Iterative algorithms (on the impact of network models)

Frédéric Vivien

e-mail: Frederic.Vivien@ens-lyon.fr

Outline

- 1 The problem
- Pully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms
- **6** Conclusion

Outline

- 1 The problem
- Pully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case
- 5 Non dedicated platforms
- 6 Conclusion

The context: distributed heterogeneous platforms

New sources of problems

- Heterogeneity of processors (computational power, memory, etc.)
- Heterogeneity of communications links.
- Irregularity of interconnection network.
- Non dedicated platforms.

- A set of data (typically, a matrix)
- Structure of the algorithms:

- A set of data (typically, a matrix)
- Structure of the algorithms:
 - While the computation is not finished

- A set of data (typically, a matrix)
- Structure of the algorithms:
 - While the computation is not finished
 - Each processor performs a computation on its chunk of data
 - Each processor exchange the "border" of its chunk of data with its neighbor processors

- A set of data (typically, a matrix)
- Structure of the algorithms:
 - While the computation is not finished
 - Each processor performs a computation on its chunk of data
 - Each processor exchange the "border" of its chunk of data with its neighbor processors

- A set of data (typically, a matrix)
- Structure of the algorithms:
 - While the computation is not finished
 - Each processor performs a computation on its chunk of data
 - Each processor exchange the "border" of its chunk of data with its neighbor processors

- A set of data (typically, a matrix)
- Structure of the algorithms:
 - While the computation is not finished
 - Each processor performs a computation on its chunk of data
 - Each processor exchange the "border" of its chunk of data with its neighbor processors

The questions

- Which processors should be used ?
- What amount of data should we give them ?
- How do we cut the set of data?

- Unidimensional cutting into vertical slices
- Consequences:
 - Borders and neighbors are easily defined
 - Onstant volume of data exchanged between neighbors: D_c
 - Processors are virtually organized into a ring

- Unidimensional cutting into vertical slices
- Consequences:
 - Borders and neighbors are easily defined
 - Onstant volume of data exchanged between neighbors: D_c
 - Processors are virtually organized into a ring

- Unidimensional cutting into vertical slices
- Consequences:
 - Borders and neighbors are easily defined
 - ② Constant volume of data exchanged between neighbors: D_c
 - Processors are virtually organized into a ring

- Unidimensional cutting into vertical slices
- Consequences:
 - Borders and neighbors are easily defined
 - ② Constant volume of data exchanged between neighbors: D_c
 - Opening of the second of th

- Unidimensional cutting into vertical slices
- Consequences:
 - Objective to the second of the second of
 - 2 Constant volume of data exchanged between neighbors: D_c
 - Processors are virtually organized into a ring

- Unidimensional cutting into vertical slices
- Consequences:
 - Borders and neighbors are easily defined
 - 2 Constant volume of data exchanged between neighbors: D_c
 - Processors are virtually organized into a ring

- Processors: P_1, \ldots, P_p
- Processor P_i executes a unit task in a time w_i
- Overall amount of work D_w ; Share of P_i : $\alpha_i \cdot D_w$ processed in a time $\alpha_i \cdot D_w \cdot w$ $(\alpha_i \geq 0, \sum_j \alpha_j = 1)$
- Cost of a unit-size communication from P_i to P_j : c_i ,
- ullet Cost of a sending from P_i to its successor in the ring: $D_c.c_{i, {\sf succ}(i)}$

- Processors: P_1, \ldots, P_p
- ullet Processor P_i executes a unit task in a time w_i
- Overall amount of work D_w ; Share of P_i : $\alpha_i \cdot D_w$ processed in a time $\alpha_i \cdot D_w \cdot w_i$ $(\alpha_i \geq 0, \sum_j \alpha_j = 1)$
- Cost of a unit-size communication from P_i to P_j : $c_{i,j}$
- ullet Cost of a sending from P_i to its successor in the ring: $D_c.c_{i, \mathsf{succ}(i)}$

