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Outline
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The context: distributed heterogeneous platforms

New sources of problems
@ Heterogeneity of processors (computational power, memory,
etc.)
@ Heterogeneity of communications links.
@ Irregularity of interconnection network.

@ Non dedicated platforms.
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Targeted applications: iterative algorithms

@ A set of data (typically, a matrix)
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Targeted applications: iterative algorithms

@ A set of data (typically, a matrix)
@ Structure of the algorithms:
e While the computation is not finished

o Each processor performs a computation on its chunk of data
o Each processor exchange the “border” of its chunk of data with
its neighbor processors

Question: how can we efficiently execute such an algorithm on such
a platform?
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The questions

@ Which processors should be used ?
@ What amount of data should we give them ?

@ How do we cut the set of data ?
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Before all, a simplification:

slicing the data

e Data: a 2-D array
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Before all, a simplification: slicing the data

e Data: a 2-D array

51

P,

Py

Ps

@ Unidimensional cutting into vertical slices

o Consequences:
@ Borders and neighbors are easily defined
@ Constant volume of data exchanged between neighbors: D,
© Processors are virtually organized into a ring
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Notations

@ Processors: P, ..., P,
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Notations

Processors: Py, ..., P,

Processor P; executes a unit task in a time w;

Overall amount of work D,,;
Share of P;: «; - D,, processed in a time «; - Dy, - w;

(ai 20, ¥y = 1)

Cost of a unit-size communication from P; to P;: ¢; ;

Cost of a sending from P; to its successor in the ring: De.¢; sycc(i)
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Communications: 1-port model

A processor can:
@ send at most one message at any time;
@ receive at most one message at any time;

@ send and receive a message simultaneously.
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Objective

@ Select g processors among p

So as to minimize:

112?:%) {X(Z) X (Oéi “ Dy - w; + De - (Ci,pred(i) + Ci,succ(z’)))}

with x(7) = 1 if P; participates in the computation, and 0 otherwise
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Objective

@ Select g processors among p
@ Order them into a ring
© Distribute the data among them

So as to minimize:

112?%) {X(Z) X (017; Dy - wi + D, - (Ci,pred(i) + Ci,succ(i)))}

or

III<128,<Xp {X(l) Xmax {atiwi+(ci,pred(i)+Cz‘,succ(i) )Dc ) (Cpred(i),i+csucc(i),i)Dc} }

with x(7) = 1 if P; participates in the computation, and 0 otherwise
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Outline

© Fully homogeneous network
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Special hypotheses

© There exists a communication link between any two processors

@ All links have the same characteristic
(VZ,] Cij = C)
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Consequences

@ Either the most powerful processor performs all the work, or all
the processors participate
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Consequences

@ Either the most powerful processor performs all the work, or all
the processors participate

o If all processors participate, all end their share of work simulta-
neously o; Dy, rational values 777
(37, @Dyw;=7,501=>", ﬁwz)

@ Time of the optimal solution:

1
Tstep = min {wamin, Dwi1 + 2Dcc}

Z’i w;
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Outline

© Heterogeneous network (complete)
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Special hypothesis

© There exists a communication link between any two processors
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All the processors participate: study (1)

time

Q. Dy wo
a1.Dy.wn asz.D,. w3
as. Dy, ws
De.cas ay. Dy, wy
D..c3y
Dc~01,2
Dc~03,2 D DC'C5>1
D..c De.cay cCa5
.C]. ’ »
eCl5 D,.cy3 De.cs4
P Py P3 Py Py

All processors end simultaneously

processors
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All the processors participate: study (2)

@ All processors end simultaneously

Tstep =a; Dy -w; + D - (Cz‘,succ(z’) + Cz’,pred(i))
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All the processors participate: study (2)

@ All processors end simultaneously

Tstep =a; Dy -w; + D - (Cz‘,succ(z’) + Cz’,pred(i))

° f:ai -1 = Z step — D, CzsucC(z) + ¢ ,pred (i )) — 1

1 Dy - wy

Tstep D, Zp: Ci succ(i) + Ci,pred (i)

Dy - Weumul Dy, ws

=1

where Weymul = =
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All the processors participate: interpretation

p
Tstep -Dc Z Ci succ(i + Ci,pred(4)
Dw : wcumul D

g

=1
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p
Tstep Dc Z Ci succ(i + Ci,pred(4)
Dw : wcumul D

g

=1

Ci,succ(s) + Ci,pred(3)

