
Fault-aware scheduling
applications on De

Cosimo Anglano 1, John Brevik 2, Massimo Cano
1 Dipartimento di Informatica, Universita’ d

email:{cosimo.anglano,massimo.ca
2 Department of Computer Science, Universit

email:{jbrevik,nurmi,rich}@

Abstract—Desktop Grids have proved to be a suitable platform
for the execution of Bag-of-Tasks applications but, being char-
acterized by a high resource volatility, require the availability
of scheduling techniques able to effectively deal with resource
failures and/or unplanned periods of unavailability. In this paper
we present a set of fault-aware scheduling policies that, rather
than just tolerating faults as done by traditional fault-tolerant
schedulers, exploit the information concerning resource avail-
ability to improve application performance. The performance of
these strategies have been compared via simulation with those
attained by traditional fault-tolerant schedulers. Our results,
obtained by consider a set of realistic scenarios modeled after
real Desktop Grids, show that our approach results in better
application performance and resource utilization.

I. INTRODUCTION

Grid Computing can be defined as the coordinated resource

sharing and problem solving in dynamic, multi-enterprise

collaborations [1], and typically involves using many resources

(computer, data, I/O, instruments, etc.) to solve a single,

large problem that could not be solved on any one resource.

Recently, the exploding popularity of the Internet has created

a new much large scale opportunity for Grid computing. As a

matter of fact, millions of desktop PCs, whose idle cycles can

be exploited to run Grid applications, are connected to wide-

area networks both in the enterprise and in the home. These

new platforms for high throughput applications are called

Desktop Grids [2]. The inherent wide distribution, heterogene-
ity, and dynamism of Desktop Grids makes them better suited

to the execution of loosely-coupled parallel applications rather

than tightly-coupled ones. Bag-of-Tasks applications [3](BoT)
(parallel applications whose tasks are completely independent

from one another) have been shown to be particularly able to

exploit the computing power provided by Desktop Grids [4]

and, despite their simplicity, are used in a variety of domains,

such as parameter sweeps, simulations, fractal calculations,

computational biology, and computer imaging. In order to take

advantage of Desktop Grid environments, suitable scheduling

strategies, tailored to BoT applications, have been proposed

in the literature. These algorithms can be broadly classified

into knowledge-based [5], [6], [7], where the scheduler relies
to variable extents on information concerning the application

and/or the resources of the Grid, and knowledge-free [4], that
do not require such information. Unfortunately, all these algo-

rithms

are alw

taken o

resourc

since r

withou

algorit

realisti

than no

In o

focuse

schedu

replica

rence o

howev

concer

that th

In th

schedu

that, in

them a

handlin

compu

distribu

betwee

forman

improv

execute

on wh

schedu

and fou

rise to

of our

study

toleran

The

we pla

In Sec

while

experim

outline

561-4244-0344-8/06/$20.00  2006 IEEE
Authorized licensed use limited to: INRIA. Downloaded on Apr
for Bag-of-Tasks
sktop Grids
nico 1, Dan Nurmi 2, Rich Wolski 2

el Piemonte Orientale (Italy),
nonico}@unipmn.it
y of California, Santa Barbara,
cs.ucsb.edu

are based on the unrealistic assumption that resources

ays available (i.e., they never crash or they are never

ff-line). However, as shown in [8], [9], Desktop Grid

es are characterized by a very high resource volatility,

esources can be disconnected from the Grid at any time

t any advance notice. Consequently, these scheduling

hms yield suboptimal performance when applied to

c scenarios where failures actually occur more often

t.

rder to cope with resource failures, recent work has

d on fault-tolerant scheduling [10], [11], [12], where the
ler relies on fault-handling mechanisms (such as task

tion and checkpoint-and-restart) to deal with the occur-

f resource failures or unavailability. These schedulers,

er, being knowledge-free, do not use any information

ning the tasks and the resources, with the consequence

eir resource usage is suboptimal.

is paper we propose an alternative approach to BoT

ling in Desktop Grids (named fault-aware scheduling)
stead of just tolerating resource failures, tries to avoid

s much as possible by jointly exploiting the fault-

g mechanisms, and the knowledge of the effective

ting power delivered by resources [13], [14] and the

tions of their fault times [15] (i.e. the time elapsing

n two consecutive faults), to improve scheduling per-

ce. We show how this information can be exploited to

e both task selection (the choice of the next task to be
d) and machine selection (the choice of the machine
ich it will be executed) with respect to fault-tolerant

lers. More specifically, we propose two task selection

r machine selection policies that, when combined, give

8 scheduling policies. In order to show the effectiveness

approach, we have conducted a thorough simulation

that has shown that our strategies outperform fault-

t schedulers for a variety of operational scenarios.

rest of the paper is organized as follows. In Section II

ce our work in the context of the related literature.

tion III we discuss our fault-aware scheduling policies,

in Section IV we present the results obtained in our

ents. Finally, Section V concludes the paper and

s future research work.

