
Toward a Theory for Scheduling Dags in
Internet-Based Computing

Grzegorz Malewicz, Member, IEEE,

Arnold L. Rosenberg, Fellow, IEEE, and Matthew Yurkewych

Abstract—Conceptual and algorithmic tools are developed as a foundation for a theory of scheduling complex computation-dags for

Internet-based computing. The goal of the schedules produced is to render tasks eligible for allocation to remote clients (hence, for

execution) at the maximum possible rate. This allows one to utilize remote clients well, as well as to lessen the likelihood of the

“gridlock” that ensues when a computation stalls for lack of eligible tasks. Earlier work has introduced a formalism for studying this

optimization problem and has identified optimal schedules for several significant families of structurally uniform dags. The current

paper extends this work via a methodology for devising optimal schedules for a much broader class of complex dags, which are

obtained via composition from a prespecified collection of simple building-block dags. The paper provides a suite of algorithms that

decompose a given dag G to expose its building blocks and an execution-priority relation . on building blocks. When the building blocks

are appropriately interrelated under ., the algorithms specify an optimal schedule for G.

Index Terms—Internet-based computing, grid computing, global computing, Web computing, scheduling dags, dag decomposition,

theory.

�

1 INTRODUCTION

EARLIER work [15], [17] has developed the Internet-
Computing (IC, for short) Pebble Game, which abstracts

the problem of scheduling computations having intertask
dependencies,1 for several modalities of Internet-based
computing—including Grid computing (cf. [2], [6], [5]),
global computing (cf. [3]), and Web computing (cf. [12]).
The quality metric for schedules produced using the Game
is to maximize the rate at which tasks are rendered eligible
for allocation to remote clients (hence, for execution), with
the dual aim of: 1) enhancing the effective utilization of
remote clients and 2) lessening the likelihood of the
“gridlock” that can arise when a computation stalls pending
computation of already allocated tasks.

A simple example should illustrate our scheduling

objective. Consider the two-dimensional evolving mesh of

Fig. 1. An optimal schedule for this dag sequences tasks

sequentially along each level [15] (as numbered in the

figure). If just one client participates in the computation,

then, after five tasks have been executed, we can allocate

any of three eligible tasks to the client. If there are several

clients, we could encounter a situation wherein two of these

three eligible tasks (marked A in the figure) are allocated to

clients who have not yet finished executing them. There is,

then, only one task (marked E) that is eligible and
unallocated. If two clients now request work, we may be
able to satisfy only one request, thus wasting the computing
resources of one client. Since an optimal schedule max-
imizes the number of eligible tasks, it minimizes the
likelihood of this waste of resources (whose extreme case
is the gridlock that arises when all eligible tasks have been
allocated, but none has been executed).

Many IC projects—cf. [2], [11], [18]—monitor either the
past histories of remote clients or their current computa-
tional capabilities or both. While the resulting snapshots
yield no guarantees of future performance, they at least
afford the server a basis for estimating such performance.
Our study proceeds under the idealized assumption that
such monitoring yields sufficiently accurate predictions of
clients’ future performance that the server can allocate
eligible tasks to clients in an order that makes it likely that
tasks will be executed in the order of their allocation. We
show how such information often allows us to craft
schedules that produce maximally many eligible tasks after
each task execution.

Our contributions. We develop the framework of a
theory of Internet-based scheduling via three conceptual/
algorithmic contributions. 1) We introduce a new “priority”
relation, denoted ., on pairs of bipartite dags; the assertion
“G1 . G2” guarantees that one never sacrifices our quality
metric (which rewards a schedule’s rate of producing
eligible tasks) by executing all sources of G1, then all sources
of G2, then all sinks of both dags. We provide a repertoire of
bipartite building-block dags, show how to schedule each
optimally, and expose the .-interrelationships among them.
2) We specify a way of “composing” building blocks to
obtain dags of possibly quite complex structures; cf. Fig. 2.
If the building blocks used in the composition form a
“relation-chain” under ., then the resulting composite dag

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006 757

. G. Malewicz is with the Department of Engineering, Google, Inc.,
Mountain View, CA 94043. E-mail: malewicz@google.com.

. A.L. Rosenberg and M. Yurkewych are with the Department of Computer
Science, University of Massachusetts, Amherst, MA 01003.
E-mail: {rsnbrg, yurk}@cs.umass.edu.

Manuscript received 14 Jan. 2005; revised 20 May 2005; accepted 20 June
2005; published online 21 Apr. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0008-0105.

1. As is traditional—cf. [8], [9]—we model such a computation as a dag
(directed acyclic graph).

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

is guaranteed to admit an optimal schedule. 3) The
framework developed thus far is descriptive rather than
prescriptive. It says that if a dag G is constructed from
bipartite building blocks via composition and if we can
identify the “blueprint” used to construct G and if the
underlying building blocks are interrelated in a certain way,
then a prescribed strategy produces an optimal schedule for
G. We next address the algorithmic challenge in the
preceding ifs: Given a dag G, how does one apply the
preceding framework to it? We develop a suite of
algorithms that: a) reduce any dag G to its “transitive
skeleton” G0, a simplified version of G that shares the same
set of optimal schedules; b) decompose G0 to determine
whether or not it is constructed from bipartite building
blocks via composition, thereby exposing a “blueprint” for
G0; c) specify an optimal schedule for any such G0 that is
built from building blocks that form a “relation-chain”
under .. For illustration, all of the dags in Fig. 2 yield to our
algorithms.

The scheduling theory we develop here has the potential
of improving efficiency and fault tolerance in existing Grid
systems. As but one example, when Condor [19] executes
computations with complex task dependencies, such as the
Sloan Digital Sky Survey [1], it uses a “FIFO” regimen to
sequence the allocation of eligible tasks. Given the temporal
unpredictability of the remote clients, this scheduling may
sometimes lead to an ineffective use of the clients’
computing resources and, in the extreme case, to “grid-
lock.” Our scheduling algorithms have the potential of
reducing the severity of these issues. Experimental work is
underway to determine how to enhance this potential.

Related work. Most closely related to our study are its
immediate precursors and motivators, [15], [17]. The main
results of those sources demonstrate the necessity and
sufficiency of parent orientation for optimality in scheduling
the dags of Fig. 3. Notably, these dags yield to the
algorithms presented here, so our results both extend the
results in [15], [17] and explain their underlying principles
in a general setting. In a companion to this study, we are
pursuing an orthogonal direction for extending [15], [17].
Motivated by the demonstration in Section 3.4 of the limited
scope of the notion of optimal schedule that we study here,
we formulate, in [14], a scheduling paradigm in which a
server allocates batches of tasks periodically, rather than
allocating individual tasks as soon as they become eligible.
Optimality is always possible within this new framework,

but achieving it may entail a prohibitively complex
computation. An alternative direction of inquiry appears
in [7], [13], where a probabilistic pebble game is used to
study the execution of interdependent tasks on unreliable
clients. Finally, our study has been inspired by the many
exciting systems and/or application-oriented studies of
Internet-based computing, in sources such as [2], [3], [5], [6],
[11], [12], [18].

