, variant
of list scheduling (Algorithm 1) the nodes are ordered
according to a priority in the first part of the algorithm.

Algorithm 1 List Scheduling

1: . 1. Part:

2: Sort nodes n 2 V into list L, according to priority scheme

and precedence constraints.

3: . 2. Part:

4: for each n 2 L do

5: Find processor P 2 P that allows earliest finish time

of n.

6: Schedule n on P .

The schedule order of the nodes is important for the
schedule length and many different priority schemes have

SINNEN ET AL.: TOWARD A REALISTIC TASK SCHEDULING MODEL 269

Fig. 4. Direct scheduling: edges are provisionally scheduled on source processor. (a) and (b) chart illustrate intermediate schedules and (c) the finial

schedule of the depicted DAG; os;rðe; P Þ ¼ 0:5, is;rðe; LÞ ¼ 0:75 � ðtf ðe; LÞ � tsðe; LÞÞ.

been proposed, e.g., [1], [32], [37]. A common and usually
good priority is the node’s bottom level bl, which is the

length of the longest path leaving the node. Recursively, bl
is defined as

blðniÞ ¼ wðniÞ þ max
nj2succðniÞ

fcðeijÞ þ blðnjÞg: ð18Þ

Under the involvement-contention model and in accor-
dance with the direct scheduling approach, the scheduling

of a node (line 6 in Algorithm 1) is performed as described
in Algorithm 2.

Algorithm 2 Scheduling of node nj on processor P in
involvement-contention model

1: for each ni 2 predðnjÞ do

2: if procðniÞ ¼ P then

3: remove eij from P

4: for each ni 2 predðnjÞ in a definite order do

5: if procðniÞ 6¼ P then

6: determine routeR ¼ hL1; L2; . . . ; Lli from procðniÞ to P

7: correct tfðeij; procðniÞÞ
8: schedule eij on R

9: schedule eij on P

10: schedule nj on P

11: for each nk 2 succðnjÞ in a definite order do

. reserve space for leaving edges

12: schedule ejk on P with worst case finish time

As under the contention model, finding the processor that

allows the earliest finish time of a node involves the tentative

scheduling on every processor (line 5 of Algorithm 1,

including the incoming edges on the links and the destination

processor. In this way, it is possible to consider the

communication contention and the processor involvement

in the scheduling decisions.
To determine the start time (i.e., the “schedule” lines in

Algorithm 2) of a node or edge on a processor or link, both the

end technique and insertion technique (Section 2.4) can be

employed with list scheduling. Under the involvement-

contention model, the insertion technique is more indicated,

since the removing of provisionally scheduled edges leaves

gaps (Section 5.1), which should be filled by other nodes or

edges.
Compared to contention aware list scheduling, the

time complexity under the involvement-contention model

does not increase. The complexity of the second part of

list scheduling is OðPðVþEOðroutingÞÞÞ (end technique)

or OðV2 þPE2OðroutingÞÞ (insertion technique) [30].

OðroutingÞ is the complexity of determining the commu-

nication route and scheduling an edge on this route

(lines 6 and 8 of Algorithm 2). In regular networks,

determining the route is often OðPÞ or even Oð1Þ (e.g.,

central switch or fully connected network). If the route

can be determined in Oð1Þ time (calculated or looked

up), then OðroutingÞ is just the complexity of the length

of the route (the edge must be scheduled on each link of

the route). For comparison, the complexity expressions

under the classic model are OðPðVþEÞÞ (end technique)

and OðV2 þPEÞ (insertion technique).

5.4 A Genetic Scheduling Algorithm

In this section, a genetic algorithm (GA) based scheduling
heuristic is proposed that follows the approach of using a
given processor allocation (Section 5.2). Genetic algorithms
have been successfully employed for the scheduling problem,
e.g., [2], [7], [13], [21], [27]. A GA is a search algorithm which is
inspired by the principles of evolution and natural genetics
[11]. It begins with an initial population (a set of chromo-
somes) and then operates through a simple cycle of stages:
evaluation of the chromosomes of the population, stochastic
selection of the best chromosomes, and reproduction to create
a new population, using crossover and mutation operators.
This process is repeated and terminates after a specified
number of generations or when a time limit is exceeded.