Grid Computing Conference 2006
il 20, 2009 at 04:26 from IEEE Xplore.  Restrictions apply.



II. RELATED WORK

Existing algorithms for scheduling BoT applications on

Desktop Grids can be classified along two dimensions, namely

(a) their reliance on task/resource information (i.e., we have

knowledge-free and knowledge-aware strategies), and (b) the

way they handle resource failures (i.e., we have fault-agnostic

and fault-aware strategies). Although this classification gives

rise to four different combinations, the literature provides

examples belonging to only three of them. Knowledge-based,
fault-agnostic schedulers rely on resource/task information,
but are based on the implicit assumption that resources never

fail. Schedulers in this class assume the knowledge of the

execution time of individual tasks, and exploit various type

of static [2], [7] or dynamic [5], [6] resource information to

perform machine selection. Our scheduling strategies also use

dynamic resource information, but unlike the previous ones are

able to efficiently handle resource failures or unavailabilities.

Knowledge-free, fault-agnostic schedulers [4] make blind
task and machine selections. Knowledge-free, fault-tolerant
schedulers [7], [10], [11], [12] improve over their knowledge-

free counterparts by using task replication to reduce the effects

of poor task assignments, and automatic restart (possibly

coupled with checkpointing) to deal with resource failures.

These strategies are able to obtain reasonable performance

even in face of failures, but waste a great deal of CPU cycles

to execute needless task replicas. Our strategies also exploit

task replication and checkpoint-and-restart, but their usage of

task and resource information allows them to greatly reduce

the amount of wasted CPU cycles, that are instead used to

improve application performance.

III. FAULT-AWARE SCHEDULING

In this section we describe our fault-aware scheduling

policies, that are obtained by combining a task selection policy

with a machine selection policy. We start by describing first

the system model on which our policies are based, and we then

proceed with the presentation of the various task selection and

machine selection policies.

A. System model

In this paper, we consider Desktop Grids composed of

a set of heterogeneous machines connected by a generic

communication network. Each machine M is characterized

by its nominal computing power P (M), a real number whose
value is directly proportional to its speed (i.e., a machine with

P=2 is twice faster than a machine with P=1). We assume

that the machines may also run local jobs (i.e., job started

by their legitimate owners), so that at each time instant t
it delivers to Grid applications an effective computing power
EffPwr(M, t) defined as:

EffPwr(M, t) = P (M) ∗ AvailCPU(M, t) (1)

where AvailCPU(M, t) is a real value that represents the
fraction of M’s CPU capacity available to Grid processes (i.e.,

unused by local jobs) at time t.

whil
t=

r=

as

R

end

Furt

able at

lems o

Grid (w

with fa

one or

provid

virtual

as don

a given

Checkp

to the

residua
to deci

the Ch

C.

B. Fau

As m

are the

shown

The sc

(by me

it will

until a

task fa

machin

tasks.

resourc

tasks r

of repl

thresho
in [12]

where

the rep

the abo

we dot

observ

while t

In t

machin

the 8

column

policie

lection

describ

57
Authorized licensed use limited to: INRIA. Downloaded on Apr
e (there are unfinished task) do
SelectTask();

SelectMachine();

sign(t,r);

eplicateTasks();

while
Fig. 1. The scheduling algorithm

hermore, we assume that resources can become unavail-

unpredictable times because of hardware/network prob-

r simply because they are taken out from the Desktop

e consider both events as resource failure). To cope

ilures, we assume that the Desktop Grid encompasses

more Checkpoint Servers, in charge of storing and
ing access to checkpoints. We assume that some form of

machine is used to run Desktop Grid applications (e.g.

e in Entropia [16] or in United Devices [17]), so that
checkpoint can be used on any machine, and that the

oint Server stores only the checkpoint corresponding

replica that is the closest one to complete its task. The

l execution time of to a task checkpoint, that is required
de whether a given checkpoint must be stored or not by

eckpoint Server, is computed as discussed in Section III-

lt-aware scheduling policies

entioned before, the core of our scheduling policies

task and machine selection policies, as schematically

in the pseudo-code of Fig. 1.