2 EXECUTING DAGS ON THE INTERNET

We review the basic graph-theoretic terms used in our study.
We then introduce several bipartite “building blocks” to
exemplify our theory. Finally, we present the pebble game on
dags we use to model computations on dags.

2.1 Computation-Dags

2.1.1 Basic Definitions

A directed graph G is given by a set of nodesNG and a set of arcs
(or, directed edges) AG, each having the form ðu! vÞ, where
u; v 2 NG. A path in G is a sequence of arcs that share adjacent
endpoints, as in the following path from node u1 to node un:
ðu1 ! u2Þ; ðu2 ! u3Þ; . . . ; ðun�2 ! un�1Þ; ðun�1 ! unÞ. A
dag (directed acyclic graph) G is a directed graph that has no
cycles, i.e., in a dag, no path of the preceding form hasu1 ¼ un.
When a dag G is used to model a computation, i.e., is a
computation-dag:

. each v 2 NG represents a task in the computation;

. an arc ðu! vÞ 2 AG represents the dependence of
task v on task u: v cannot be executed until u is.

Given an arc ðu! vÞ 2 AG, u is a parent of v and v is a child
of u in G. Each parentless node of G is a source (node), and
each childless node is a sink (node); all other nodes are
internal. A dag G is bipartite if:

1. NG can be partitioned into subsets X and Y such
that, for every arc ðu! vÞ 2 AG, u 2 X and v 2 Y ;

2. each v 2 NG is incident to some arc of G, i.e., is either
the node u or the node w of some arc ðu! wÞ 2 AG.
(Prohibiting “isolated” nodes avoids degeneracies.)

758 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006

Fig. 1. An optimal schedule helps utilize clients well and reduce chances

of gridlock.

Fig. 2. Dags with complex task dependencies that our algorithms can

schedule optimally.

G is connected if, when arc-orientations are ignored, there is a
path connecting every pair of distinct nodes.

2.1.2 A Repertoire of Building Blocks

Our study applies to any repertoire of connected bipartite
building-block dags that one chooses to build complex dags
from. For illustration, we focus on the following specific
dags. The following descriptions proceed left to right along
successive rows of Fig. 4; we use the drawings to refer to
“left” and “right.”

The first three dags are named for the Latin letters
suggested by their topologies. W-dags epitomize “expan-
sive” and M-dags epitomize “reductive” computations.

W-dags. For each integer d > 1, the ð1; dÞ-W-dagW1;d has
one source and d sinks; its d arcs connect the source to each
sink. Inductively, for positive integers a; b, the ðaþ b; dÞ-W-
dag Waþb;d is obtained from the ða; dÞ-W-dag Wa;d and the
ðb; dÞ-W-dag Wb;d by identifying (or merging) the rightmost
sink of the former dag with the leftmost sink of the latter.

M-dags. For each integer d > 1, the ð1; dÞ-M-dagM1;d has
d sources and one sink; its d arcs connect each source to the

sink. Inductively, for positive integers a; b, the ðaþ b; dÞ-M-

dag Maþb;d is obtained from the ða; dÞ-M-dag Ma;d and the

ðb; dÞ-M-dagMb;d by identifying (or merging) the rightmost

source of the former dag with the leftmost source of the latter.
N-dags. For each integer s > 0, the s-N-dag N s has

s sources and s sinks; its 2s� 1 arcs connect each source v to

sink v and to sink vþ 1 if the latter exists. N s is obtained

fromWs�1;2 by adding a new source on the right whose sole

arc goes to the rightmost sink. The leftmost source of N s

—the dag’s anchor—has a child that has no other parents.
(Bipartite) Cycle-dags. For each integer s > 1, the

s-(Bipartite) Cycle-dag Cs is obtained from N s by adding a

new arc from the rightmost source to the leftmost sink—so

that each source v has arcs to sinks v and vþ 1 mod s.
(Bipartite) Clique-dags. For each integer s > 1, the

s-(Bipartite) Clique-dag Qs has s sources and s sinks and an

arc from each source to each sink.
We choose the preceding building blocks because the

dags of Fig. 3 can all be constructed using these blocks.

Although details must await Section 4, it is intuitively clear

from the figure that the evolving mesh is constructed from

its source outward by “composing” (or, “concatenating”) a

ð1; 2Þ-W-dag with a ð2; 2Þ-W-dag, then a ð3; 2Þ-W-dag, and

so on; the reduction-mesh is constructed from its sources

upward using ðk; 2Þ-M-dags for successively decreasing

values of k; the reduction-tree is constructed from its

sources/leaves upward by “concatenating” collections of

ð1; 2Þ-M-dags; the FFT dag is constructed from its sources

outward by “concatenating” collections of 2-cycles (which

are identical to 2-cliques).

MALEWICZ ET AL.: TOWARD A THEORY FOR SCHEDULING DAGS IN INTERNET-BASED COMPUTING 759

Fig. 3. (a) An evolving (two-dimensional) mesh, (b) a (binary) reduction-tree, (c) an FFT-dag, and (d) a (two-dimensional) reduction-mesh (or,

pyramid dag).

Fig. 4. The building blocks of semi-uniform dags.

2.2 The Internet-Computing Pebble Game

A number of so-called pebble games on dags have been

shown, over the course of several decades, to yield elegant

formal analogues of a variety of problems related to

scheduling computation-dags. Such games use tokens,

called pebbles, to model the progress of a computation on

a dag: The placement or removal of the various available

types of pebbles—which is constrained by the dependencies

modeled by the dag’s arcs—represents the changing

(computational) status of the dag’s task-nodes.
Our study is based on the Internet-Computing (IC, for

short) Pebble Game of [15], whose structure derives from the

“no recomputation allowed” pebble game of [16]. Arguments

are presented in [15], [17] (q.v.) that justify studying a

simplified form of the Game in which task-execution order

follows task-allocation order. As we remark in the Introduc-

tion, while we recognize that this assumption will never be

completely realized in practice, one hopes that careful

monitoring of the clients’ past behaviors and current

capabilities, as prescribed in, say, [2], [11], [18], can enhance

the likelihood, if not the certainty, of the desired order.

2.2.1 The Rules of the Game

The IC Pebble Game on a computation-dag G involves one

player S, the Server, who has access to unlimited supplies of

two types of pebbles: ELIGIBLE pebbles, whose presence

indicates a task’s eligibility for execution, and EXECUTED

pebbles, whose presence indicates a task’s having been

executed. We now present the rules of our simplified

version of the IC Pebble Game of [15], [17].

The Rules of the IC Pebble Game

. S begins by placing an ELIGIBLE pebble on each
unpebbled source of G.

/*Unexecuted sources are always eligible for

execution, having no parents whose prior execution

they depend on.*/
. At each step, S

- selects a node that contains an ELIGIBLE pebble,
- replaces that pebble by an EXECUTED pebble,
- places an ELIGIBLE pebble on each unpebbled

node of G, all of whose parents contain EXE-

CUTED pebbles.
. S’s goal is to allocate nodes in such a way that every

node v of G eventually contains an EXECUTED pebble.
/*This modest goal is necessitated by the possi-

bility that G is infinite.*/

Note. The (idealized) IC Pebble Game on a dag G
executes one task/node of G per step. The reader should not

infer that we are assuming a repertoire of tasks that are

uniformly computable in unit time. Once we adopt the

simplifying assumption that task-execution order follows

task-allocation order, we can begin to measure time in an

event-driven way, i.e., per task, rather than chronologically,

i.e., per unit time. Therefore, our model allows tasks to be

quite heterogeneous in complexity as long as the Server can

match the tasks’ complexities with the clients’ resources (via

the monitoring alluded to earlier).