The idea of the proposed heuristic, referred to as Genetic
Involvement-Contention Scheduling (GICS), is that the
genetic algorithm searches for an efficient processor
allocation, while the actual scheduling is performed with
a list-scheduling-based heuristic, where the decision for a
processor is taken from the calculated processor allocation.
Below, the components of GICS are described.

Chromosome. The chromosome, encoded as an array of
size jVj, represents the processor allocation [7]. Hence, the
value of array element i is the index of the processor
assigned to node ni 2 V.

Initial population. Randomly created chromosomes
make the largest part of the initial pool of chromosomes.
In order to avoid the creation of schedules that are slower
than the sequential execution, sequential processor alloca-
tions, i.e. all nodes are allocated to one single processor, are
also included. The pool is completed by one allocation
extracted from a schedule produced with a list scheduling
heuristic [21]. The chosen list scheduling uses finish time
minimization, insertion scheduling and the nodes are in
bottom-level order (Section 5.3).

Evaluation. At each iteration, a schedule is produced for
every chromosome, i.e., processor allocation, with a heur-
istic based on the list scheduling structure (the decision for
the processor is taken from the chromosome). The heuristic
employs the third alternative for the scheduling of the
edges (Section 5.2), where an edge is completely scheduled
with its origin node. This kind of edge scheduling requires
the insertion technique. To reduce the running time of the
evaluation, the node order is determined only once at the
beginning of the algorithm, namely, according to their
bottom-levels. The fitness value of each chromosome is the
length of its schedule.

Selection. Selection is performed by randomly picking
two chromosomes out of the current pool from which the
fitter one goes into the next generation, i.e., so called
tournament selection. This process is repeated until the pool
of the next generation has the specified population size. It is
also guaranteed that the fittest chromosome, the one with
the shortest schedule, survives.

Crossover. Two new chromosomes, nc1, nc2 are gener-
ated from two randomly selected chromosomes, c1, c2, by
swapping the array values of a randomly determined
element interval. Let the interval range from i to j. Outside
this interval, i.e., ½1; i� 1� and ½jþ 1; jVj�, the elements of
nc1 have the values of c1 and inside those of c2. For nc2 it is
converse.

270 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

Mutation. The mutation operator creates a new chromo-
some by copying a randomly picked chromosome and
swapping the values of two randomly determined array
elements. This operation helps to balance the load, as the
number of nodes per processor is not changed. For DAGs
with a high CCR, i.e., with a lot of communication, load
balancing is not very promising. The CCR is the communica-
tion to computation ratio defined as the sum of all commu-
nication costs divided by the sum of all computation costs,

CCR ¼
P

e2E cðeÞP
n2V wðnÞ

:

Therefore, if the CCR is high (currently > 5), the swapping
is substituted with an increase or decrease (randomly
decided) by one of an array element.

The complexity of GICS is

Oðpopulation size� number of generations
� ðVþEOðroutingÞÞÞ;

where the last term is the complexity of list scheduling
without the processor choice (hence, without factor P, see
Section 5.3).

The edge scheduling of GICS is different to the edge
scheduling of list scheduling as proposed in the previous
section. Consequently, the comparison of the two heuristics
in the following experiments will also provide some
insights regarding the quality of the different edge schedul-
ing approaches.

Finally, the control parameters which delivered good
results and were used in the experiments are: population
size = 100, number of generations = 40 (60 for DAGs with
high CCR, see mutation operator), probability of a chromo-
some to participate in a crossover = 0:4, probability of
mutation = 0:15.

6 EXPERIMENTAL RESULTS

For the evaluation of the new involvement-contention
model and the two proposed heuristics, the experimental
methodology proposed in [33] is employed. A large set of
graphs is generated and scheduled by algorithms under the
different models to several target systems. Code is
generated from the produced schedules, using C and MPI,
and executed on the real parallel systems. The execution
times of these codes directly show which algorithms and
models produce the best schedules.

The evaluation is divided into two parts: accuracy and
execution time. In the following, only the most important
results are presented, but more experiments and details can
be found in [30].