heduler works by repeatedly selecting a task to execute

ans of function SelectTask()) and the machine on which
be executed (by means of function SelectMachine(),
ll the tasks of the bag have been completed. When a

ils (because of the crash or the unavailability of the

e it is using), it inserted again in the list of unfinished

If all unfinished tasks are running, and there are idle

es, function ReplicateTasks() starts the execution of
eplicas, in such a way that each task has a number

icas lower than or equal to a pre-defined replication
ld (more details on the replication policy can be found
). In this paper we consider a static replication policy,
the number of running replicas per task never exceeds

lication threshold. Dynamic replication policies, where

ve threshold may be exceeded, are also possible, but

not consider them here since we have experimentally

ed that they result in negligible performance gains,

hey require a much more complex replica management.

his paper we propose two task selection and four

e selection policies, whose combinations give rise to

scheduling policies listed in Fig. 2 (where rows and

s correspond to task selection and machine selection

s, respectively), obtained by combining two task se-

policies with four machine selection policies that are

ed in the next two subsections. These selection policies
il 20, 2009 at 04:26 from IEEE Xplore.  Restrictions apply.



are based on the knowledge of the execution time of each task

Ti on a reference machine with nominal computing power

P = 1, and on the availability of estimates of the effective
computing power delivered by resources, that can be computed

as discussed in [14], and of their fault time distributions, that

can be performed as discussed in [15], [9].

C. Task selection policies

The task selection policies we propose are based on the

notion of the residual execution time of tasks, i.e. the time
needed to complete a task starting from its last saved check-

point (or from its beginning if a checkpoint does not exist). A

checkpoint taken after executing a task for an interval lasting

C time units on machine M decreases its residual execution

time by C ·
∫ C

0
EffPwr(M, t)dt, where the integral gives the

average effective computing power delivered by the machine

during that interval. For example, if a task executes for 25
time units and the average delivered computing power in that

interval has been 3, the residual execution time is reduced
by 25 · 3 = 75 time units on the reference machine. This
information is stored with the checkpoint, and used by the

Checkpoint Server to decide when a given checkpoint should

replace the saved one or not.

In this paper we consider two task selection policies that

exploit the residual execution time of tasks, namely:

• Shortest Residual Execution Time (SRET): The scheduler
chooses the task with the shortest residual execution

time whose number of running replicas is lower than

the replication threshold. Intuitively, SRET attempts to
complete the shortest tasks first, in order to have enough

free machines to execute replicas of the longest tasks;

• Longest Residual Execution Time (LRET): The scheduler
selects the task with longest residual execution time

whose number of running replicas is lower than the

replication threshold. Intuitively, LRET is a form of
critical path scheduling. As a matter of fact, a Bag-of-

Tasks can be seen as a very simple DAG, where all the

tasks are spawned from an initial dummy node, and there

is a dummy final node that must wait the completion of

all the tasks in a Bag. By giving precedence to longest

tasks, LRET seeks to complete the tasks in the critical
path as soon as possible, in the attempt to reduce the

makespan a BoT.

D. Machine selection policies

The machine selection policies proposed in this paper are

based either on estimations of the effective CPU power, of the

fault time distribution of machines, or both. More specifically,

we propose the following three machine selection policies (in

additio

machin

• E
w

P
tio

th

de

• F
di

to

th

in

to

fa

of

of

ch

re

• E
of

E
fo

Ti

th

E
its

th

th

sa

E

In o

ing po

carried

consid

all our

a know

our kn

alterna

realisti

realisti

of mea

compa

averag

time. T
betwee

tasks,

58
Authorized licensed use limited to: INRIA. Downloaded on Apr
n to the trivial policy – named Blind – that performs
e selection in a blind way):

ffCPUKnown: This policy chooses the machine Mj

ith the highest predicted effective CPU power

redCPU(Mj), in the attempt to minimize the execu-
n time of the selected task. EffCPUKnown assumes
at PredCPU(Mj) represent the average CPU powered
livered by Mj during the execution of the task;

TDKnown: This policy uses estimates of the fault-time
stribution (FTD) of individual machines, and uses them

select the machine with the longest residual life time,
at is the machine whose next fault is the farthest ahead

time. The rationale behind FTDKnown is to avoid (or

delay as much as possible) the occurrence of a machine

ilure during the execution of a task, so that the number

task rollbacks are minimized. Delaying the occurrence

a fault also increases the probability of updating the

eckpoint relative to the running task, thus reducing its

sidual execution time;

ffCPU+FTDKnown: This policy exploits both types
information as follows. First, the execution time

T (Ti, Mj) of the chosen task Ti is computed

r each candidate machine Mj as ET (Ti, Mj) =
/PredCPU(Mj). Then, for each candidate machine
e probability P (F, Ti, Mj) = P{Fault T ime ≥
T (Ti, Mj)} that its next fault occurs after Ti terminates

execution is computed, and only those machines such

at P (F, Ti, Mj) ≥ 0.95 are selected. Finally, if more
an one machine has been selected, or if no machine

tisfies the above inequality, the one with the highest

ffPwr() value is chosen.