A schedule for the IC Pebble Game on a dag G is a rule
for selecting which ELIGIBLE pebble to execute at each
step of a play of the Game. For brevity, we henceforth
call a node ELIGIBLE (respectively, EXECUTED) when it
contains an ELIGIBLE (respectively, an EXECUTED) pebble.
For uniformity, we henceforth talk about executing nodes
rather than tasks.

2.2.2 IC Quality

The goal in the IC Pebble Game is to play the Game in a way
that maximizes the number of ELIGIBLE nodes at every
step t. For each step t of a play of the Game on a dag G
under a schedule �: bEE�ðtÞ denotes the number of nodes of G
that are ELIGIBLE at step t and E�ðtÞ the number of
ELIGIBLE nonsource nodes. (Note that E�ð0Þ ¼ 0.)

We measure the IC quality of a play of the IC Pebble Game on
a dag G by the size of bEE�ðtÞ at each step t of the play—the bigger
bEE�ðtÞ is, the better. Our goal is an IC-optimal schedule �, in
which, for all steps t, bEE�ðtÞ is as big as possible.

It is not a priori clear that IC-optimal schedules ever
exist! The property demands that there be a single schedule
� for dag G such that, at every step of the computation, �
maximizes the number of ELIGIBLE nodes across all
schedules for G. In principle, it could be that every schedule
that maximizes the number of ELIGIBLE nodes at step t
requires that a certain set of t nodes has been executed,
while every analogous schedule for step tþ 1 requires that
a different set of tþ 1 nodes has been executed. Indeed, we
see in Section 3.4 that there exist dags that do not admit any
IC-optimal schedule. Surprisingly, though, the strong
requirement of IC optimality can be achieved for large
families of dags—even ones of quite complex structure.

The significance of IC quality—hence of IC optimality
—stems from the following intuitive scenarios: 1) Schedules
that produce ELIGIBLE nodes maximally fast may reduce
the chance of a computation’s “stalling” because no new
tasks can be allocated pending the return of already
assigned ones. 2) If the Server receives a batch of requests
for tasks at (roughly) the same time, then an IC-optimal
schedule ensures that maximally many tasks are ELIGIBLE

at that time so that maximally many requests can be
satisfied. See [15], [17] for more elaborate discussions of
IC quality.

3 THE RUDIMENTS OF IC-OPTIMAL SCHEDULING

We now lay the groundwork for an algorithmic theory of
how to devise IC-optimal schedules. Beginning with a
result that simplifies the quest for such schedules, we
expose IC-optimal schedules for the building blocks of
Section 2.1.2. We then create a framework for scheduling
disjoint collections of building blocks via a priority relation
on dags and we demonstrate the nonexistence of such
schedules for certain other collections.

Executing a sink produces no ELIGIBLE nodes, while
executing a nonsink may. This simple fact allows us to focus
on schedules with the following simple structure:

Lemma 1. Let � be a schedule for a dag G. If � is altered to
execute all of G’s nonsinks before any of its sinks, then the
IC quality of the resulting schedule is no less than �’s.

760 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006

When applied to a bipartite dag G, Lemma 1 says that we

never diminish IC quality by executing all of G’s sources

before executing any of its sinks.

3.1 IC-Optimal Schedules for Individual Building
Blocks

A schedule for any of the very uniform dags of Fig. 3 is

IC optimal when it sequences task execution sequentially

along each level of the dags [15]. While such an order is

neither necessary nor sufficient for IC optimality with the

“semi-uniform” dags studied later, it is important when

scheduling the building-block dags of Section 2.1.2.

Theorem 1. Each of our building-block dags admits an IC-

optimal schedule that executes sources from one end to the

other; for N-dags, the execution must begin with the anchor.

Proof. The structures of the building blocks render the

following bounds on E�ðtÞ obvious, as t ranges from 0 to

the number of sources in the given dag:2

Ws;d : E�ðtÞ � ðd� 1Þtþ ½t ¼ s�;
N s : E�ðtÞ � t;
Ms;d : E�ðtÞ � ½t ¼ 0� þ ðt� 1Þ=ðd� 1Þb c;
Cs : E�ðtÞ � t� ½t 6¼ 0� þ ½t ¼ s�;
Qs : E�ðtÞ ¼ s� ½t ¼ s�:

The execution orders in the theorem convert each of

these bounds to an equality. tu

3.2 Execution Priorities for Bipartite Dags

We now define a relation on bipartite dags that often

affords us an easy avenue toward IC-optimal schedules—

for complex, as well as bipartite, dags.
Let the disjoint bipartite dags G1 and G2 have s1 and s2

sources and admit the IC-optimal schedules �1 and �2,

respectively. If the following inequalities hold,3

ð8x 2 ½0; s1�Þ ð8y 2 ½0; s2�Þ :

E�1
ðxÞ þ E�2

ðyÞ � E�1
ðminfs1; xþ ygÞ

þ E�2
ððxþ yÞ �minfs1; xþ ygÞ;

ð1Þ

then we say that G1 has priority over G2, denoted G1 . G2.
The inequalities in (1) say that one never decreases

IC quality by executing a source of G1, in preference to a

source of G2, whenever possible.
The following result is quite important in our algorithmic

framework:

Theorem 2. The relation . on bipartite dags is transitive.

Proof. Let G1, G2, G3 be arbitrary bipartite dags such that:

1. each Gi has si sources and admits an IC-optimal
schedule �i;

2. G1 . G2 and G2 . G3.

To see that G1 . G3, focus on a moment when we have

executed x1 < s1 sources of G1 and x3 � s3 sources of G3

(so E�1
ðx1Þ þ E�3

ðx3Þ sinks are ELIGIBLE). We consider

two cases.
Case 1. s1 � x1 � minfs2; x3g. In this case, we have

E�1
ðx1Þ þE�3

ðx3Þ � E�1
ðx1Þ þ E�2

ðminfs2; x3gÞ
þ E�3

ðx3 �minfs2; x3gÞ
� E�1

ðx1 þminfs2; x3gÞ
þ E�3

ðx3 �minfs2; x3gÞ;

ð2Þ

the first inequality follows because G2 . G3, the second
because G1 . G2. We can iterate these transfers until either
all sources of G1 are EXECUTED or no sources of G3 are
EXECUTED.