6.1 Improved Accuracy

In [31], the accuracy of the classic and the contention model
are examined using the mentioned methodology. To evaluate
the accuracy of the new involvement-contention model, the
schedules produced in those experiments under classic and
the contention model are rescheduled, but now under the
involvement-contention model. The two original heuristics
are Cl-LS(bl)—list scheduling with bottom-level order—as a
classic model heuristic, and LS(dls)—list scheduling with
DLS’s node order [29]—as a contention model heuristic. This

rescheduling allocates the nodes to the same processors in the
same local order as in the original schedule. Consequently,
the code generated for the schedule under the involvement-
contention model would be identical to the one generated for
the original schedule, under the contention model. Hence, the
execution time of that code would be identical to the
execution time of the original code, which was already
obtained experimentally. By comparing this execution time
with the prediction under the involvement-contention
model, the new model’s accuracy is determined.

Three target systems were employed in the experiments: a
cluster (BOBCAT) of 16 PCs, modeled as a switched network;
a shared memory multiprocessor system Sun E3500 with
8 processors, modeled as a bus network; a massively parallel
system Cray T3E-900 with a total of 344 processors, modeled
as a fully connected network.

Duetothelackofaprofoundinsight intothetargetsystems’
communication mechanisms and their MPI implementations,
100 percent involvement is assumed, i.e., the source and
destination processors are involved during the entire com-
munication time on the first and last link, respectively:
isðe; L1Þ ¼ tfðe; L1Þ � tsðe; L1Þ and irðe; LlÞ ¼ tfðe; LlÞ � ts
ðe; LlÞ. The overhead is intuitively set to an experimentally
measured setup time: osðe; P Þ ¼ orðe; P Þ ¼ setup time. While
it is clear that this definition of the overhead and the
involvement is probably not an accurate description of the
target systems’ communication behavior, it is very simple.
The idea is to demonstrate that accuracy and efficiency of
scheduling can be improved even with a rough but simple
estimate of the overhead and involvement functions.

6.1.1 Results

Fig. 5 visualizes the average accuracy deviations �accðSÞ
with

�accðSÞ ¼ accðSÞ � 1 if accðSÞ � 1
1=accðSÞ � 1 if accðSÞ < 1;

�
ð19Þ

where accðSÞ is the ratio of the execution time of the code
produced for schedule S to its schedule length slðSÞ.

It is immediately apparent from Fig. 5 that the accuracy
profoundly improved under the new involvement-conten-
tion model. While this improvement is already considerable
for low communication (CCR ¼ 0:1), it is more significant
for medium (CCR ¼ 1Þ and, especially so, for high
communication (CCR ¼ 10). The length of a schedule is
now in a region, where it can be seriously considered an
estimation of the real execution time.

Generally, the difference between the reschedules from
the classic model (Cl-LS(bl)) and the contention model
(LS(dls)) on the same system is small. This is desirable, as
the origin of the original schedule should not affect the
accuracy under the involvement-contention model.

The scheduling accuracy under the involvement-conten-
tion model is still not perfect, especially for low communica-
tion (CCR ¼ 0:1). A possible explanation might be the
blocking communication mechanisms used in MPI imple-
mentations [16], which does not match the assumption of
nonblocking communication made in the involvement
contention model. Further, the employed overhead and
involvement functions are very rough estimates, a better
approximation of these functions might improve the accu-
racy. In any case, it is in the nature of any model that there is a

SINNEN ET AL.: TOWARD A REALISTIC TASK SCHEDULING MODEL 271

difference between prediction and reality. Under this

perspective, the results obtained for the T3E are very

satisfying, which is probably due to the fact that the

T3E-900, being a massively parallel system specifically

designed for parallel processing, is the most predictable

among the target systems.

6.2 Improved Execution Time

To determine if the new model also produces schedules,

which lead to shorter execution times, new experiments

were performed using the mentioned methodology of [33].

As the intention here is to compare scheduling models and

not algorithms, the same heuristic is employed for each

model analyzed.
Seven different graph types constitute the DAG work-

load, listed in Table 1. The average in-degree or the average

out-degree (they are identical) of the nodes (���), i.e., the

average number of incoming or outgoing edges, charac-

terizes the density of a graph. Three instances of each of the

seven DAGs are generated, one instance with a CCR of 0.1,

one with a CCR of 1 and one with a CCR of 10. To achieve

the CCR values in the DAGs with regular weights, the node
and edge weights are scaled accordingly.