P
Tstep is minimal when E —
1

=1

is minimal
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All the processors participate: interpretation

p
Tstep Dc Z Ci succ(i + Ci,pred(4)
Dw : wcumul D

g

=1

. .. u Ci,succ(s) + Ci,pred(i) . ..
Tstep is minimal when E is minimal
° Wy
=1

Look for an hamiltonian cycle of minimal weight in a graph where
the edge from P; to P; has a weight of d; ; = c” + c]]“

NP-complete problem
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All the processors participate: linear program

MINvIZE 377 370 dij - i,

SATISFYING THE (IN)EQUATIONS

(1) 3y =1 1<i<p

(2) Zzlmlﬂ_l 1<j<p

(3) z;,; € {0,1} 1<i,j<p
(4)uliu]+p I1]<p*1 2§i,j§p,i7éj
(5) u; integer,u; >0 2<i<p

x;j = 1 if, and only if, the edge from P; to P; is used
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General case : linear program

Best ring made of ¢ processors

MINIMIZE T SATISFYING THE (IN)EQUATIONS

(1) Ti; € {O, 1} 1<4,j<p
(2) X0 wi; <1 1<j<p
(B) 22w =4

(4) 201 ®ig =20 i 1<j<p
(5) Y =

(6) 0x < 37_, i <igp
(7) a; - w; + = Z;’:l(m,jci,j +x5¢5:) <T 1<i<p
(8) Zf‘lzl yi=1

9) —pyi—pytui—uj+qgz;<qg—1 1<4,j<pi#j
(10) y; € {0, 1} 1<i<p
(11) w; integer,u; > 0 1<i<p
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Linear programming

@ Problems with rational variables: can be solved in polynomial
time (in the size of the problem).
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Linear programming

@ Problems with rational variables: can be solved in polynomial
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@ Problems with integer variables: solved in exponential time in
the worst case.
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Linear programming

@ Problems with rational variables: can be solved in polynomial
time (in the size of the problem).

@ Problems with integer variables: solved in exponential time in
the worst case.

@ No relaxation in rationals seems possible here. ..
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And, in practice 7

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan's one)
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And, in practice 7

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan's one)
No guarantee, but excellent results in practice.

General case.
@ Exhaustive search: feasible until a dozen of processors. ..

@ Greedy heuristic: initially we take the best pair of processors;
for a given ring we try to insert any unused processor in between
any pair of neighbor processors in the ring. ..
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Outline

@ Heterogeneous network (general case)
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New difficulty: communication links sharing

Py
P
Py

Py Ps Py

Heterogeneous platform Virtual ring
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New difficulty: communication links sharing

P
1 Py Py
\ Py
Py
P, Ps Py
Heterogeneous platform Virtual ring

We must take communication link sharing into account.
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New notations

@ A set of communications links: eq,..., e,
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New notations

@ A set of communications links: eq,..., e,
@ Bandwidth of link e,,: b
@ There is a path S; from P, to Py,cc(;) in the network

€m

e S, uses a fraction s; ,,, of the bandwidth b, of link e,

. 1 .
e P, needs a time D.- ———— to send to its successor a
mMiNe,. e€8; Si,m
message of size D,

o Constraints on the bandwidth of e,,: Z Sim < be,,
1<i<p
o Symmetrically, there is a path P; from P; to Pyeq(;) in the
network, which uses a fraction p; ,,, of the bandwidth b, of
link e,
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Toy example: choosing the ring

@ 7 processors and 8 bidirectional communications links
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Toy example: choosing the ring

@ 7 processors and 8 bidirectional communications links

@ We choose a ring of 5 processors:
P, — Py, — P3 — Py — P5 (we use neither @, nor R)
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Toy example: choosing the paths
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Toy example: choosing the paths

From P, to P, we use the links a and b: S1 = {a,b}.
From P to Py, we use the links b, g and h: Py = {b, g, h}.

