
Algorithmic Game Theory and 
Scheduling

Eric Angel, Evripidis Bampis, Fanny Pascual

IBISC, University of Evry, France

CIRM, May 06



Outline
Scheduling vs. Game Theory

Stability, Nash Equilibrium

 Price of Anarchy

Coordination Mechanisms

Truthfulness



 Scheduling
(A set of tasks) + (a set of machines) 

(an objective function)

Aim: Find a feasible schedule optimizing the 
objective function. 



Game Theory
(A set of agents) + (a set of strategies)

(an individual obj. function for every agent)

Aim: Stability, i.e. a situation where no agent has 
incentive to unilaterally change strategy. 

Central notion: Nash Equilibrium (pure or mixed)



Game Theory (2)

Nash: For any finite game, there is always a 
(mixed) Nash Equilibrium.

Open problem: Is it possible to compute a Nash 
Equilibrium in polynomial time, even for the case 
of games with only two agents ?



Scheduling & Game Theory
The KP model:
(Agents: tasks) + (Ind. Obj. F. of agent i: 
the completion time of the machine on 
which task i is executed)

The CKN model:
 (Agents: tasks) + (Ind. Obj. F. of agent i: 
the completion time of task i)



Scheduling & Game Theory (2)

The AT model:
(Agents: uniform machines) + (Ind. Obj. F. 
of agent i: the profit defined as Pi-wi/si)

Pi: payment given to i

Wi: load of machine i

Si: the speed of machine i



 The Price of Anarchy (PA)
Aim: Evaluate the loss due to the absence of 
coordination. 
[Koutsoupias, Papadimitriou: STACS’99]

Need of a Global Objective Function (GOF)
PA=(The value of the GOF in the worst NE)/(OPT)

It measures the impact of the absence of 
coordination 

[In what follows, GOF: makespan]



 An example: KP model
[Koutsoupias, Papadimitriou: STACS’99]

2

1
3

1 2
1 3

time0 1 2 3

3 tasks
2 machines

A (pure) Nash Equilibrium

         Question: 

How bad can be a Nash Equilibrium ?



 An example: KP model

      

pi
j : the probability of task i to go on machine j

The expected cost of agent i, if it decides to go
on machine j with pi

j =1:

Ci 
j = li  +  Σ     pk

j lk
K ≠ i

In a NE, agent i assigns non zero probabilities 
only to the machines that minimize Ci 

j 



 An example
Instance: 2 tasks of length 1, 2 machines. 

A NE: pi
j = 1/2 for i=1,2 and j=1,2
C1

1= 1 + 1/2*1 = 3/2

C1
2= C2

1= C2
2=3/2

Expected makespan 
              1/4*2+1/4*2+1/4*1+1/4*1 =3/2

OPT = 1



The PA for the KP model
Thm [KP99]: The PA is (at least and at most) 
3/2 for the KP model with two machines. 

Thm [CV02]: The PA is  Θ(log m/(log log log m)) 
for the KP model with m uniform machines. 



Pure NE for the KP model
Thm [FKKMS02]: There is always a pure NE  for 
the KP model. 

Thm [CV02]: The PA is  Ο(log m/(log log m)) for 
the KP model with m identical machines.

[O(log smax/smin for uniform machines] 

Thm [FKKMS02]: It is NP-hard to find the best 
and worst equilibria. 



Nashification for the KP model

Thm [E-DKM03++]: There is a polynomial time 
algorithm which starting from an arbitrary 
schedule computes a NE for which the value of the 
GOF is not greater than the one of the original 
schedule. 

Thus: There is a  PTAS for computing a NE of 
minimum social cost for the KP model. 



How can we improve the PA ?

Coordination mechanisms 
Aim: force the agents to cooperate willingly in 
order to minimize the PA

What kind of mechanisms ? 
-Local scheduling policies in which the schedule on each 
machine depends only on the loads of the machine.

-each machine can give priorities to the tasks and introduce 
delays.



The LPT-SPT c.m. for the CKN model

1 1

2 2
M1

M2

SPT

LPT

40

M1

M2
1

1
2

2
30

Thm [CKN03]: The LPT-SPT c.m. has a price of 
anarchy of 4/3 for m=2.

[The LPT c.m. has a PA of 4/3-1/3m]



The Price of Stability (PS)

The framework: A protocol wishes to propose a collective 
solution to the users that are free to accept it or not. 

Aim: Find the best (or a near optimal)  NE

PS = (value of the GOF in the best NE)/OPT

Example: 
- PS=1 for the KP model

- PS=4/3-1/3m for the CKN model (with LPT l.p.)



Approximate Stability
Aim: Relax the notion of stable schedule in order to improve 
the price of anarchy. 

α-approx. NE: a situation in which no agent has 
sufficient incentive to unilaterally change 
strategy, i.e. its profit does not increase more 
than α times 
its current profit. 
Example: a 2-approx. NE 

3 3
2 2 2

M1

M2

LPT

LPT



The algorithm LPTswap

-construct an LPT schedule

-1st case: 

-2nd case:  

x1 x2 x3
y1 y2

Exchange: (x1,y1), or (x1,y2),
or (x2,y2)  
Return the best or LPT 

x1 x2 x3 x4
y1 y2

Exchange: (x3+x4,y2)
Compare with LPT and return
the best-3rd case: Return LPT

Thm[ABP05]: LPTswap returns a 3-approx. NE and 
has a PA of 8/7. 



 

Thm[ABP05]: There is a polynomial time algorithm
which  returns a cste-approx. NE and 
has a PA of 1+ε. 



Truthful algorithms

The framework:

   Even the most efficient algorithm may lead 
to unreasonable solutions if it is not 
designed to cope with  the selfish behavior 
of the agents.