These graphs are scheduled by a list scheduling heuristic
with the insertion technique, where the nodes are ordered
according to their bottom levels. This algorithm is applied
under the classic, the contention and the involvement-
contention model, denoted by “classic,” “cont,” and “invo-
cont,” respectively. Using the same algorithm for each
model allows the impact of the model on the quality of the
produced schedules to be analyzed and compared, without
the influence of different scheduling techniques. Further, in
order to evaluate scheduling with a given processor
allocation under the involvement-contention model, the
genetic algorithm “GICS” (Section 5.4) is utilized.

Code is generated for the obtained schedules and

executed on two different target systems: Sun E3500 and

BOBCAT (Cray T3E-900 was not used, as it simply was

taken out of service at the Edinburgh Parallel Computing

Centre before the realization of the experiments). Both

systems were modeled as in the previous experiments of

Section 6.1.

272 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

Fig. 5. Average accuracy deviation of Cl-LS(bl) (classic model) (top) and LS(dls) (contention model) (bottom) compared with rescheduling under the

involvement-contention model (invo-cont). (a) BOBCAT. (b) SUN E3500. (c) T3E-900.

TABLE 1
Workload DAGs

6.2.1 Results

Figs. 6 and 7 visualize the average normalized speedups of

the three different models on different configurations of the

two target systems. Since GICS is based on a different

algorithm (not list scheduling), GICS is treated separately

below. The speedup is defined as the ratio of the sequential

time seqðGÞ ¼
P

n2V wðnÞ (local communication has zero

costs) to the execution time of the code produced for

schedule S.
Low communication (CCR ¼ 0:1). For a CCR of 0:1,

communication is of low significance compared to the
computation costs. Nevertheless, the involvement-conten-
tion model noticeably reduces the execution times—com-
pared to the classic model—on BOBCAT with 16 processors
(average speedup is improved by 9 percent). With more
processors, communication becomes more important, be-
cause it is probable that more communications are
performed remotely.

Medium communication (CCR ¼ 1). The situation
changes for DAGs with medium communication. Schedules
produced under the involvement-contention model have
significantly shorter execution times, with speedup im-
provements of up to 82 percent (Gauss elimination). Again,
the improvement increases with the number of the utilized
processors.

High communication (CCR ¼ 10). The highest reduc-
tion in the execution time is apparent in the results of the
involvement-contention for DAGs with high communica-
tion. Unfortunately, this reduction is irrelevant: the absolute
speedup of the schedules of all models is below 1. Hence, a

parallelization is meaningless and the sequential execution
is indicated.

GICS. Figs. 8 and 9 summarize the average normalized
speedups of GICS compared to invo-cont. Not regarding high
communication, the execution times of the schedules by GICS
are almost identical to those by invo-cont. This is surprising,
as at least a slight improvement was expected, since one of
GICS’s initial chromosomes is the processor allocation of the
invo-cont schedule (Section 5.4). Yet, invo-cont and GICS
differ in the way they schedule edges: invo-cont employs the
direct scheduling approach (Section 5.1), which corresponds
to the first alternative of the edge scheduling approaches
(Section 5.2). In contrast, GICS uses the third alternative,
which apparently leads to no improvement by GICS. Hence,
the first alternative should be preferred over the third in
scheduling under the involvement-contention model.

GICS’s good results for high communication are due to
the fact that sequential processor allocations are part of its
initial population. Indeed, nearly all schedules by GICS for
CCR ¼ 10 are (almost) sequential, with an absolute speed-
up of 1. Thus, neither GICS is able to efficiently parallelize
the DAGs with CCR ¼ 10. However, the accuracy of the
involvement-contention model allows GICS to know that.

6.2.2 Discussion

In the experiments conducted, the involvement-contention
model clearly demonstrated its ability to produce schedules
with significantly reduced execution times.

