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Goal: “efficiently” use speed scaling J
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Task graph model

Consider a task graph (directed acyclic graph) to be executed
on a set of processors. Assume that the mapping is given.

Useful definition in a task graph
For every task T; we define

e w; its size/work
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on a set of processors. Assume that the mapping is given.
Useful definition in a task graph
For every task T; we define
e w; its size/work
e s; the speed of the processor which has task T; assigned
to.

e t; the time when the computation of T; ends.
e d; the time it took to compute task T;.
° d,-s,-3 the energy consumed on task T; by the system.
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e CONTINUOUS: any speeds in [0, Smax]. A processor can
change speed at any time.

Models

Gauss Fact

When Gauss wife asked him "How much do you love me?”, he
quantified it with an irrational number.
Unfortunately a computer will never be as good as Gauss.
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during the computation of a task, but it can change from
task to task.
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Speed models

CONTINUOUS: any speeds in [0, Smax]. A processor can
change speed at any time.

DISCRETE: set of speed: {s,...,Sm}. Constant speed
during the computation of a task, but it can change from
task to task.

VDD-HOPPING: close to the previous model, difference:
we can switch speeds during a computation.

INCREMENTAL: DISCRETE model where s; = Spin,
Sm = Smax, and for all i, s; = spip + i - 0 for some §.
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Example

Consider this DAG, with sp,,x = 6. Suppose deadline is

D =1.5.

Figure

6.0

W1:3—>W2:2

w3=1— wy =2

: Execution graph for the example.
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models s1 = —(3 351/3 ~ 418, S =5 X — o~ 256,
1 3( + ) 2= 51X 35973
53 =54, =51 X 3 ~ 3.83
3 =54 = 51 313 383
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e DISCRETE: (s1 =2, s =5, 53 =06) Ef,;;’t) = 170.

For the DISCRETE model, if we execute all tasks at speed

séd) = 5, we obtain an energy E = 8 x 52 = 200. A better

solution is obtained with s; = séd) =06, 5 =53= s{d) =2

(d)

and s34 = s, * = 5, which turns out to be optimal.
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For the INCREMENTAL model, the reasoning is similar to
the DISCRETE case, and the optimal solution is obtained
by an exhaustive search: all tasks should be executed at

speed s = 4.
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e VDD-HOPPING: (53 =2, 5, =5, 53 = 6) E(g;g = 144.
With the VDD-HOPPING model, we set s; = séd) = 5; for
the other tasks, we run part of the time at speed séd) =5,

and part of the time at speed sfd) = 2 in order to use the
idle time and lower the energy consumption.
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CONTINUOUS: (Smax = 6) ng,g ~ 109.6.

Example

o ba

DISCRETE: (51 =2, s, =5, s3 =6) E(gt) = 170

INCREMENTAL: (0 = 2, Smin = 2, Smax = 0) E,

VDD-HOPPING: (s1 =2, s =5, 53 =16)

7.0
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opt —
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Optimization goal

Energy-Performance-oriented objective

e Constraint on Deadline t; < D for each T; € V

e Minimize Energy Consumption: > 7, w; x s?

Today's talk: comparison of all speed models in this regard. J
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Optimization goal

Energy-Performance-oriented objective

e Constraint on Deadline t; < D for each T; € V

e Minimize Energy Consumption: > 7, w; x s?

Today's talk: comparison of all speed models in this regard. J

We assume the mapping is already fixed.
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The problem of minimizing energy when the scheduled is
Results already fixed on p processors is:

e CONTINUOUS: Polynomial for some special graphs,
geometric optimization in the general case.

e DISCRETE: NP-complete (reduction from 2-partition).
We give an approximation.

e INCREMENTAL: NP-complete (reduction from
2-partition). We give an approximation.

e VDD-HOPPING: Polynomial (linear programming).
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General problem: geometric programming

Reminder
For each task T; we define

e w; its size/work
e s; the speed of the processor which has task T; assigned
to.

e t; the time when the computation of T; ends.

Objective function

Minimize Y7, s? x w;

subject to (i) t; + VSVTJ < tj for each (T;, T;) € E
(ii) t; < D for each T; € V
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when G is a tree

e MINENERGY(G,D) can be solved in polynomial time
when G is a series-parallel graph (assuming spax = +00)
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Linear program for VDD-HOPPING

Definition

G, n tasks, D deadline;

S1,...,Sm be the set of possible processor speeds;

t; is the finishing time of the execution of task T;;

i j) is the time spent at speed s; for executing task T;
This makes us a total of n(m + 1) variables for the system.
Note that the total execution time of task T; is ijzl Qg jy-

The objective function is:

n m

min Z Z ()z(,J)sj?’

i=1 j=1
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Linear program for VDD-HOPPING

The constraints are:

V1 <i<n, t; < D: the deadline is not exceeded by any
task;

V1 <, i"<nst. T;— Ty, ti+ Zjn:l ot j) < tjyr: a task
cannot start before its predecessor has completed its
execution;

vV1<i<n, ijzl a(ijy X sj = w;: task T; is completely
executed.

V1<i g n, tj > ijzl Qi) each task cannot finish until
all work is done;
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NP-completeness

Theorem

With the INCREMENTAL model (and hence the DISCRETE
model), finding the speed distribution that minimizes the
energy consumption while enforcing a deadline D is
NP-complete.
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Theorem
With the INCREMENTAL model (and hence the DISCRETE
model), finding the speed distribution that minimizes the
Pee speed energy consumption while enforcing a deadline D is
NP-complete.
PROOF: Reduction from 2-PARTITION,
e 1 processor, n independent tasks of weight (a;).
e 2speeds: s =1/2, s5p =3/2
e D=2W=>1",a
E=W((3/2)*+(1/2)?)
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Proposition (Polynomial-time Approximation algorithms.)

Continuous
speeds

Vi toppiog e With the DISCRETE model, for any integer K > 0, the
models MINENERGY (G,D) problem can be approximated within a
factor )
«@
1+ =) x (14 )2
(142 x 1+ )

where o = maxi<j<m{Si+1 — Si}, in a time polynomial in
the size of the instance and in K.

e With the INCREMENTAL model, the same result holds
where o = 0 (51 = Smin))-
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Approximation results for DISCRETE and
INCREMENTAL.

Proposition (Comparaison to the optimal solution:)

For any integer § > 0, any instance of MINENERGY(G,D)
with the CONTINUOUS model can be approximated within a
factor (1+ %,nf in the INCREMENTAL model with speed
increment 0.
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i The problem of minimizing energy when the scheduled is
already fixed on p processors is:
Modele CONTINUOUS: Polynomial for some special graphs,
ool geometric optimization in the general case.
St DISCRETE and INCREMENTAL: NP-complete. However
g”IH.”.« we were able to give an approximation.
I VDD-HOPPING: Polynomial (linear programming).

Conclusion

e Bi-criteria Energy/Deadline optimization problem
e Mapping already given.

e Theoretical foundations for a comparative study of energy
models.




Energy
trade-offs

G. Aupy

Models
Goal

Continuous
speeds

Vdd-Hopping . . .
Discrete speed Thanks for listening. Any questions?

models

Conclusion



	Introduction
	Models