- Processors: P_1, \ldots, P_p
- ullet Processor P_i executes a unit task in a time w_i
- Overall amount of work D_w ; Share of P_i : $\alpha_i \cdot D_w$ processed in a time $\alpha_i \cdot D_w \cdot w_i$ $(\alpha_i \geq 0, \sum_j \alpha_j = 1)$
- Cost of a unit-size communication from P_i to P_j : $c_{i,j}$
- Cost of a sending from P_i to its successor in the ring: $D_c.c_{i,succ(i)}$

- Processors: P_1, \ldots, P_p
- ullet Processor P_i executes a unit task in a time w_i
- Overall amount of work D_w ; Share of P_i : $\alpha_i \cdot D_w$ processed in a time $\alpha_i \cdot D_w \cdot w_i$ $(\alpha_i \geq 0, \sum_j \alpha_j = 1)$
- ullet Cost of a unit-size communication from P_i to P_j : $c_{i,j}$
- Cost of a sending from P_i to its successor in the ring: $D_c.c_{i,succ(i)}$

- Processors: P_1, \ldots, P_p
- ullet Processor P_i executes a unit task in a time w_i
- Overall amount of work D_w ; Share of P_i : $\alpha_i \cdot D_w$ processed in a time $\alpha_i \cdot D_w \cdot w_i$ $(\alpha_i \geq 0, \sum_j \alpha_j = 1)$
- ullet Cost of a unit-size communication from P_i to P_j : $c_{i,j}$
- ullet Cost of a sending from P_i to its successor in the ring: $D_c.c_{i,\mathsf{succ}(i)}$

Communications: 1-port model

A processor can:

- send at most one message at any time;
- receive at most one message at any time;
- send and receive a message simultaneously.

 $\bullet \hspace{0.1in} \textbf{Select} \hspace{0.1in} q \hspace{0.1in} \textbf{processors} \hspace{0.1in} \textbf{among} \hspace{0.1in} p$

So as to minimize:

$$\max_{1 \leq i \leq p} \left\{ \chi(i) \times \left(\alpha_i \cdot D_w \cdot w_i + D_c \cdot \left(c_{i, \mathsf{pred}(i)} + c_{i, \mathsf{succ}(i)} \right) \right) \right\}$$

- lacksquare Select q processors among p
- Order them into a ring

So as to minimize:

$$\max_{1 \leq i \leq p} \left\{ \chi(i) \times \left(\alpha_i \cdot D_w \cdot w_i + D_c \cdot \left(c_{i, \mathsf{pred}(i)} + c_{i, \mathsf{succ}(i)} \right) \right) \right\}$$

- lacksquare Select q processors among p
- Order them into a ring
- 3 Distribute the data among them

So as to minimize:

$$\max_{1 \leq i \leq p} \left\{ \chi(i) \times \left(\alpha_i \cdot D_w \cdot w_i + D_c \cdot \left(c_{i, \mathsf{pred}(i)} + c_{i, \mathsf{succ}(i)} \right) \right) \right\}$$

- lacktriangle Select q processors among p
- Order them into a ring
- 3 Distribute the data among them

So as to minimize:

$$\max_{1 \le i \le p} \left\{ \chi(i) \times \left(\alpha_i \cdot D_w \cdot w_i + D_c \cdot \left(c_{i, \mathsf{pred}(i)} + c_{i, \mathsf{succ}(i)} \right) \right) \right\}$$

or

$$\max_{1 \leq i \leq p} \left\{ \chi(i) \times \max \left\{ \alpha_i D_w w_i + (c_{i,\mathsf{pred}(i)} + c_{i,\mathsf{succ}(i)}) D_c \;,\; (c_{\mathsf{pred}(i),i} + c_{\mathsf{succ}(i),i}) D_c \right\} \right\}$$

Outline

- 1 The problem
- Pully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms
- 6 Conclusion

Special hypotheses

- There exists a communication link between any two processors
- ② All links have the same characteristic $(\forall i, j \ c_{i,j} = c)$