Despite the very good results, the efficiency improvement
lags behind the accuracy improvement demonstrated in the
previous subsection. A possible explanation lies in the
employed heuristic. List scheduling is a greedy algorithm,

SINNEN ET AL.: TOWARD A REALISTIC TASK SCHEDULING MODEL 273

Fig. 7. Sun E3500: Average normalized speedups under the three
models (speedups are normalized to values under classic model). (a) On
four processors. (b) On seven processors.

Fig. 8. BOBCAT: Average normalized speedups of cont-invo and GICS
(speedups are normalized to values under classic model). (a) On eight
processors. (b) On 16 processors.

Fig. 9. Sun E3500: Average normalized speedups of cont-invo and

GICS (speedups are normalized to values under classic model). (a) On

four processors. (b) On seven processors.

Fig. 6. BOBCAT: Average speedups under the three models (speedups
are normalized to values under classic model). (a) On eight processors.
(b) On 16 processors.

which tries to reduce the finish time of each node to be
scheduled. Thereby it does not consider the leaving commu-
nications of a node, which may impede an early start of
following nodes. The high importance of communication
under the involvement-contention model seems to demand
the research of more sophisticated algorithms in order to
exploit the full potential of this new model.

7 CONCLUSIONS

This paper investigated the involvement of the processor in
communication, its impact on task scheduling and how to
make task scheduling aware of it. First, the different types of
processor involvement and their characteristics were inves-
tigated. A new system model was proposed, which extends
the scheduling of the edges on the links to their scheduling on
the processors. This technique can reflect the three types of
processor involvement and the distinction between overhead
and direct involvement. Scheduling the edges on the
processors has an impact on the operating techniques of
scheduling heuristics. This challenge was investigated and
two solutions were proposed: provisional scheduling and
using a given processor allocation. Based on these solutions,
two scheduling algorithms were proposed for the new
involvement-contention model: an adapted list scheduling
and a genetic algorithm (GICS). Extensive experiments
demonstrated that the involvement-contention model sig-
nificantly improves the accuracy and the execution time of
the produced schedules. The improved accuracy now allows
for a useful estimation of the execution time. In order to
achieve further improvements, research into algorithms that
are better at exploiting the new model is needed.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. This work
was partially supported by Portuguese Foundation for
Science and Technology (FCT) through Program FEDER, by
FCT and FSE (Fundo Social Europeu) in the context of III
European Framework of Support, and by the European
Commission through ARI grant HPRI-CT-1999-00026 and
TMR grant ERB FMGE CT950051 (TRACS Programme at
EPCC), which they gratefully acknowledge.

REFERENCES

[1] T.L. Adam, K.M. Chandy, and J.R. Dickson, “A Comparison of list
Schedules for Parallel Processing Systems,” Comm. ACM, vol. 17,
pp. 685-689, 1974.

[2] I. Ahmad and M.K. Dhodhi, “Multiprocessor Scheduling in a
Genetic Paradigm,” Parallel Computing, vol. 22, pp. 395-406, 1996.

[3] I. Ahmad and Y.-K. Kwok, “On Exploiting Task Duplication in
Parallel Program Scheduling,” IEEE Trans. Parallel and Distributed
Systems, vol. 9, no. 8, pp. 872-892, Aug. 1998.

[4] I. Ahmad, Y.-K. Kwok, and M.-Y. Wu, “Analysis, Evaluation, and
Comparison of Algorithms for Scheduling Task Graphs on
Parallel Processors,” Proc. Second Int’l Symp. Parallel Architectures,
Algorithms, and Networks, pp. 207-213, June 1996.

[5] A. Alexandrov, M. Ionescu, K.E. Schauser, and C. Scheimann,
“LogGP: Incorporating Long Messages into the LogP-Mode-
l—One Step Closer Towards a Realistic Model for Parallel
Computation,” Proc. Seventh Ann. Symp. Parallel Algorithms and
Architectures, pp. 95-105, 1995.

[6] O. Beaumont, V. Boudet, and Y. Robert, “A Realistic Model and an
Efficient Heuristic for Scheduling with Heterogeneous Proces-
sors,” Proc. IEEE 11th Heterogeneous Computing Workshop, 2002.

[7] M.S.T. Benten and S.M. Sait, “Genetic Scheduling of Task
Graphs,” Int’l J. Electronics, vol. 77, no. 4, pp. 401-415, 1994.