Case 2. s1 � x1 < minfs2; x3g. This case is a bit subtler
than the preceding one. Let y ¼ s3 � x3 and
z ¼ ðs1 � x1Þ þ ðs3 � x3Þ ¼ ðs1 � x1Þ þ y. Then, x1 ¼ s1 �
ðz� yÞ and x3 ¼ s3 � y. (This change of notation is useful
because it relates x1 and x3 to the numbers of sources in
G1 and G3.) We note the following useful facts about y
and z:

. 0 � y � z by definition,

. 0 � z < s3 because s1 � x1 < x3,

. z� y � s1 because x1 � 0,

. s1 � x1 ¼ z� y by definition,

. z� y < s2 because s1 � x1 < s2.

Now, we apply these observations to the problem at hand.
Because G2 . G3 and z� y 2 ½0; s2� and fy; zg � ½0; s3�, we
know that

E�2
ðs2 � ðz� yÞÞ þ E�3

ðs3 � yÞ � E�2
ðs2Þ þ E�3

ðs3 � zÞ;

so that

E�3
ðs3 � yÞ � E�3

ðs3 � zÞ � E�2
ðs2Þ � E�2

ðs2 � ðz� yÞÞ:
ð3Þ

Intuitively, executing the last z� y sources of G2 is no
worse (in IC quality) than executing the “intermediate”
sources s3 � z through s3 � y of G3.

Similarly, because G1 . G2 and z� y 2 ½0;minfs1; s2g�,
we know that

E�1
ðs1 � ðz� yÞÞ þE�2

ðs2Þ � E�1
ðs1Þ þ E�2

ðs2 � ðz� yÞÞ;

so that

E�2
ðs2Þ � E�2

ðs2 � ðz� yÞÞ � E�1
ðs1Þ � E�1

ðs1 � ðz� yÞÞ:
ð4Þ

Intuitively, executing the last z� y sources of G1 is no
worse (in IC quality) than executing the last z� y sources
of G2.

By transitivity (of �), inequalities (3), (4) imply that

E�3
ðs3 � yÞ � E�3

ðs3 � zÞ � E�1
ðs1Þ �E�1

ðs1 � ðz� yÞÞ;

so that

E�1
ðx1Þ þE�3

ðx3Þ ¼ E�1
ðs1 � ðz� yÞÞ þ E�3

ðs3 � yÞ
� E�1

ðs1Þ þE�3
ðs3 � zÞ

¼ E�1
ðs1Þ þE�3

ðx3 � ðs1 � x1ÞÞ:
ð5Þ

The preceding cases—particularly, the chains of inequal-
ities (2), (5)—verify that system (1) always holds for G1

and G3 so that G1 . G3, as was claimed. tu
Theorem 2 has a corollary that further exposes the nature

of . and that tells us how to schedule pairwise .-comparable

MALEWICZ ET AL.: TOWARD A THEORY FOR SCHEDULING DAGS IN INTERNET-BASED COMPUTING 761

2. For any statement P about t, ½P ðtÞ� ¼ if P ðtÞ then 1 else 0.
3. ½a; b� denotes the set of integers fa; aþ 1; . . . ; bg.

bipartite dags IC optimally. Specifically, we develop tools
that extend Theorem 1 to disjoint unions—called sums—of
building-block dags. Let G1; . . . ;Gn be connected bipartite
dags that are pairwise disjoint, in that NGi \NGj ¼ ; for all
distinct i and j. The sum of these dags, denoted
G1 þ � � � þ Gn, is the bipartite dag whose node-set and arc-
set are, respectively, the unions of the corresponding sets of
G1; . . . ;Gn.

Corollary 1. Let G1; . . . ;Gn be pairwise disjoint bipartite dags,
with each Gi admitting an IC-optimal schedule �i. If
G1 . � � � . Gn, then the schedule �? for the sum G1 þ � � � þ Gn
that executes, in turn, all sources of G1 according to �1, all
sources of G2 according to �2, and so on, for all i 2 ½1; n�, and,
finally, executes all sinks, is IC optimal.

Proof. By Lemma 1, we lose no generality by focusing on a
step t when the only EXECUTED nodes are sources of the
sum-dag. For any indices i and j > i, the transitivity of .
guarantees that Gi . Gj. Suppose that some sources of Gi
are not EXECUTED at step t, but at least one source of Gj
is EXECUTED. Then, by the definition of ., in (1), we
never decrease the number of ELIGIBLE sinks at step t by
“transferring” as many source-executions as possible
from Gj to Gi. By repeating such “transfers” a finite
number of times, we end up with a “left-loaded”
situation at step t, wherein there exists i 2 ½1; n� such
that all sources of G1; . . . ;Gi�1 are EXECUTED, some
sources of Gi are EXECUTED, and no sources of
Giþ1; . . . ;Gn are EXECUTED. tu

One can actually prove Corollary 1 without invoking the
transitivity of . by successively “transferring executions”
from each Gi to Gi�1.

3.3 Priorities among Our Building Blocks

We now determine the pairwise priorities among the
building-block dags of Section 2.1.2.

Theorem 3. We observe the following pairwise priorities among
our building-block dags:

1. For all s and d, Ws;d . G for the following bipartite
dags G:

a. all W-dags Ws0;d0 whenever d0 < d or whenever
d0 ¼ d and s0 � s;

b. all M-dags, N-dags, and Cycle-dags; and
c. Clique-dags Qs0 with s0 � d.

2. For all s, N s . G for the following bipartite dags G:

a. all N-dags N s0 , for all s0 and
b. all M-dags.

3. For all s, Cs . G for the following bipartite dags G:

a. Cs and
b. all M-dags.

4. For all s and d, Ms;d .Ms0;d0 whenever d0 > d or
whenever d0 ¼ d and s0 � s.

5. For all s, Qs .Qs.
The proof of Theorem 3 is a long sequence of

calculations paired with an invocation of the transitivity

of .; we relegate it to the Appendix (Section A), which

can be found on the Computer Society Digital Library at

http://computer.org/tc/archives.htm.

3.4 Incompatible Sums of Building Blocks

Each of our building blocks admits an IC-optimal schedule,
but some of their sums do not.

Lemma 2. The following sums of building-block dags admit no
IC-optimal schedule:

1. all sums of the forms Cs1
þ Cs2

or Cs1
þQs2

or
Qs1
þQs2

, where s1 6¼ s2;
2. all sums of the form N s1

þ Cs2
or N s1

þQs2
; and

3. all sums of the form Qs1
þMs2;d, where s1 > s2.

Proof.

1. Focus on schedules for the dag G ¼ Cs1
þ Cs2

,
where s1 6¼ s2. There is a unique family �1 of
schedules for which E�ðs1Þ ¼ s1; all of these
execute sources of Cs1

for the first s1 steps. For
any other schedule �0, E�0 ðs1Þ < E�ðs1Þ. Simi-
larly, there is a unique family �2 of schedules for
which E�ðs2Þ ¼ s2; all of these execute sources of
Cs2

for the first s2 steps. For any other schedule �0,
E�0 ðs2Þ < E�ðs2Þ. Since s1 6¼ s2, the families �1

and �2 are disjoint! Thus, no schedule for G
maximizes IC quality at both steps s1 and s2;
hence, G does not admit any IC-optimal schedule.

Exactly the same argument works for the other
indicated sum-dags of part 1.