IV. PERFORMANCE ANALYSIS

rder to assess the performance of the proposed schedul-

licies, we performed an exhaustive simulation study

out by means a discrete-event simulator, in which we

ered a large set of operational scenarios and compared

strategies among them and also with WQR-FT [12],

ledge-free fault-tolerant scheduler that, at the best of

owledge, provides the best performance w.r.t. other

tive schedulers in the same family. In order to obtain

c results, in our simulations we considered a set of

c scenarios and workloads, obtained from the analysis

surement traces taken on a real Desktop Grid. Our

rison has been carried out by using as metrics the

e BoT completion time and the relative CPU wasted
he BoT completion time is defined as the time elapsing

n the submission of a bag and the termination of all its

while the relative CPU wasted time is defined as the
Blind EffCPUKnown FTDKnown EffCPU+FDTKnown
SRET SRET-Blind SRET-EffCPU SRET-FTD SRET-EffCPU-FTD
LRET LRET-Blind LRET-EffCPU LRET-FTD LRET-EffCPU-FTD

Fig. 2. Scheduling policies
il 20, 2009 at 04:26 from IEEE Xplore.  Restrictions apply.



ratio of the total CPU time wasted by replicas and the total

amount of used CPU time, that is:

RelativeWasted =
WastedT ime

WastedT ime + UsefulT ime

The CPU time used to run a replica is considered wasted if

the replica fails without completing the task or producing a

checkpoint better than the stored one (i.e., that reduces the

residual execution time of the corresponding task). In order

to explain whether the CPU time used to run a replica is

considered to be wasted or not, let us consider the scenarios

depicted in Fig. 3, where we assume to have four running

replicas (that is, R0, R1, R2 and R3) of a given task. Consider

first the case (Fig. 3(a)) in which all these replicas terminate

their execution (either successfully or not) before a checkpoint

is taken. In particular, assume that R1 and R3 fail (the ”x”

symbol denotes a failure), that R2 completes the task (the ”o”

symbol denotes task completion) and, consequently, that R0

is killed (the ”k” symbol denotes task killed). In this case, we

consider as useful only the CPU time used to run R2 (denoted

as CT2), since no checkpoint is produced by the other replicas.

Therefore, the relative CPU wasted time is given by

RelativeWasted =
CT0 + CT1 + CT3

CT0 + CT1 + CT2 + CT3

Consider now a different scenario (Fig. 3(b)), where initially

we have a single task replica running (R0), that takes its first

checkpoint at time t1. After the checkpoint has been saved
on the Checkpoint Server, a machine becomes available, so

a new replica R1 of the same task is created and, since a

checkpoint is available, its computation is started from the

checkpoint. Then, after some time, R0 fails, but the task is

eventually completed by R1. In this case, the CPU wasted

time is only the time elapsed between the checkpoint saving

and the replica failure (that is, CT1), since both CT0 and CT2

have contributed to the task completion. Therefore, the relative

CPU wasted time is

RelativeWasted =
CT1

CT0 + CT1 + CT2

A. Simulated scenarios

Our simulation study considered the two different Desktop

Grid platforms, and the variety of workloads described in this

section.

1) Simulated platforms: In our study, we considered two
distinct simulation scenarios, corresponding respectively to an

enterprise and to a public-resource computing Desktop Grid.

The enterprise Grid represents scenarios in which machines are

relatively homogeneous, and faults are relatively infrequent,

while the public-resource one represents platforms where

resources are scattered across many independent users, so are

characterized by a large heterogeneity and frequent failures.

For the enterprise Desktop Grid we considered the 85

machines of the Computer Science Instructional Laboratory
(CSIL) of the University of California, Santa Barbara (UCSB).