[8] M. Cosnard and D. Trystram, Parallel Algorithms and Architectures.
London: Thomson Computer Press, 1995.

[9] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E.
Santos, R. Subramonian, and T. von Eicken, “LogP: Towards a
Realistic Model of Parallel Computation,” ACM SIGPLAN Notices,
Proc. Symp. Principles and Practice of Parallel Programming, vol. 28,
no. 7, pp. 1-12, July 1993.

[10] D.E. Culler and J.P. Singh, Parallel Computer Architecture. Morgan
Kaufmann, 1999.

[11] L. Davis, Handbook of Genetic Algorithms. New York: Van
Nostrand-Reinhold, 1991.

[12] A. Gerasoulis and T. Yang, “ A Comparison of Clustering
Heuristics for Scheduling DAGs on Multiprocessors,” J. Parallel
and Distributed Computing, vol. 16, no. 4, pp. 276-291, Dec. 1992.

[13] E.S.H. Hou, N. Ansari, and H. Ren, “Genetic Algorithm for
Multiprocessor Scheduling,” IEEE Trans. Parallel and Distributed
Systems, vol. 5, no. 2, pp. 113-120, Feb. 1994.

[14] J.J. Hwang, Y.C. Chow, F.D. Anger, and C.Y. Lee, “Scheduling
Precedence Graphs in Systems with Interprocessor Communica-
tion Times,” SIAM J. Computing, vol. 18, no. 2, pp. 244-257, Apr.
1989.

[15] IBM, SP Switch2 Technology and Architecture, Mar. 2001,
http://www-1.ibm.com/servers/eserver/pseries/hardware/
whitepapers/sp_switch2.pdf.

[16] J. White III and S. Bova, “Where’s the Overlap? An Analysis of
Popular MPI Implementations,” Proc. MPIDC, 1999.

[17] T. Kalinowski, I. Kort, and D. Trystram, “List Scheduling of
General Task Graphs under LogP,” Parallel Computing, vol. 26,
pp. 1109-1128, 2000.

[18] B. Kruatrachue, “Static Task Scheduling and Grain Packing in
Parallel Processing Systems,” PhD thesis, Oregon State Univ.,
1987.

[19] B. Kruatrachue and T. Lewis, “Grain Size Determination for
Parallel Processing,” IEEE Software, vol. 5, no. 1, pp. 23-32, Jan.
1988.

[20] S.Y. Kung, VLSI Array Processors, Information and System Sciences
Series. Prentice Hall, 1988.

[21] Y.-K. Kwok and I. Ahmad, “Efficient Scheduling of Arbitrary Task
Graphs to Multiprocessors Using a Parallel Genetic Algorithm,”
J. Parallel and Distributed Computing, vol. 47, no. 1, pp. 58-77, Nov.
1997.

[22] Y.-K. Kwok and I. Ahmad, “Benchmarking the Task Graph
Scheduling Algorithms,” Proc. Int’l Parallel Processing Symp. /Symp.
Parallel and Distributed Processing, pp. 531-537, Apr. 1998.

[23] W. Löwe, W. Zimmermann, S. Dickert, and J. Eisenbiegler, “Source
Code and Task Graphs in Program Optimization,” Proc. Conf. High
Performance Computing and Networking, pp. 273-282, 2001.

[24] B.S. Macey and A.Y. Zomaya, “A Performance Evaluation of CP
List Scheduling Heuristics for Communication Intensive Task
Graphs,” Proc. Parallel Processing Symp., pp. 538-541, 1998.

[25] “Message Passing Interface Forum,” MPI: A Message-Passing
Interface Standard, June 1995, http://www.mpi-forum.org/docs/
docs.html.

[26] P. Rebreyend, F.E. Sandnes, and G.M. Megson, “Static Multi-
processor Task Graph Scheduling in the Genetic Paradigm: A
Comparison of Genotype Representations,” Research Report 98-
25, Ecole Normale Superieure de Lyon, Laboratoire de Informa-
tique du Parallelisme, Lyon, France, 1998.

[27] F.E. Sandnes and G.M. Megson, “An Evolutionary Approach to
Static Taskgraph Scheduling with Task Duplication for Minimised
Interprocessor Traffic,” Proc. Int’l Conf. Parallel and Distributed
Computing, Applications, and Technologies, pp. 101-108, July 2001.