2. Say, for contradiction, that there is an IC-
optimal schedule � for a dag N s1

þ Gs2
, where

Gs2
2 fCs2

;Qs2
g. The first node that � executes

must be the anchor of N s1
for only this choice

yields E�ð1Þ 6¼ 0. It follows that � must execute
all sources of N s1

in the first s1 steps, for this
would yield E�ðtÞ ¼ t for all t � s1, while any
other choice would not maximize IC quality until
step s1. We claim that � does not maximize
IC quality at some step s > 1 and, hence, cannot
be IC optimal. To wit: If s2 � s1, then �’s
deficiency is manifest at step s1 þ 1. A schedule
�0 that executes all sources of Gs2

and then
ex ecut es s1 � s2 þ 1 sources of N s1

has
E�0 ðs1 þ 1Þ ¼ s1 þ 1. But, � executes a source of
Gs2

for the first time at step s1 þ 1 and, so,
E�ðs1 þ 1Þ ¼ s1. If s2 > s1, then �’s deficiency is
manifest at step s2. A schedule �0 that executes all
sources of Gs2

during the first s2 steps has
E�0 ðs2Þ ¼ s2. However, during this period, �
executes some x � 1 sources of N s1

, hence, only
some y � s2 � 1 sources of Gs2

. (Note that
xþ y ¼ s2.) Since s1 < s2, it must be that y � 1.
But, then, by step s2, � will have produced
exactly x ELIGIBLE sinks on N s1

and no more than
y� 1 E L I G I B L E s i n k s o n Gs2

, s o t h a t
E�ðs2Þ ¼ xþ y� 1 < s2.

3. Assume, for contradiction that there is an IC-
optimal schedule � forQs1

þMs2;d, where s1 > s2.
Focus on the numbers of ELIGIBLE sinks after s1 and
after s2 steps. The first s2 nodes that � executes
must be nodes ofMs2;d dictated by an IC-optimal

762 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006

schedule for that dag for this is the only choice for
which E�ðs2Þ 6¼ 0. A schedule �0 that executes all
sources ofQs1

during the first s1 steps would have
E�0 ðs1Þ ¼ s1. Consider what � can have produced
by step s1. Since � spends at least one step before
step s1 executing a node of Ms2;d, it cannot have
rendered any sink ofQs1

ELIGIBLE by step s1; hence,
E�ðs1Þ � bðs1 � 1Þ=ðd� 1Þc � s1 � 1. It follows
that � cannot be IC optimal. tu

We summarize our priority-related results about sums of

building blocks in Table 1.

4 ON SCHEDULING COMPOSITIONS OF BUILDING

BLOCKS

We now show how to devise IC-optimal schedules for
complex dags that are obtained via composition from any
base set of connected bipartite dags that can be related by ..
We illustrate the process using the building blocks of
Section 2.1.2 as a base set.

We inductively define the operation of composition on
dags.

. Start with a base set B of connected bipartite dags.

. Given G1;G2 2 B—which could be copies of the same
dag with nodes renamed to achieve disjointness
—one obtains a composite dag G as follows:

- Let G begin as the sum, G1 þ G2. Rename nodes
to ensure that NG is disjoint from NG1

and NG2
.

- Select some set S1 of sinks from the copy of G1 in
the sum G1 þ G2 and an equal-size set S2 of
sources from the copy of G2.

- Pairwise identify (i.e., merge) the nodes in S1

and S2 in some way.4 The resulting set of nodes
is NG; the induced set of arcs is AG.

. Add the dag G thus obtained to the set B.

We denote composition by * and say that the dag G is a
composite of type ½G1 * G2�.

Notes. 1) The roles of G1 and G2 in a composition are
asymmetric: G1 contributes sinks, while G2 contributes
sources. 2) G’s type indicates only that sources of G2 were
merged with sinks of G1; it does not identify which nodes
were merged. 3) The dags G1 and/or G2 could themselves be
composite.

Composition is associative, so we do not have to keep track
of the order in which dags are incorporated into a composite
dag. Fig. 5 illustrates this fact, which we verify now.

Lemma 3. The composition operation on dags is associative. That

is, a dag G is a composite of type ½½G1 * G2� * G3� if, and only if,

it is a composite of type ½G1 * ½G2 * G3��.
Proof. For simplicity, we refer to sinks and sources that are

merged in a composition by their names prior to the
merge. Context should disambiguate each occurrence of
a name.

Let G be composite of type ½½G1 * G2� * G3�, i.e., of type

½G0 * G3�, where G0 is composite of type ½G1 * G2�. Let T1

and S2 comprise, respectively, the sinks of G1 and the

sources of G2 that were merged to yield G0. Note that no

node from T1 is a sink of G0 because these nodes have

become internal nodes of G0. Let T 0 and S3 comprise,

respectively, the sinks of G0 and the sources of G3 that

were merged to yield G. Each sink of G0 corresponds

either to a sink of G1 that is not in T1 or to a sink of G2.

Hence, T 0 can be partitioned into the sets T 01, whose

nodes are sinks of G1, and T 02, whose nodes are sinks of

G2. Let S01 and S02 comprise the sources of G3 that were

merged with, respectively, nodes of T 01 and nodes of T 02.

Now, G can be obtained by first merging the sources of S02
with the sinks of T 02 and then merging the sources of the

resulting dag, S01 [S2, with the sinks, T 01 [T1, of G1. Thus,

MALEWICZ ET AL.: TOWARD A THEORY FOR SCHEDULING DAGS IN INTERNET-BASED COMPUTING 763

4. When S1 ¼ S2 ¼ ;, the composite dag is just a sum.

TABLE 1
The Relation . among Building-Block Dags

Entries either list conditions for priority or indicate (via “X”) the absence of any IC-optimal schedule for that pairing.

G is also composite of type ½G1 * ½G2 * G3��. The converse

yields to similar reasoning. tu
We can now illustrate the natural correspondence

between the node-set of a composite dag and those of its

building blocks, via Fig. 3:

. The evolving two-dimensional mesh is composite of
type W1;2 * W2;2 * W3;2 * � � � .

. A binary reduction-tree is obtained by pairwise
composing of many instances of M1;2 (seven
instances in the figure).

. The 5-level two-dimensional reduction-mesh is a
composite of typeM5;2 * M4;2 * M3;2 * M2;2 * M1;2.

. The FFT dag is obtained by pairwise composing
many instances of C2 ¼ Q2 (12 instances in the
figure).

Dag G is a .-linear composition of the connected bipartite

dags G1;G2; . . . ;Gn if:

1. G is a composite of type G1 * G2 * � � � * Gn;
2. each Gi . Giþ1, for all i 2 ½1; n� 1�.
Dags that are .-linear compositions admit simple IC-

optimal schedules.

Theorem 4. Let G be a .-linear composition of G1;G2; . . . ;Gn,

where each Gi admits an IC-optimal schedule �i. The schedule

� for G that proceeds as follows is IC optimal:

1. � executes the nodes of G that correspond to sources of
G1, in the order mandated by �1, then the nodes that
correspond to sources of G2, in the order mandated by
�2, and so on, for all i 2 ½1; n�.

2. � finally executes all sinks of G in any order.