These machines run the Linux operating system, are equipped

with e

ferent

capacit

powers

nbench
them t

3 diffe

{1, 1.1
various

As s

ered b

on Av
change

describ

state c

on the

state X

compu

spanni

of the

forecas

differe

50% (B

from th

shown

as

where

state X

occurre

the eff

our sim

every

the tra

anothe

(the in

The

estima

by mea

in [21]

Weibul

59
Authorized licensed use limited to: INRIA. Downloaded on Apr
ither an Intel Pentium or XEON processor with dif-

clock rates (from 2.2GHz to 3GHz), and memory

ies (from 512MB to 1GB). The nominal computing

of these machines have been computed by running the

[18] benchmark on each of them, and by normalizing

o the lowest measured value. These process resulted in

rent values for the nominal power of machines, namely

25, 1.4375}, that are uniformly distributed across the
machines.

tated by Eq. 1, the effective computing power deliv-

y each machine at any time instant t depends also
ailCPU(t), that is a random variables whose values
over time. In our simulations, these changes have been

ed by the Markov model depicted in Fig. 4, where each

orresponds to a CPU load value and the label Mxy

arcs corresponds to the probability of moving from

to state Y. The parameters of this model have been

A B

C

MAB

MBA

MAC

MCA
MCB

MBC

Fig. 4. Markov model describing AvailCPU(t)

ted by using the data collected, in a 6 months period

ng from January to July 2004, by the CPU load sensor

Network Weather Service (NWS) [19] monitoring and
ting system. In particular, as shown in Fig. 4, three

nt states – corresponding to the availability of 100% (A),

), and 33% (C) of CPU power – have been obtained

e analysis of the above data. The transition probabilities

in Fig. 4 have been also estimated from the above data

Mxy =
Count(xy)

Count(x)

Count(xy) contains the number of transitions from
to state Y, while Count(x) contains the number of
nces of state X. To model the variability over time of

ective CPU powered delivered by individual resources,

ulator computes a new value (by means of Eq. 1

10 seconds of simulated time. The actual values for

nsition probabilities, that vary from one machine to

r, have not been reported because of space constraints

terested reader may refer to [20] for more details).

fault time distribution of these machines have been also

ted from a set of data collected in the same time period

ns of the Fault Time sensor of the NWS. As reported

, the actual distribution is best approximated by the

l function, whose parameters (shape and scale) have
il 20, 2009 at 04:26 from IEEE Xplore.  Restrictions apply.



been computed using the Maximum Likelihood Estimation
(MLE) method [21]. The actual values for the Weibull param-

eters depend from the particular machine, and are not reported

here because of space constraints (the interested reader may

refer to [20] for more details). In all the experiments the

repair time (i.e. the time required to bring a machine back

to a functioning state) was instead set to 120 sec., the average

value computed from the above collected data.

The public-resource Desktop Grid scenario has been ob-

tained from the enterprise one as follows. First, in order

to introduce a larger machine heterogeneity, the nominal

computing power was assumed to be distributed according

to a Gaussian distribution with mean and standard deviation

equal to 10. Second, in order to represent a larger frequency

of machine failures, we set the parameters of the Weibull

distribution in such a way that the average fault time was

100 times smaller than the one measured for the enterprise

Desktop Grid.

2) Simulated workloads: In order to make an exhaustive
comparison, we considered a rather large set of workloads,

obtained by varying some parameters of a base workload. The
base workload consists in a sequence of Bag of Tasks, each one

comprising RR ·N tasks, where N is the number of machines
in the Grid, and RR represents the average number of tasks
for each Grid machine. For example, in our scenarios N = 85,
so when RR = 3 the BoT comprise 255 tasks. The duration
of each task is assumed to be a random variable uniformly

distributed in the interval [0.5 ∗BaseT ime, 1.5∗BaseT ime]
seconds, where BaseT ime is a workload parameters that
represents the mean execution time of a task submitted to a

machine with computing power P = 1. By suitably setting RR
and BaseT ime, very different workloads may be generated.
Due to space constraints, we present only the results obtained

when RR took values in the set {3, 5, 7, 10, 20, 50}, and
BaseT ime = 35000, thus generating 6 different workloads.
However, the results obtained for other values of the above

parameters do not significantly vary from those reported in

this paper.