[28] V. Sarkar, Partitionning and Scheduling Parallel Programs for
Execution on Multiprocessors. MIT Press, 1989.

[29] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architec-
tures,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 2,
pp. 175-186, Feb. 1993.

[30] O. Sinnen, “Accurate Task Scheduling for Parallel Systems,” PhD
thesis, Instituto Superior Técnico, Technical Univ. of Lisbon,
Portugal, Apr. 2003.

274 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

[31] O. Sinnen and L. Sousa, “Experimental Evaluation of Task
Scheduling Accuracy: Implications for the Scheduling Model,”
IEICE Trans. Information and Systems, vol. 86, no. 9, pp. 1620-1627,
Sept. 2003.

[32] O. Sinnen and L. Sousa, “List Scheduling: Extension for Conten-
tion Awareness and Evaluation of Node Priorities for Hetero-
geneous Cluster Architectures,” Parallel Computing, vol. 30, no. 1,
pp. 81-101, Jan. 2004.

[33] O. Sinnen and L. Sousa, “On Task Scheduling Accuracy:
Evaluation Methodology and Results,” J. Supercomputing, vol. 27,
no. 2, pp. 177-194, Feb. 2004.

[34] O. Sinnen and L. Sousa, “Communication Contention in Task
Scheduling,” IEEE Trans. Parallel and Distributed Systems, vol. 16,
no. 6, pp. 503-515, June 2005.

[35] J.D. Ullman, “NP-Complete Scheduling Problems,” J. Computing
System Science, vol. 10, pp. 384-393, 1975.

[36] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser,
“Active Messages: A Mechanism for Integrated Communication
and Computation,” Proc. 19th Ann. Int’l Symp. Computer Archi-
tecture, pp. 256-266, May 1992.

[37] M.Y. Wu and D.D. Gajski, “Hypertool: A Programming Aid for
Message-Passing Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 1, no. 3, pp. 330-343, July 1990.

[38] T. Yang and A. Gerasoulis, “PYRROS: Static Scheduling and Code
Generation for Message Passing Multiprocessors,” Proc. Sixth
ACM Int’l Conf. Supercomputing, pp. 428-437, Aug. 1992.

Oliver Sinnen received three degrees in elec-
trical and computer engineering: the diploma
degree (equivalent to a master’s) in 1997 from
RWTH Aachen, Germany, another master’s
degree, and the PhD degree in 2002 and 2003,
respectively, both from Instituto Superior Tecni-
co (IST), Technical University of Lisbon, Portu-
gal. Currently, he is working as a lecturer in the
Department of Electrical and Computer Engi-
neering at the University of Auckland, New

Zealand. His research interests include parallel and distributed comput-
ing, reconfigurable computing, graph theory, and algorithm design.

Leonel Augusto Sousa received the PhD
degree in electrical and computer engineering
from the Instituto Superior Tecnico(IST), Uni-
versidade Tecnica de Lisboa, Lisbon, Portugal,
in 1996. He is currently a member of the
Electrical and Computer Engineering Depart-
ment at IST and a senior researcher at the
Instituto de Engenharia de Sistemas e Compu-
tadores-R&D. His research interests include
VLSI architectures, computer architectures, par-

allel and distribuded computing, and multimedia systems. He has
contributed to more than 70 papers to journals and international
conferences and he is currently a member of HiPEAC European
Network of Excellence. He is a senior member of IEEE and the IEEE
Computer Society and a member of ACM.

Frode Eika Sandnes received the BSc degree
in computing science from the University of
Newcastle-Upon-Tyne, England, in 1993, and
the PhD degree in computer science from the
University of Reading, England, in 1997. He has
several years of experience from the space
industry developing communications and on-
board systems for low-earth orbit environmental
satellites. He is currently an associate professor
in the Department of Computer Science at Oslo

University College, Norway. Dr. Sandnes’ research interests include
multiprocessor scheduling, error-correction, and mobile human compu-
ter interaction.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SINNEN ET AL.: TOWARD A REALISTIC TASK SCHEDULING MODEL 275

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