Proof. Let �0 be a schedule for G that has maximum E�0 ðxÞ
for some x and let X comprise the first x nodes that �0

executed. By Lemma 1, we may assume that either

1. X contains all nonsinks of G (and perhaps some
sinks) or

2. X is a proper subset of the nonsinks of G.

In situation 1, E�ðxÞ is maximal by hypothesis. We
therefore assume that situation 2 holds and show that
E�ðxÞ � E�0 ðxÞ. When X contains only nonsinks of G,
each node of X corresponds to a specific source of one
specific Gi. Let us focus, for each i 2 ½1; n�, on the set of
sources of Gi that correspond to nodes in X; call this set
Xi. We claim that:

The number of ELIGIBLE nodes in G at step x, denoted
eðXÞ, is jSj � jXj þ

Pm
i¼1 eiðXiÞ, where S is the set of sources

of G, and eiðXiÞ is the number of sinks of Gi that are ELIGIBLE

when only sources Xi of Gi are EXECUTED.
To verify this claim, imagine that we execute nodes of

G and the corresponding nodes of its building block Gi in
tandem, using the terminology of the IC Pebble Game for
convenience. The main complication arises when we
pebble an internal node v of G since we then simulta-
neously pebble a sink vi of some Gi and a source vj of
some Gj. At each step t of the Game: If node v of G
becomes ELIGIBLE, then we place an ELIGIBLE pebble on
vi and leave vj unpebbled; if v becomes EXECUTED, then
we place an EXECUTED pebble on vj and an ELIGIBLE

pebble on vi. An EXECUTED pebble on a sink of G is
replaced with an ELIGIBLE pebble. No other pebbles
change.

Focus on an arbitrary Gi. Note that the sources of Gi
that are EXECUTED comprise precisely the set Xi. The
sinks of Gi that are ELIGIBLE comprise precisely the set Yi
of sinks all of whose parents are EXECUTED; hence,
jYij ¼ eiðXiÞ. The cumulative number of sources of the
dags Gi that are ELIGIBLE is jSj � p, where p is the
number of sources of G that are EXECUTED. It follows
that the cumulative number of ELIGIBLE pebbles on the
dags Gi is e1ðX1Þ þ � � � þ enðXnÞ þ jSj � p. We now
calculate the surfeit of ELIGIBLE pebbles on the dags Gi
over the ELIGIBLE pebbles on G. Extra ELIGIBLE pebbles
get created when G is decomposed, in only two cases:
1) when an internal node of G becomes EXECUTED and
2) when we process a sink of G that is EXECUTED. The
number of the former cases is jX1j þ � � � þ jXnj � p.
Denoting the number of the latter cases by q, we note
that q þ jX1j þ � � � þ jXnj ¼ jXj. The claim is thus verified
because the number of ELIGIBLE nodes in G is

eðXÞ ¼ ðe1ðX1Þ þ � � � þ enðXnÞ þ jSj � pÞ
� ðjX1j þ � � � þ jXnj � pþ qÞ:

Because of the priority relations among the dags Gi,
Corollary 1 implies that eðXÞ ¼

Pn
i¼1 E�i

ðx0iÞ, where x0i is

a “low-index-loaded” execution of the Gi. Because of the

way the dags Gi are composed, the sources of each Gj
could have been merged only with sinks of lower-index

dags, namely, G1; . . . ;Gj�1. Thus, a “low-index-loaded”

execution corresponds to a set X0 of x EXECUTED nodes

of G that satisfy precedence constraints. Thus, there is a

764 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006

Fig. 5. Dags of the following types: (a) ½½W1;5 * W2;4� * C3�;
(b) ½½½W3;2 * M2;3� * M1;2� * M1;3�;
(c) ½N 3 * ½N 3 * N 2�� ¼ ½½N 3 * N 3� * N 2�. Each admits an IC-optimal

schedule.

schedule—namely, �—that executes nodes of G that
correspond to the dags G1;G2; . . . ;Gn, in turn, and this
schedule is IC optimal. tu

5 IC-OPTIMAL SCHEDULES VIA

DAG-DECOMPOSITION

Section 4 describes how to build complex dags that admit
IC-optimal schedules. Of course, the “real” problem is not
to build a dag but rather to execute a given one. We now craft
an algorithmic framework that converts the synthetic setting
of Section 4 to an analytical setting. We present a suite of
algorithms that take a given dag G and:

1. simplify G’s structure in a way that preserves the IC
quality of its schedules;

2. decompose (the simplified) G into its “constituents”
(when it is, indeed, composite); and

3. determine when (the simplified) G is a .-linear
composition of its “constituents.”

When this program succeeds, we invoke Theorem 4 to
schedule G IC optimally, bottom-up, from the decomposi-
tion. We now develop the advertised algorithmic setting.

5.1 “Skeletonizing” a Complex Dag

The word “simplified” is needed in the preceding para-
graph because a dag can fail to be composite just because it
contains “shortcut” arcs that do not impact intertask
dependencies. Often, removing all shortcuts renders a dag
composite, hence, susceptible to our scheduling strategy.
(Easily, not every shortcut-free dag is composite.)

For any dag G and nodes u; v 2 NG, we write ue>G v to

indicate that there is a path from u to v in G. An arc ðu!
vÞ 2 AG is a shortcut if there is a path ue>G v that does not

include the arc. The reader can show easily that:

Lemma 4. Composite dags contain no shortcuts.

Fortunately, one can efficiently remove all shortcuts from
a dag without changing its set of IC-optimal schedules. A
(transitive) skeleton (or, minimum equivalent digraph) G0 of dag
G is a smallest subdag of G that shares G’s node-set and
transitive closure [4].

Lemma 5 ([10]). Every dag G has a unique transitive skeleton,
�ðGÞ, which can be found in polynomial time.

We can craft an IC-optimal schedule for a dag G
automatically by crafting such a schedule for �ðGÞ. A
special case of the following result appears in [15].

Theorem 5. A schedule � has the same IC quality when it
executes a dag G as when it executes �ðGÞ. In particular, if � is
IC optimal for �ðGÞ, then it is IC optimal for G.

Proof. Say that, under schedule �, a node u becomes
ELIGIBLE at step t of the IC Pebble Game on �ðGÞ. This
means that, at step t, all of u’s ancestors in �ðGÞ—its
parents, its parents’ parents, etc.—are EXECUTED. Be-
cause �ðGÞ and G have the same transitive closure, node u
has precisely the same ancestors in G as it does in �ðGÞ.
Hence, under schedule �, u becomes ELIGIBLE at step t
of the IC Pebble Game on G. tu

By Lemma 4, a dag cannot be composite unless it is
transitively skeletonized. By Theorem 5, once having
scheduled �ðGÞ IC optimally, we have also scheduled G IC
optimally. Therefore, this section paves the way for our
decomposition-based scheduling strategy.

5.2 Decomposing a Composite Dag

Every dag G that is composed from connected bipartite dags
can be decomposed to expose the dags and how they
combine to yield G. We describe this process in detail and
illustrate it with the dags of Fig. 3.