CKN model: Truthful algorithms
• The approach:

– Task i has a secret real length li.
– Each task bids a value bi ≥ li.
– Each task knows the values bidded by the other tasks, and 

the algorithm.

• Each task wishes to reduce its completion time.
• Social cost = maximum completion time (makespan) 

• Aim : An algorithm truthful and which minimizes the 
makespan.
[Christodoulou, Koutsoupias, Nanavati: ICALP’04]



Two models
• Each task wish to reduce its completion time 

(and may lie if necessary).

• 2 models: 
– Model 1: If i bids bi, its length is li
– Model 2: If i bids bi, its length is bi

• Example: We have 3 tasks:     ,         , 
    Task 1 bids 2.5 instead of 1:

.

1 2 3

Model 1: C1 = 1
Model 2: C1 = 2.5

time

3
1         2

0 1 2 3 4 5

         1



SPT: a truthful algorithm

• SPT: Schedules greedily the tasks from the 
smallest one to the largest one.
– Example: 

– Approx. Ratio  = 2 – 1/m  [Graham]

• Are there better truthful algorithms ?

1

2

3



LPT
• LPT: Schedules greedily the tasks from the 

largest one to the smallest one.
– Approx. Ratio  = 4/3 – 1/(3m)  [Graham]

• We have 3 tasks:       ,          ,
   Task 1 bids 1:                    Task 1 bids 2.5:

1 2 3

Task 1 has incentive to bid 2.5, and LPT is not truthful.

C1 = 33
2 1

     
         C1 = 1

time

3
1         2

0 1 2 3 4 5time0 1 2 3 4 5

         1



Randomized Algorithm
• Idea: to combine:

– A truthful algorithm
– An algorithm not truthful but with a good approx. 

ratio. 

• Task: wants to minimize its expected 
completion time.

• Our Goal: A truthful randomized algorithm 
with a good approx. ratio.



Outline

 Truthful algorithm
SPT-LPT is not truthful
Algorithm: SPTδ
A truthful algorithm: SPTδ-LPT



SPT-LPT is not truthful
• Algorithm SPT-LPT: 

– The tasks bid their values
– With a proba. p, returns an SPT schedule.
   With a proba. (1-p), returns an LPT schedule.

• We have 3 tasks :       ,           ,
– Task 1 bids its true value : 1

– Task 1 bids a false value : 2.5 

1 2 3

1
2

3 3
2 1

SPT : LPT : C1 = p + 3(1-p) 
     = 3 - 2p

1
2 3

SPT : LPT : 3
1 2

C1 = 1         1

         1



Algorithm SPTδ
• SPTδ: 
   Schedules tasks 1,2,…,n  s.t. l1 < l2 < … < ln

Task (i+1) starts when 1/m of task i has been 
executed.

• Example: (m=3)

 

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

5

6

7

8

9

4



Algorithm SPTδ
• Thm: SPTδ is (2-1/m)-approximate.
• Idea of the proof: (m=3)

• Idle times :
idle_beginning(i) = ∑ (1/3 lj)

idle_middle(i) = 1/3 ( li-3 + li-2 + li-1 ) – li-3
idle_end(i) = li+1 – 2/3 li + idle_end(i+1)j<i

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

5

6

7

8

9

4



Algorithm SPTδ
• Thm: SPTδ is (2-1/m)-approximate.
• Idea of the proof: (m=3)

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

5

6

7

8

9

4

Cmax = (∑(idle times) + ∑(li)) / m 
∑(idle times) ≤ (m-1) ln and  ln ≤ OPT
⇒ Cmax ≤  ( 2 – 1/m ) OPT

Cmax



A truthful algorithm: SPTδ-LPT

• Algorithm SPTδ-LPT:
– With a proba. m/(m+1), returns SPTδ.
– With a proba. 1/(m+1), returns LPT.

• The expected approx. ratio of SPTδ - LPT is 
smaller than the one of SPT: e.g. for m=2, 
ratio(SPTδ-LPT) < 1.39, ratio(SPT)=1.5

• Thm: SPTδ-LPT is truthful.



A truthful algorithm: SPTδ-LPT
• Thm: SPTδ-LPT is truthful.
   Idea of the proof: 
• Suppose that task i bids b>li. It is now larger than 

tasks 1,…, x, smaller than task x+1.

      l1 < … < li < li+1 < … < lx <     lx+1 < … < ln

• LPT: decrease of Ci(lpt)  ≤ (li+1 + … + lx)
• SPTδ: increase of Ci(sptδ) = 1/m (li+1 + … + lx)
• SPTδ-LPT: 
  change = - m/(m+1) Ci(sptδ) + 1/(m+1) Ci(sptδ) ≥ 0

b <



AT model: Truthful algorithms

Monotonicity: Increasing the speed of 
exactly one machine does not make the 
algorithm decrease the work assigned to 
that machine.

Thm [AT01]: A mechanism M=(A,P) is 
truthful iff A is monotone.



An example

The greedy algorithm is not monotone.

Instance: 1,    ε,     1,     2-3 ε,   for 0<ε<1/3

Speeds (s1,s2)          M1                  M2
       (1,1)                    1, ε              1, 2-3 ε
     (1,2)               ε, 2-3 ε            1,1



 
 3-approx randomized mechanism [AT01]

(2+ε)-approx mechanism for divisible speeds and 
integer and bounded speeds [ADPP04]

(4+ε)-approx mechanism for fixed number of 
machines [ADPP04]

12-approx mechanism for any number of machines 
[AS05]

Results for the AT model



Conclusion

• Future work:
-Links between LS and game theory
-Many variants of scheduling problems
-Repeated games
…