During its computation, each replica performs its check-

points with a frequency computed according to the Young’s

formula [22] that approximates the optimum checkpoint inter-

val. In

checkp

for 50

Finally

replica

that the

we obs

in sign

experim

in whi

B. Res

Let u

Grids

in whi

perform

with re

experim

relative

time. F

report

schedu

1) T
the res

normal

3 to 50

strateg

obtain

(for R
our int

overall

relative

of RR
tasks is

free sc

Anothe

machin

mance

EffCPU
figure)

similar

60
Authorized licensed use limited to: INRIA. Downloaded on Apr
our study, we assume that the time taken to transfer a

oint file to the server is 480 sec. (the value measured

0 MB files on the enterprise Desktop Grid network).

, we performed experiments for various values of the

tion threshold (i.e. the maximum number of replicas

scheduler attempts to keep running for each task), but

erved that using more than 2 replicas does not result

ificant performance improvements. Therefore, all the

ents described in this section correspond to scenarios

ch the replication threshold was set to 2.

ults

s describe now the results obtained for the two Desktop

discussed before. We performed a set of experiments

ch we progressively increased RR, and compared the
ance of our 8 scheduling policies among them and also

spect to the WQR-FT scheduling algorithm. In all our

ents, we computed 98% confidence intervals with a

error of 2.5% or less for the average BoT completion

or the sake of clarity of the figures, for each scenario we

only the results obtained by the best blind and informed

ling policy.

he Enterprise Desktop Grid scenario: Fig. 5(a) reports
ults concerning the average BoT time, that has been

ized w.r.t. WQR-FT, for values of RR ranging from
. As can be seen by these results, the best scheduling

ies are those that use LRET as task selection policy, that
performance gains w.r.t. WQR-FT ranging from 10%

R = 3) to about 1% (for RR = 50). This confirms
uition that starting the longest tasks first results in an

smaller BoT completion time. The reduction of the

performance benefits of LRET for increasing values
is explained by the fact that, when the number of

much larger than the number of resources, knowledge-

hedulers like WQR-FT are close to being optimal [2].

r observation stemming out from our results is that the

e selection policy has a negligible impact on perfor-

(the performance attained by LRET-FTD and LRET-
-FTD are practically identical to those showed in the
. This is due to the fact that, being all the resource

and very reliable, the machine chosen for a given task
Time(s)

o

Start Checkpoint event

x

Checkpoint saving

Checkpoint retrieving

(b)
t1Time(s)

x

x

o

kR0

Start Checkpoint event

(a)
t1

R1

R2

R3

CT0

CT1

CT2

CT3

CT0 CT1

CT2

R0

R1

Fig. 3. Wasted and useful CPU time
il 20, 2009 at 04:26 from IEEE Xplore.  Restrictions apply.



by all scheduling policies is often the one that completes it

(so the other replicas are useless). In the infrequent cases in

which this machine fails, there is little advantage provided

by the availability of a better checkpoint, since a new replica

must wait 480 sec. (the time taken to transfer a checkpoint

file) before starting its execution. However, as will be shown

later, in scenarios characterized by higher heterogeneity and

failure rates, performance gains tend to be more evident.

Similar results can be observed also for the amount of

wasted CPU time, as shown in Fig. 5(b), where the gains

of LRET-based strategies w.r.t. WQR-FT are evident. To
understand why this happens, consider that at the beginning

of the execution of a BoT very few replicas are created, since

all the idle machines are used to run the first instance of each

task. Conversely, when most of the tasks have been completed,

the amount of replicas increases. With WQR-FT half of these
replicas (on average) correspond to longer tasks, that are more

prone to incur into a machine failure than shorter ones, with

the consequence that more resubmissions are generated w.r.t.

LRET-based strategies. It is interesting to observe also that
for increasing values of RR all the strategies waste less CPU
time. This depends on the fact that, when the number of tasks

grows, the probability to have an idle resource decreases, so

the scheduler cannot start many replicas.

2) The public-resource Desktop Grid scenario: The results
obtained for this scenario, characterized by a higher resource

heterogeneity and a lower availability, shows that – unlike the

previous case – the machine selection policy actually makes a

difference both in terms of performance (Fig. 6(a)) and wasted

CPU time (Fig. 6(b)). First of all, our results indicate again

that LRET is the best task selection policy both in terms of
performance and efficiency so, as mentioned before, the graphs

in the figures do not include the bars corresponding to SRET-
based policies.