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously
- Time of the optimal solution:

$$T_{\mathsf{step}} = \min \left\{ D_w w_{\min}, D_w \frac{1}{\sum_i \frac{1}{w_i}} + 2D_c c \right\}$$

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously $\alpha_i D_w$ rational values ????

$$(\exists au, \quad lpha_i D_w w_i = au$$
 , so $1 = \sum_i rac{ au}{D_w w_i}$

Time of the optimal solution

$$T_{\mathsf{step}} = \min \left\{ D_w w_{\min}, D_w \frac{1}{\sum_i \frac{1}{w_i}} + 2D_c c \right\}$$

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously $\alpha_i D_w$ rational values ???

$$(\exists \tau, \quad \alpha_i D_w w_i = \tau, \text{ so } 1 = \sum_i \frac{\tau}{D_w w_i})$$

Time of the optimal solution

$$T_{\mathsf{step}} = \min \left\{ D_w w_{\min}, D_w \frac{1}{\sum_i \frac{1}{w_i}} + 2D_c c \right\}$$

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously $\alpha_i D_w$ rational values ??? $(\exists \tau, \quad \alpha_i D_w w_i = \tau, \text{ so } 1 = \sum_i \frac{\tau}{D_w w_i})$
- Time of the optimal solution:

$$T_{\mathsf{step}} = \min \left\{ D_w w_{\min}, D_w \frac{1}{\sum_i \frac{1}{w_i}} + 2D_c c \right\}$$

- Either the most powerful processor performs all the work, or all the processors participate
- If all processors participate, all end their share of work simultaneously $\alpha_i D_w$ rational values ??? $(\exists \tau, \quad \alpha_i D_w w_i = \tau, \text{ so } 1 = \sum_i \frac{\tau}{D_w w_i})$
- Time of the optimal solution:

$$T_{\mathsf{step}} = \min \left\{ D_w w_{\min}, D_w \frac{1}{\sum_i \frac{1}{w_i}} + 2D_c c \right\}$$

Outline

- 1 The problem
- Pully homogeneous network
- Heterogeneous network (complete)
- 4 Heterogeneous network (general case
- 5 Non dedicated platforms
- 6 Conclusion

Special hypothesis

There exists a communication link between any two processors

All the processors participate: study (1)

All processors end simultaneously

All the processors participate: study (2)

All processors end simultaneously

$$T_{\mathsf{step}} = \alpha_i \cdot D_w \cdot w_i + D_c \cdot \left(c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}\right)$$

$$\sum_{i=1}^p \alpha_i = 1 \quad \Rightarrow \quad \sum_{i=1}^p \frac{T_{\mathsf{step}} - D_c \cdot \left(c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}\right)}{D_w \cdot w_i} = 1$$

$$\frac{T_{\mathsf{step}}}{D_w \cdot w_{\mathsf{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}}{w_i}$$

17/ 58

All the processors participate: study (2)

All processors end simultaneously

$$T_{\mathsf{step}} = \alpha_i \cdot D_w \cdot w_i + D_c \cdot (c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)})$$

$$\bullet \sum_{i=1}^p \alpha_i \ = \ 1 \quad \Rightarrow \quad \sum_{i=1}^p \frac{T_{\mathsf{step}} - D_c \cdot (c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)})}{D_w \cdot w_i} \ = \ 1.$$
 Thus

$$\frac{T_{\mathsf{step}}}{D_w \cdot w_{\mathsf{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}}{w_i}$$

where
$$w_{\mathsf{cumul}} = \frac{1}{\sum_i \frac{1}{w_i}}$$

$$\frac{T_{\mathsf{step}}}{D_w \cdot w_{\mathsf{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}}{w_i}$$

$$T_{\mathrm{step}}$$
 is minimal when $\sum_{i=1}^{p} \frac{c_{i,\mathrm{succ}(i)} + c_{i,\mathrm{pred}(i)}}{w_i}$ is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the edge from P_i to P_j has a weight of $d_{i,j} = \frac{c_{i,j}}{w_i} + \frac{c_{j,i}}{w_j}$