A connected bipartite dag H is a constituent of G just
when:

1. H is an induced subdag of G: NH � NG and AH is
comprised of all arcs ðu! vÞ 2 AG such that
fu; vg � NH.

2. H is maximal: The induced subdag of G on any
superset of H’s nodes—i.e., any set S such that
NH 	 S � NG—is not connected and bipartite.

Selecting a constituent. We select any constituent of G all
of whose sources are also sources of G, if possible; we call
the selected constituent B1 (the notation emphasizing that
B1 is bipartite).

In Fig. 3: Every candidate B1 for the FFT dag is a copy of C2

included in levels 2 and 3; every candidate for the reduction-
tree is a copy of M1;2; the unique candidate for the
reduction-mesh is M4;2.

Detaching a constituent. We “detach” B1 from G by
deleting the nodes of G that correspond to sources of B1, all
incident arcs, and all resulting isolated sinks. We thereby
replace G with a pair of dags hB1;G0i, where G0 is the
remnant of G after B1 is detached.

If G0 is not empty, then the process of selection and
detachment continues, producing a sequence of the form

G¼)hB1;G0i¼)hB1; hB2;G00ii¼)hB1; hB2; hB3;G000iii¼) � � � ;

leading, ultimately, to a sequence of connected bipartite
dags: B1;B2; . . . ;Bn.

We claim that the described process recognizes whether
or not G is composite and, if so, it produces the dags from
which G is composed (possibly in a different order from the
original composition). If G is not composite, then the process
fails.

Theorem 6. Let the dag G be composite of type G1 * � � � * Gn. The
decomposition process produces a sequence B1; . . . ;Bn of
connected bipartite dags such that:

. G is composite of type B1 * � � � * Bn;

. fB1; . . . ;Bng ¼ fG1; . . . ;Gng.
Proof. The result is trivial when n ¼ 1 as G is then a

connected bipartite dag. Assume, therefore, that the
result holds for all n < m and let G be a composite
of type G1 * � � � * Gm. In this case, G1 is a constituent
of G, all of whose sources are sources of G. (Other
Gi’s may share this property.) There is, therefore, a
dag B1 for our process to detach. Since any
constituent of G all of whose sources are sources of
G must be one of the Gi, we know that B1 is one of
these dags. It follows that G is a composite of type

MALEWICZ ET AL.: TOWARD A THEORY FOR SCHEDULING DAGS IN INTERNET-BASED COMPUTING 765

B1 * ðG1 * � � � * Gi�1 * Giþ1 * � � � * GmÞ; moreover, the
dag G0 resulting after detaching B1 is composite of type
G1 * � � � * Gi�1 * Giþ1 * � � � * Gm because the detachment
process does not affect any sources of G other than those
it shares with B1. By inductive hypothesis, then, G0 can be
decomposed as indicated in the theorem. We now invoke
Lemma 3. tu

5.3 The Super-Dag Obtained by Decomposing G
The next step in our strategy is to abstract the structure of G
exposed by its decomposition into B1; . . . ;Bn in an
algorithmically advantageous way. Therefore, we shift
focus from the decomposition to G’s associated super-dag
SG ¼def SðB1 * � � � * BnÞ, which is constructed as follows:
Each node of SG—which we call a supernode to prevent
ambiguity—is one of the Bis. There is an arc in SG from
supernode u to supernode v just when some sink(s) of u are
identified with some source(s) of v when one composes the
Bis to produce G. Fig. 6 and Fig. 7 present two examples; in
both, supernodes appear in dashed boxes and are inter-
connected by dashed arcs.

In terms of super-dags, the question of whether or not
Theorem 4 applies to dag G reduces to the question of
whether or not SG admits a topological sort [4] whose
linearization of supernodes is consistent with the relation ..
For instance, one derives an IC-optimal schedule for the
dag G of Fig. 5b (which is decomposed in Fig. 6) by noting
that G is a composite of typeW3;2 * M1;2 * M2;3 * M1;3 and
that W3;2 .M1;2 .M2;3 .M1;3. Indeed, G points out the
challenge in determining if Theorem 4 applies since it is
also a composite of type W3;2 * M2;3 * M1;2 * M1;3, but
M2;3 6 .M1;2. We leave to the reader the easy verification
that the linearization B1; . . . ;Bn is a topological sort of
SðB1 * � � � * BnÞ.

5.4 On Exploiting Priorities among Constituents

Our remaining challenge is to devise a topological sort of SG
that linearizes the supernodes in an order that honors
relation .. We now present sufficient conditions for this to
occur, verified via a linearization algorithm:

Theorem 7. Say that the dag G is a composite of type B1 * � � � *
Bn and that, for each pair of constituents, Bi, Bj with i 6¼ j,
either Bi . Bj or Bj . Bi. Then, G is a .-linear composition
whenever the following holds:

Whenever Bj is a child of Bi in SðB1 * � � � * BnÞ;
we have Bi . Bj:

ð6Þ

Proof. We begin with an arbitrary topological sort,
bBB ¼def B�ð1Þ; . . . ;B�ðnÞ, of the superdag SG. We invoke the

hypothesis that . is a (weak) order on the Bi’s to reorder
bBB according to ., using a stable5 comparison sort. Let
~BB ¼def B�ð1Þ . � � � . B�ðnÞ be the linearization of SG produced

by the sort. We claim that ~BB is also a topological sort of

SG. To wit, pick any Bi and Bj such that Bj is Bi’s child in

SG. By definition of topological sort, Bi precedes Bj in bBB.

We claim that, because Bi . Bj (by (6)), Bi precedes Bj
also in ~BB. On the one hand, if Bj 6 . Bi, then the sort

necessarily places Bi before Bj in ~BB. On the other hand, if

Bj . Bi, then, since the sort is stable, Bi precedes Bj in ~BB
because it precedes Bj in bBB. Thus, ~BB is, indeed, a

topological sort of SG so that G is composite of type

B�ð1Þ * � � � * B�ðnÞ. In other words, G is the desired .-

linear composition of B�ð1Þ; . . . ;B�ðnÞ. tu
We can finally apply Theorem 4 to find an IC-optimal

schedule for the dag G.

6 CONCLUSIONS AND PROJECTIONS

We have developed three notions that form the basis for a
theory of scheduling complex computation-dags for Inter-
net-based computing: the priority relation . on bipartite
dags (Section 3.2), the operation of the composition of dags
(Section 4), and the operation of the decomposition of dags
(Section 5). We have established a way of combining these
notions to produce schedules for a large class of complex
computation-dags that maximize the number of tasks that
are eligible for allocation to remote clients at every step of
the schedule (Theorems 4 and 7). We have used our notions
to progress beyond the structurally uniform computation-
dags studied in [15], [17] to families that are built in
structured, yet flexible, ways from a repertoire of bipartite
building-block dags. The composite dags that we can now
schedule optimally encompass not only those studied in
[15], [17], but, as illustrated in Fig. 5, also dags that have
rather complex structures, including nodes of varying
degrees and nonleveled global structure.