Let us start by discussing the results concerning the average

BoT completion time, reported in Fig. 6(a) (showing the

average BoT completion time normalized w.r.t WQR-FT), that

indicat

EffCPU
time ra

and 3%

in per

WQR-

RR =
reliable

conseq

schedu

perform

identic

it requ

note th

as LRE
LRET-E
Ano

paring

selectio

FT, as

these t

of RR
be exp

sions o

the low

submit

the com

Let

shown

using

the Eff
Howev

the En

that no

in the

is not a

a large

61
Authorized licensed use limited to: INRIA. Downloaded on Apr
e that the best informed machine selection policy is

, that results in a reduction in the BoT completion

nging from from 18% for RR = 3 to 7% for RR = 10
for RR = 50. More precisely, LRET-FTD results

formance worse than LRET-EffCPU, but better than
FT (from about 11% for RR = 3 to about 3% for

50), thanks to the fact that, by choosing the most
machine the number of resubmissions decreases and

uently also the probability than one replica may be

led on a faster machine decreases. Conversely, the

ance attained by LRET-EffCPU-FTD are practically
al, but LRET-EffCPU should be considered better since
ires a smaller amount of knowledge. Furthermore, we

at the Blind machine selection policy does not pay off,
T-Blind constantly results in performance worse than
ffCPU.
ther interesting observation that can be made by com-

Fig. 6(a) with Fig. 5(a) is that even the Blind machine
n policy provides better performance than plain WQR-

can be observed by the fact that the difference between

wo scheduling policies remains larger for larger values

than in the Enterprise Desktop Grid scenario. This can

lained by the fact that the large number of resubmis-

ccurring in the public-resource Desktop Grid (due to

er resource availability) increases the probability of

ting a task to a faster machine (since in this scenario

putational power of the resource varies significantly).

us discuss the results concerning the CPU wasted time,

in Figure 6(b). From these results, the advantages of

the LRET task selection policy in conjunction with
CPUKnown machine selection policy clearly emerge.
er, in general all the strategies are less efficient than in

terprise Desktop Grid scenario, as indicated by the fact

w the wasted CPU time ranges from 21% to 30%, while

previous scenario it ranged between 2% and 18%. This

surprise, however, since the lower availability implies

r number of task resubmissions, that in turn result in a
Fig. 5. Enterprise Desktop Grid: (a) Average BoT completion time, and (b) relative wasted time
il 20, 2009 at 04:26 from IEEE Xplore.  Restrictions apply.



larger amount of wasted time.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed fault-aware scheduling, a
novel approach to scheduling Bag-of-Tasks applications on

Desktop Grids that, rather than just tolerating resource failures

and unplanned periods of unavailability, tries to avoid them

as much as possible by jointly exploiting the information

concerning tasks requirements and resource availability. We

have proposed 8 different scheduling policies and have evalu-

ated them, for a set of realistic scenarios and workloads, via

simulation. As shown by our results, fault-aware scheduling

results both in better application performance and resource

utilization than WQR-FT, the fault-tolerant scheduler that –

at the best of our knowledge – provides the best performance

among those of its class.

As indicated by our results, LRET-based policies are con-
stantly better than their SRET-based counterparts. As for the
machine selection policies, we have observed that for Desktop

Grids characterized by a relatively low heterogeneity and high

availability it practically does not matter which one is chosen,

while for Desktop Grids exhibiting dual properties EffCPU
results in better performance. Our results also indicate that

the knowledge of the fault-time distribution does not improve

the performance over machine selection policies exploiting

that concerning the effective computing power delivered by

resources. We believe, however, that the benefits of this type of

this information can be increased by better machine selection

policies, that we plan to investigate as part of our future work.

Furthermore, we plan to study the effects of other scheduling

mechanisms, such as dynamic replication threshold or the

usage of task-dependent replication thresholds. Finally, we

plan to carry out a more thorough experimentation, involving

workloads where multiple Bag-of-Tasks are simultaneously

submitted.

This

no. RB

Nation

[1] J. N
of

[2] D.
app
Co

[3] W.
Pro
20

[4] D.
for
com
Co

[5] F.
app
20

[6] H.
par
of

[7] H.
for
Pro
20

[8] D.
ter
Int

[9] J.
in
Sym
Pre

[10] J.
tem
siu

[11] J.
net
An

[12] C.
gri
20

[13] P.
SIG

62
Authorized licensed use limited to: INRIA. Downloaded on Apr
ACKNOWLEDGMENTS

work has been supported by the Italian MIUR grant

NE01WEJT (FIRB ”WebMINDS” project) and by the

al Science Foundation grant no. NGS-0305390.