From Pq:
From Py:
From Ps3:
From Py:
From Ps:

to Po,
to P3,
to Py,
, S84 = {f,b,g} and to P3, Py = {e,d}

to Ps

to Py,

S1 = {a, b} and to P5, P; = {h}
Sz = {c,d} and to P1, P2 = {b,g,h}
S3 = {d, e} and to Py, P3 = {d, e, f}

S5 = {h} and to Py, P5 = {g,b, f}
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Toy example: bandwidth sharing

From P, to P, we use links @ and b: ¢19 = —1—.
’ min(s1,q,51,p)
1

From P; to P5 we use the link h: ¢15 = oin
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Toy example:

bandwidth sharing

From P; to P, we use links a and b: c1 2 =

1
min(s1,q,51,6)
1

From P; to P5 we use the link h: ¢15 = —.

P1,n

Set of all sharing constraints:

Link a:
Link b:
Link c:
Link d:
Link e:
Link f:
Link g:
Link h:

81,0 < ba

S1,b+ 840+ P20+ P56 < by
52,c < be

$2,a + 83,d + P3,da +Pa,a < ba
53,e +P3,e +Pae < be

S4,f +P3,f +ps5,f < by

S4,g +D2,g + 5,9 < by

85,n + 01,0 + P20 < b
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Toy example: final quadratic system

MINIMIZE ~ maxi<i<5 (@i - Dw - w; + Dc - (¢ii—1 + Cijit1)) UNDER THE CONSTRAINT!

Z?:l a; =1

$1,0 < ba S1,b+ 8ap + D2 +psp < by S2.c < be

S2,d4 + 83,a + D3, +Pa,a <ba  S3.c+P3e+ Ppae < be Sa,f +Dp3,f + D5, < by
Sa,g + P2,g + Ps,g < by 85,n +P1,n +D2,n < b

St,a-Cl2 > 1 S1p-ci2 > 1 pih-cls > 1
S2c-C23>1 S2,4-C23 > 1 p2p-c21 > 1
P2,g - C2,1 > 1 P2.h-c21 > 1 83,4 C3,4 > 1
S3,e €34 > 1 p3,d-c32 > 1 P3e-C32 > 1
p3,f-c32 > 1 S4,f-ca5 2> 1 S4p-Ca5 > 1
S4,9-Ca5 > 1 Pae-Ca3 > 1 Pad-caz > 1
S5,n-C51 > 1 D5, C54 > 1 Psb - Cs4 > 1
Pps.fCsa > 1
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Toy example: the moral

The problem sums up to a quadratic system if

© The processors are selected;
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Toy example: the moral

The problem sums up to a quadratic system if
© The processors are selected;
@ The processors are ordered into a ring;
© The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:
@ Complete graph: closed-form expression;

@ General graph: quadratic system.
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And, in practice 7

We adapt our greedy heuristic:
@ Initially: best pair of processors
@ For each processor Py (not already included in the ring)

o For each pair (P;, P;) of neighbors in the ring
@ We build the graph of the unused bandwidths
(Without considering the paths between P; and P;)
@ We compute the shortest paths (in terms of bandwidth) be-
tween P and P; and P;
© We evaluate the solution

© We keep the best solution found at step 2 and we start again

+ refinements (max-min fairness, quadratic solving)
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Is this meaningful ?

@ No guarantee, neither theoretical, nor practical
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Is this meaningful ?

@ No guarantee, neither theoretical, nor practical
@ Simple solution:

@ we build the complete graph whose edges are labeled with the
bandwidths of the best communication paths

@ we apply the heuristic for complete graphs

© we allocate the bandwidths
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An example of an actual platform (Lyon)

[y ][ canana

I Touter backbone |
U routhpe |

myril

mryi0 H poped ‘ ‘ sci0

Topology

R | P[RR PB[P][|B][P]|P]DB|
|0.0206]0.0206/0.0206]0.0206|0.0291]0.0206|0.0087|0.0206|0.0206
[P [ Po | Pu| P2 Ps| Pu| Ps | P |
10.0206]0.0206]0.0206]0.0291]0.0451] 0 | 0 | 0 |

Processors processing times (in seconds par megaflop)
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Describing Lyon's platform

Abstracting Lyon's platform.