One direction for future work is to extend the repertoire of
building-block dags that form the raw material for our
composite dags. In particular, we want building blocks of
more complex structures than those of Section 2.1.2, including
less-uniform bipartite dags and nonbipartite dags. We expect
the computational complexity of our scheduling algorithms
to increase with the structural complexity of our building
blocks. Along these lines, we have thus far been unsuccessful
in determining the complexity of the problem of deciding if a
given computation-dag admits an IC-optimal schedule, but
we continue to probe in this direction. (The scheduling
problem could well be co-NP-Complete because of its
underlying universal quantification.) Finally, we are working

766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006

Fig. 6. The composition of the dags of Fig. 5b and its associated

superdag.

5. That is, if Bi . Bj and Bj . Bi, then the sort maintains the original
relative order of Bi and Bj.

to extend Theorems 4 and 7 to loosen the strict require-
ment that the composite dag be a .-linear composition.

ACKNOWLEDGMENTS

A portion of the research of G. Malewicz was done while he
was visiting the TAPADS Group at the University of
Massachusetts Amherst. The research of A. Rosenberg and
M. Yurkewych was supported in part by US National
Science Foundation Grant CCF-0342417. A portion of this
paper appeared in the Proceedings of the International Parallel
and Distributed Processing Symposium, 2005.

REFERENCES

[1] J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and I. Foster,
“Applying Chimera Virtual Data Concepts to Cluster Finding in
the Sloan Sky Survey,” Proc. 15th Conf. High Performance
Networking and Computing, p. 56, 2002.

[2] R. Buyya, D. Abramson, and J. Giddy, “A Case for Economy Grid
Architecture for Service Oriented Grid Computing,” Proc. 10th
Heterogeneous Computing Workshop, 2001.

[3] W. Cirne and K. Marzullo, “The Computational Co-Op: Gathering
Clusters into a Metacomputer,” Proc. 13th Int’l Parallel Processing
Symp., pp. 160-166, 1999.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, second ed. Cambridge, Mass.: MIT Press, 2001.

[5] The Grid: Blueprint for a New Computing Infrastructure, second ed.,
I. Foster and C. Kesselman, eds. San Francisco: Morgan
Kaufmann, 2004.

[6] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” Int’l J. High Performance
Computing Applications, vol. 15, pp. 200-222, 2001.

[7] L. Gao and G. Malewicz, “Internet Computing of Tasks with
Dependencies Using Unreliable Workers,” Thoery of Computing
Systems, to appear.

[8] A. Gerasoulis and T. Yang, “A Comparison of Clustering
Heuristics for Scheduling Dags on Multiprocessors,” J. Parallel
and Distributed Computing, vol. 16, pp. 276-291, 1992.

[9] L. He, Z. Han, H. Jin, L. Pan, and S. Li, “DAG-Based Parallel Real
Time Task Scheduling Algorithm on a Cluster,” Proc. Int’l Conf.
Parallel and Distruted Processing Techniques and Applications, pp. 437-
443, 2000.

[10] H.T. Hsu, “An Algorithm for Finding a Minimal Equivalent
Graph of a Digraph,” J. ACM, vol. 22, pp. 11-16, 1975.

[11] D. Kondo, H. Casanova, E. Wing, and F. Berman, “Models and
Scheduling Guidelines for Global Computing Applications,” Proc.
Int’l Parallel and Distruted Processing Symp., p. 79, 2002.

[12] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky,
“SETI@home: Massively Distributed Computing for SETI,”
Computing in Science and Eng., P.F. Dubois, ed., Los Alamitos,
Calif.: IEEE CS Press, 2000.

[13] G. Malewicz, “Parallel Scheduling of Complex Dags under
Uncertainty,” Proc. 17th ACM Symp. Parallelism in Algorithms and
Architectures, 2005.

[14] G. Malewicz and A.L. Rosenberg, “On Batch-Scheduling Dags for
Internet-Based Computing,” Proc. 11th European Conf. Parallel
Processing, 2005.

[15] A.L. Rosenberg, “On Scheduling Mesh-Structured Computations
for Internet-Based Computing,” IEEE Trans. Computers, vol. 53,
pp. 1176-1186, 2004.

[16] A.L. Rosenberg and I.H. Sudborough, “Bandwidth and Pebbling,”
Computing, vol. 31, pp. 115-139, 1983.

[17] A.L. Rosenberg and M. Yurkewych, “Guidelines for Scheduling
Some Common Computation-Dags for Internet-Based Comput-
ing,” IEEE Trans. Computers, vol. 54, pp. 428-438, 2005.

[18] X.-H. Sun and M. Wu, “Grid Harvest Service: A System for Long-
Term, Application-Level Task Scheduling,” Proc. IEEE Int’l Parallel
and Distributed Processing Symp., p. 25, 2003.

[19] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing
in Practice: The Condor Experience,” Concurrency and Computation:
Practice and Experience, 2005.

Grzegorz Malewicz studied computer science
and applied mathematics at the University of
Warsaw from 1993 until 1998. He then joined the
University of Connecticut and received the
doctorate in 2003. He is a software engineer at
Google, Inc. Prior to joining Google, he was an
assistant professor of computer science at the
University of Alabama (UA), where he taught
computer science from 2003-2005. He has had
internships at the AT&T Shannon Lab (summer

2001) and Microsoft Corporation (summer 2000 and fall 2001). He
visited the Laboratory for Computer Science, MIT (AY 2002/2003) and
was a visiting scientist at the University of Massachusetts Amherst
(summer 2004) and Argonne National Laboratory (summer 2005). His
research focuses on parallel and distributed computing, algorithms,
combinatorial optimization and scheduling. His research appears in top
journals and conferences and includes a SIAM Journal of Computing
paper for which he was the sole author that solves a decade-old problem
in distributed computing. He is a member of the IEEE.

MALEWICZ ET AL.: TOWARD A THEORY FOR SCHEDULING DAGS IN INTERNET-BASED COMPUTING 767

Fig. 7. The three-dimensional FFT dag and its associated superdag.

Arnold L. Rosenberg is a Distinguished Uni-
versity Professor of Computer Science at the
University of Massachusetts Amherst, where he
codirects the Theoretical Aspects of Parallel and
Distributed Systems (TAPADS) Laboratory.
Prior to joining UMass, he was a professor of
computer science at Duke University from 1981
to 1986 and a research staff member at the IBM
T.J. Watson Research Center from 1965 to
1981. He has held visiting positions at Yale

University and the University of Toronto; he was a Lady Davis Visiting
Professor at the Technion (Israel Institute of Technology) in 1994, and a
Fulbright Research Scholar at the University of Paris-South in 2000. His
research focuses on developing algorithmic models and techniques to
deal with the new modalities of “collaborative computing” (the endeavor
of having several computers cooperate in the solution of a single
computational problem) that result from emerging technologies. He is
the author or coauthor of more than 150 technical papers on these and
other topics in theoretical computer science and discrete mathematics
and is the coauthor of the book Graph Separators, with Applications. He
is a fellow of the ACM, a fellow of the IEEE, and a Golden Core member
of the IEEE Computer Society.

Matthew Yurkewych received the BS degree
from the Massachusetts Institute of Technology
in 1998. He is a PhD Student in computer
science at the University of Massachusetts-
Amherst. Prior to entering graduate school, he
worked at Akamai Technologies and CNet Net-
works as a software engineer.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

768 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