$$\frac{T_{\mathsf{step}}}{D_w \cdot w_{\mathsf{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}}{w_i}$$

$$T_{\rm step}$$
 is minimal when $\sum_{i=1}^p \frac{c_{i,{\rm succ}(i)} + c_{i,{\rm pred}(i)}}{w_i}$ is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the edge from P_i to P_j has a weight of $d_{i,j}=\frac{c_{i,j}}{w_i}+\frac{c_{j,i}}{w_j}$

$$\frac{T_{\mathsf{step}}}{D_w \cdot w_{\mathsf{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}}{w_i}$$

$$T_{\rm step}$$
 is minimal when $\sum_{i=1}^p \frac{c_{i,{\rm succ}(i)}+c_{i,{\rm pred}(i)}}{w_i}$ is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the edge from P_i to P_j has a weight of $d_{i,j}=\frac{c_{i,j}}{w_i}+\frac{c_{j,i}}{w_j}$

$$\frac{T_{\mathsf{step}}}{D_w \cdot w_{\mathsf{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\mathsf{succ}(i)} + c_{i,\mathsf{pred}(i)}}{w_i}$$

$$T_{\rm step}$$
 is minimal when $\sum_{i=1}^p \frac{c_{i,{\rm succ}(i)}+c_{i,{\rm pred}(i)}}{w_i}$ is minimal

Look for an hamiltonian cycle of minimal weight in a graph where the edge from P_i to P_j has a weight of $d_{i,j}=\frac{c_{i,j}}{w_i}+\frac{c_{j,i}}{w_j}$

All the processors participate: linear program

MINIMIZE
$$\sum_{i=1}^{p} \sum_{j=1}^{p} d_{i,j} \cdot x_{i,j}$$
, satisfying the (in)equations

$$\begin{cases} (1) \ \sum_{j=1}^{p} x_{i,j} = 1 & 1 \leq i \leq p \\ (2) \ \sum_{i=1}^{p} x_{i,j} = 1 & 1 \leq j \leq p \\ (3) \ x_{i,j} \in \{0,1\} & 1 \leq i,j \leq p \\ (4) \ u_i - u_j + p \cdot x_{i,j} \leq p - 1 & 2 \leq i,j \leq p, i \neq j \\ (5) \ u_i \ \text{integer}, u_i \geq 0 & 2 \leq i \leq p \end{cases}$$

 $x_{i,j} = 1$ if, and only if, the edge from P_i to P_j is used

General case: linear program

Best ring made of q processors

Minimize T satisfying the (in)equations

$$\begin{cases} (1) \ x_{i,j} \in \{0,1\} & 1 \leq i,j \leq p \\ (2) \ \sum_{i=1}^{p} x_{i,j} \leq 1 & 1 \leq j \leq p \\ (3) \ \sum_{i=1}^{p} \sum_{j=1}^{p} x_{i,j} = q \\ (4) \ \sum_{i=1}^{p} x_{i,j} = \sum_{i=1}^{p} x_{j,i} & 1 \leq j \leq p \\ \end{cases}$$

$$(5) \ \sum_{i=1}^{p} \alpha_{i} = 1 \\ (6) \ \alpha_{i} \leq \sum_{j=1}^{p} x_{i,j} & 1 \leq i \leq p \\ (7) \ \alpha_{i} \cdot w_{i} + \frac{D_{c}}{D_{w}} \sum_{j=1}^{p} (x_{i,j}c_{i,j} + x_{j,i}c_{j,i}) \leq T & 1 \leq i \leq p \\ \end{cases}$$

$$(8) \ \sum_{i=1}^{p} y_{i} = 1 \\ (9) \ -p \cdot y_{i} - p \cdot y_{j} + u_{i} - u_{j} + q \cdot x_{i,j} \leq q - 1 & 1 \leq i, j \leq p, i \neq j \\ (10) \ y_{i} \in \{0,1\} & 1 \leq i \leq p \\ (11) \ u_{i} \ \text{integer}, u_{i} \geq 0 & 1 \leq i \leq p \end{cases}$$

Linear programming

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
- Problems with integer variables: solved in exponential time in the worst case.
- No relaxation in rationals seems possible here.