Results

First heuristic building the ring without taking link sharing into ac-
count

Second heuristic taking into account link sharing (and with quadratic

programing)

Ratio D../D,, H1 H2 Gain Ratio D./D,, H1 H2 Gain
0.64 0008738 (1) [0.008738 (1) | 0% 0.64 0.005825 (1) | 0.005825 (1) | 0%
0.064 0018837 (13) | 0.006639 (14) | 64.75% 0.064 0027919 (8) | 0.004865 (6) | 82.57%
0.0064 | 0.003819 (13) | 0.001975 (14) | 48.28% 0.0064 0.007218 (13) | 0.001608 (8) | 77.72%

Table: Tstep/ D,y for each heuristic on Lyon's and Strasbourg’s platforms
(the numbers in parentheses show the size of the rings built).
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Outline

© Non dedicated platforms
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New difficulties

The available processing power of each processor changes over time

The available bandwidth of each communication link changes over
time

= Need to reconsider the allocation previously done

= Introduce dynamicity in a static approach
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A possible approach

o If the actual performance is “too much” different from the char-
acteristics used to build the solution

o If the actual performance is “very” different

o We compute a new ring
o We redistribute data from the old ring to the new one

o If the actual performance is “a little” different

@ We compute a new load-balancing in the existing ring
o We redistribute the data in the ring
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A possible approach

o If the actual performance is “too much” different from the char-
acteristics used to build the solution

Actual criterion defining “too much” ?
o If the actual performance is “very” different

o We compute a new ring

o We redistribute data from the old ring to the new one
Actual criterion defining “very” ?
Cost of the redistribution ?

o If the actual performance is “a little” different

@ We compute a new load-balancing in the existing ring

o We redistribute the data in the ring
How to efficiently do the redistribution ?
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Principle of the load-balancing

Principle: the ring is modified only if this is profitable.

@ Tiiep: length of an iteration before load-balancing;
° Ts’tep: length of an iteration after load-balancing;
@ Tiedistribution : cost of the redistribution;

@ Njter: NuMber of remaining iterations

- - . l
Condition: Tredistribution 1 Miter X Tstep < Nijter X Tstep
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Load-balancing on a ring

Homogeneous unidirectional ring
Heterogeneous unidirectional ring
Homogeneous bidirectional ring

Heterogeneous bidirectional ring
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Notations

@ (), the set of the processors from P, to F:

Cki = Pry Pry1,..., P,

@ cji+1: time needed by processor P; to send a data item to
processor P, ;1 (next one in the ring).

o Initially, processor P; holds L; data items (atomic).
After redistribution, P; will hold L; — §; data items.
d; is the unbalance of processor P;.
Sk: unbalance of the set C;: 0py = S\, 5.
Conservation law for the data: . 6; =0
We assume that each processor at least one data item before
and after the redistribution: L; > 1 and L; > 1+ 6;.
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Lower bound on the length of the redistribution

Homogeneous communication time: c.

Py can only send messages to Py 1.
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Lower bound on the length of the redistribution

O, O+t 411 Ot

Okt = O + Og1 + oo+ Opi—1 + Ot
Homogeneous communication time: c.
Py can only send messages to Py 1.

P, needs a time d3; x ¢ to send d;; data (if d;; > 0).
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Lower bound on the length of the redistribution

O, O+t 411 Ot

Okt = O + Og1 + oo+ Opi—1 + Ot
Homogeneous communication time: c.
Py can only send messages to Py 1.

P, needs a time d3; x ¢ to send d;; data (if d;; > 0).

Lower bound: max Okl | Xc
1<k<n, 0<I<n-1
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Redistribution algorithm

-2 2 =1 4 ) |
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Redistribution algorithm

= 2 =il 4 -3 1 -1
d7=4-3+1-1=1
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Redistribution algorithm
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Redistribution algorithm

= 2 -1 4 =3 1 -1
O—@—O—0T——6—©O
u=2—1+4="5=bn
(Smax:5

The redistribution algorithm is defined by the first processor of a
“chain” of processors whose unbalance is maximal.
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Redistribution algorithm

=2 2 =1 4 =3 1 =1
A o ) ) A ) )
& & & & &Y \J
621 =0 62,2 =2 62.3 =1 (52.4 =5 [)Z =2 62.(: =3 62 =2
—
_}
_} _}
_— _— _—
] _— ] _—
— —
_—

During the algorithm execution processor F; sends s ; data.
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Redistribution algorithm

= -1 4 -3 1 -1
31 =0 020 =2 Op3=1 24=5 025 =2 026 =3 Oa7 =2
—

—

— —
— — -—
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At step 1, P; sends a data item if and only if d2; > 1
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Redistribution algorithm