REFERENCES

abrzyski, J. Schopf, and J. Eglarz, Grid Resource Management: State
the Art and Future Trends. Kluwer Academic Publishers, 2003.
Kondo, A. Chien, and H. Casanova, “Resource management for rapid
lication turnaround on enterprise desktop grids,” in Proc. of Super
mputing Conference, 2004.
Cirne and et al., “Grid computing for bag of tasks applications,” in
c. of 3rd IFIP Conf. on E-Commerce, E-Business and E-Government,
03.
Paranhos, W. Cirne, and F. Brasileiro, “Trading cycles for in-
mation: Using replication to schedule bag-of-tasks applications on
putational grids,” in Proc. of the Euro-Par 2003: International
nference on Parallel and Distributed Computing, 2003.
Berman, R. Wolski, and et al., “Adaptive computing on the grid using
les,” IEEE Trans. on Parallel and Distributed Systems, vol. 14, no. 4,
04.
Casanova, F. Berman, G. Obertelli, and R. Wolski, “The apples
ameter sweep template: User-level middleware for the grid,” in Proc.
Supercomputing 2000, 2000.
Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics
scheduling parameter sweep applications in grid environments,”
ceedings of the 9th Heterogeneous Computing Workshop, p. 349,
00.
Kondo, M. Taufer, C. Brooks, H. Casanova, and A. Chien, “Charac-
izing and evaluating desktop grids: An empirical study,” in Proc. of
. Parallel and Distributed Symposium (IPDPS’04), 2004.
Brevik, D. Nurmi, and R. Wolski, “Quantifying machine availability
networked and desktop grid systemsr,” in Proc. of IEEE International
posium on Cluster Computing and the Grid (CCGrid 2004). IEEE
ss, 2004.
Abawajy, “Fault-tolerant scheduling policy for grid computing sys-
s,” in Proc. of 18th Int. Parallel and Distributed Processing Sympo-
m, 2004.
Weissman and D. Womack, “Fault tolerant scheduling in distributed
works,” Department of Computer Science, University of Texas, San
tonio, Tech. Rep. TR CS-96-10, September 1996.
Anglano and M. Canonico, “Fault-tolerant scheduling for bag-of-task
d applications,” in Proc. of European Grid Conference, EGC 2005,
05.
A. Dinda, “Online prediction of the running time of tasks,” in
METRICS/Performance, 2001, pp. 336–337.
Fig. 6. Public-resource Desktop Grid: (a) Average BoT completion time; (b) Wasted CPU time
il 20, 2009 at 04:26 from IEEE Xplore.  Restrictions apply.



[14] R. Wolski, N. T. Spring, and J. Hayes, “Predicting the CPU availability
of time-shared unix systems on the computational grid,” Cluster
Computing, vol. 3, no. 4, pp. 293–301, 2000. [Online]. Available:
citeseer.ist.psu.edu/wolski98predicting.html

[15] J. Brevik, D. Nurmi, and R. Wolski, “Automatic methods for predicting
machine availability in desktop grid and peer-to-peer systems,” in Proc.
of 4th Int. Workshop on Global and Peer-to-Peer Computing, 2004.

[16] A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: architecture and
performance of an enterprise desktop grid system,” Journal of Parallel
and Distributed Computing, vol. 63, no. 5, pp. 597–610, 2003.

[17] B. Uk, M. Taufer, T. Stricker, G. Settanni, and A. Cavalli, “Implementa-
tion and characterization of protein folding on a desktop computational
grid - is charmm a suitable candidate for the united devices metapro-
cessor?” Institute for Comutersystems, ETH Zurich, Tech. Rep. 385,
2002.

[18] “T
[19] R.

trib
Jou
75

[20] M.
on
20

[21] D.
in
par
Te

[22] J.
int

63
Authorized licensed use limited to: INRIA. Downloaded on Apr
he nbench project,” 2005, http://www.tux.org/ mayer/linux/bmark.html.
Wolski, N. Spring, and J. Hayes, “The network weather service: a dis-
uted resource performance forecasting service for metacomputing,”
rnal of the Future Generation Computer Systems, vol. 15, no. 5, pp.
7–768, 1999.
Canonico, “Scheduling Algorithms for Bag-of-Tasks Applications
Fault-Prone Desktop Grids,” Ph.D. dissertation, University of Turin,
06.
Nurmi, J. Brevik, and R. Wolski, “Modeling machine availability
enterprise and wide-area distributed computing environments,” De-
tment of Computer Science, University of California, Santa Barbara,
ch. Rep. CS2003-28, 2003.
W. Young, “A first order approximation to the optimum checkpoint
erval,” Communications of the ACM, vol. 17, pp. 530–531, 1974.
il 20, 2009 at 04:26 from IEEE Xplore.  Restrictions apply.