-2 2 =il 4 -3 1 -
Y O/ & O/ &/ U/
021 =0 0gp =2 Oz =1 G240 =5 0g5 =2 0o =3 Oo7 =2
_—
_}
_}
_— _— _—
_— _— ] _—
—_—
_—

At step 1, P; sends a data item if and only if d2; > 1

43/ 58



Redistribution algorithm

=2 2 =1 4 =3 1 =1
& & & & &Y \J
021 =0 0gp =2 Oz =1 G240 =5 025 =2 026 =3 O27 =2
—
—
—
—-— — —-—
-— -— — —-—
—
—

At step 2, P; sends a data item if and only if o ; > 2
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At step 3, P; sends a data item if and only if d; > 3
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At step 5, P; sends a data item if and only if d2; > 5
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Homogeneous unidirectional ring: formal algorithm

[y

: Let dmax = (maxi<k<n,0<i<n—1 |0k k+1])

: Let start and end be two indices such that the slice Cstart, end
is of maximal imbalance: dstart,enda = Omax-

: for s = 1 to dmax do

forall/=0ton—1do
if 5start,start+l >s then

N

2 & 2 @

Pgtart+1 sends to Pspart 441 a data item during the time
interval [(s — 1) X ¢,5 X (]
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Homogeneous unidirectional ring: formal algorithm

[y

: Let dmax = (maxi<k<n,0<i<n—1 |0k k+1])

: Let start and end be two indices such that the slice Cstart, end
is of maximal imbalance: dstart,enda = Omax-

: for s = 1 to dmax do

forall/=0ton—1do
if 5start,start+l >s then

N

2 & 2 @

Pgtart+1 sends to Pspart 441 a data item during the time
interval [(s — 1) X ¢,5 X (]

This redistribution algorithm is optimal. I
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Heterogeneous unidirectional ring: lower bound

Processor P; needs a time ¢; ;41 to send a data to processor P 1.
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Heterogeneous unidirectional ring: lower bound

Processor P; needs a time ¢; ;41 to send a data to processor P 1.

Principle of the lower bound : same as for the homogeneous case.

P, needs a time 0 X ¢;;41 to send J;; data items to P4 (if
(5]9’1 > 0)

Lower bound: max Ok ktl X Clotl htl+1
1<k<n, 0<I<n—1 + i
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Consequences of the heterogeneity of communications
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Ps can have to receive some data items from P5 to complete sending
all the necessary data items to P;.
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Consequences of the heterogeneity of communications
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Ps can have to receive some data items from P5 to complete sending
all the necessary data items to P;.

We cannot express with a simple closed-form expression the time
needed by Py to complete its share of the work.

The redistribution algorithm is asynchronous.
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The redistribution algorithm

This is just an asynchronous version of the previous algorithm.

1: Let Omax = (MaXi<k<n0<i<n—1 |0k k+1|)

2: Let start and end be two indices such that the slice Cgtart end
is of maximal unbalance: dstart,enda = Omax-

3: foralll=0ton—1do

4:  Pgtart41 5ends Ogtart start4+¢ data items one by one and as
soon as possible to processor Pstartii+1
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Optimality

Obvious by construction
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Optimality

Obvious by construction

The execution time of the redistribution algorithm is

max o X ¢ .
0<l<n—1 start,start+l start+l,start+i+1
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Optimality

Obvious by construction

The execution time of the redistribution algorithm is

max o X ¢ .
0<l<n—1 start,start+l start+l,start+i+1

In other words, there is no propagation delay, whatever the initial
distribution of the data, and whatever the communication speeds. ..
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Optimality : principle of the proof

The execution time of the algorithm is

Time

max 5start,start+l X Cstart+l,start+I+1-

0<i<n—1

Pi3 =Py Pio— Py

Py =P

P — Py

ti —Ci—1,i —Ci—2,i—1

ti —Ci—1,i — Ci—2,i—1 — Ci—3,i—2
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Homogeneous bidirectional ring : framework

o P D= (D)

Homogeneous communication time: c.

Bidirectional communications
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Homogeneous bidirectional ring : lower bound

Ok 41 411 Ot
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Homogeneous bidirectional ring : lower bound

Ok 41 411 Ot

Okt = Ok + Opg1 + - + Opgim1 + Okpt
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Homogeneous bidirectional ring : lower bound

Ok 41 411 Ot

Okt = Ok + Op1 + oo + Opi—1 + Ot

Homogeneous communication time: c.

Ok ket

We need a time X ¢ to send 0y x4 data items of the

processor “chain” Py, ..., Py (if 0k > 0).

50/ 58



Homogeneous bidirectional ring : lower bound

Ok 41 411 Ot

Okt = Ok + Op1 + oo + Opi—1 + Ot

Homogeneous communication time: c.

Ok ket

We need a time X ¢ to send 0y x4 data items of the

processor “chain” Py, ..., Py (if 0k > 0).

5 s
Lower bound: max{ max |d;, max P“Hr‘ } X ¢
1<i<n

1<i<n,1<I<n—1 2
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Homogeneous bidirectional ring: principle of the algorithm

© Each non trivial set C; such that Pékﬂ = Omax and 0 ; > 0

must send two data items at each step, one by each of its two
extremities.
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Homogeneous bidirectional ring: principle of the algorithm

© Each non trivial set C; such that Pékﬂ = Omax and 0 ; > 0
must send two data items at each step, one by each of its two
extremities.

@ Each non trivial set Cj; such that Pd’“ﬂ = Omax and 95 ; <0
must receive two data items at each step, one by each of its
two extremities.
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Homogeneous bidirectional ring: principle of the algorithm

© Each non trivial set C; such that Pé" ’W = Omax and 0 ; > 0
must send two data items at each step, one by each of its two
extremities.

@ Each non trivial set Cj; such that Pd’“ﬂ = Omax and 95 ; <0

must receive two data items at each step, one by each of its
two extremities.

© Once the communications required by the two previous cases
are defined, we take care of P; such that |0;| = dmax-
If P; is already implied in a communication: everything is al-
ready set up.
Otherwise, we have the choice of the processor to which P;
sends (case d; > 0) or from which P; receives (case §; < 0) a
data item.
For the sake of simplicity: all these communications are in the

same direction “from P; to Pj+1". ——



Homogeneous bidirectional ring: optimality

Difficulties:
@ Particular cases (taking care of the termination)

@ Proof of the correctness of the algorithm (the optimality is then
obvious)
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Heterogeneous bidirectional ring: bound

The length 7 of any redistribution satisfies:

max (Sk min Ck k—15Ck k+1
1<k<n, 8, >0 {okp1: ek}

T > max
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Heterogeneous bidirectional ring: bound

The length 7 of any redistribution satisfies:

max (Sk min Ck k—15Ck k+1
1<k<n, 6, >0 {okp1: ek}
max  —O0pmin{cr_1k,Chtlk
1<k<n, 65<0 {ok—16: che16}
Jmax »r?}n max{i - cxk—1, (Ok k4l — ) * Chtlhti+1}
> <k<n, 0<i<dk ki
T2 maxq SIS
Ok, k+1>0
max min = max{s - cx—1k, — (O k+11%) * Chpir1,k+1
B e { s —(Ok o1 H) + Chpi1 ot}
1<I<n-2,
\ Ok,k+1<0
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Heterogeneous bidirectional ring: “light” redistributions (1)

Definition: we say that a redistribution is “light” if each processor
initially holds all the data items it needs to send during the execution
of the algorithm.

S; ;1 amount of data sent by P; to its neighbor P;.

MINIMIZE 7, SUBJECT TO

Siit1 >0 1<i<n
Sii-12>0 1<i<n
Sigt1 +8ii-1—S41:—Si—13=6 1<i<n
Sii+1Ciit1 +Sii-1Cii—1 < T 1<i<n
Sit16Cit1,i +Si—15C-14 < T 1<i<n
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Heterogeneous bidirectional ring: “light” redistributions (2)

© Any integral solution is feasible.
Ex.: P; sends its S; ;41 data to P starting at time 0. Once

this communication is completed, P; sends S; ;1 data to P;_;
as soon as it is possible under the one port model.

@ If we solve the system in rational, one of the two natural round-
ing in integer defines an optimal integral solution.
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Heterogeneous bidirectional ring: general case

Any idea anybody ?
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Outline

@ Conclusion
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Conclusion

“Regular” parallelism was already complicated, now we have:
@ Processors with different characteristics
@ Communications links with different characteristics
@ lIrregular interconnection networks

@ Resources whose characteristics evolve over time

We need to use a realistic model of networks. . . but a more realistic
model may lead to a more complicated problem.
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