Linear programming

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
- Problems with integer variables: solved in exponential time in the worst case.
- No relaxation in rationals seems possible here.

Linear programming

- Problems with rational variables: can be solved in polynomial time (in the size of the problem).
- Problems with integer variables: solved in exponential time in the worst case.
- No relaxation in rationals seems possible here...

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one)

No guarantee, but excellent results in practice.

- Exhaustive search: feasible until a dozen of processors. .
- Greedy heuristic: initially we take the best pair of processors; for a given ring we try to insert any unused processor in between any pair of neighbor processors in the ring...

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one) No guarantee, but excellent results in practice.

- ① Exhaustive search: feasible until a dozen of processors...
- Greedy heuristic: initially we take the best pair of processors; for a given ring we try to insert any unused processor in between any pair of neighbor processors in the ring...

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one) No guarantee, but excellent results in practice.

- ① Exhaustive search: feasible until a dozen of processors...
- @ Greedy heuristic: initially we take the best pair of processors; for a given ring we try to insert any unused processor in between any pair of neighbor processors in the ring...

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one) No guarantee, but excellent results in practice.

- Exhaustive search: feasible until a dozen of processors...
- @ Greedy heuristic: initially we take the best pair of processors; for a given ring we try to insert any unused processor in between any pair of neighbor processors in the ring...

All processors participate. One can use a heuristic to solve the traveling salesman problem (as Lin-Kernighan's one) No guarantee, but excellent results in practice.

- Exhaustive search: feasible until a dozen of processors...
- @ Greedy heuristic: initially we take the best pair of processors; for a given ring we try to insert any unused processor in between any pair of neighbor processors in the ring...

Outline

- The problem
- Pully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- Non dedicated platforms
- 6 Conclusion

- A set of communications links: e_1, \ldots, e_n
- ullet Bandwidth of link e_m : b_{e_m}
- ullet There is a path \mathcal{S}_i from P_i to $P_{\mathsf{succ}(i)}$ in the network
 - P_i needs a time D_c $\frac{1}{\min_{s_m \in S_i} s_{i,m}}$ to send to its successor a message of size D_c
 - ullet Constraints on the bandwidth of e_m : $\sum_{1 \leq i \leq p} s_{i,m} \leq b_{e_m}$
- Symmetrically, there is a path \mathcal{P}_i from P_i to $P_{\mathsf{pred}(i)}$ in the network, which uses a fraction $p_{i,m}$ of the bandwidth b_{e_m} of link e_m

- A set of communications links: e_1, \ldots, e_n
- ullet Bandwidth of link e_m : b_{e_m}
- There is a path S_i from P_i to $P_{\mathsf{succ}(i)}$ in the network
 - S_i uses a fraction $s_{i,m}$ of the bandwidth v_{e_m} of link e_m P_i needs a time D_i to send to its successor a message of size D_e
 - Constraints on the bandwidth of e_m : $\sum_{1 \le i \le p} s_{i,m} \le b_{e_m}$
- Symmetrically, there is a path \mathcal{P}_i from P_i to $P_{\mathsf{pred}(i)}$ in the network, which uses a fraction $p_{i,m}$ of the bandwidth b_{e_m} of link e_m

- A set of communications links: e_1, \ldots, e_n
- ullet Bandwidth of link e_m : b_{e_m}
- ullet There is a path \mathcal{S}_i from P_i to $P_{\mathsf{succ}(i)}$ in the network
 - ullet \mathcal{S}_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m
 - P_i needs a time $D_c \cdot \frac{1}{\min_{e_m \in \mathcal{S}_i} s_{i,m}}$ to send to its successor a message of size D_c
 - \bullet Constraints on the bandwidth of $e_m \colon \sum_{1 \le i \le p} s_{i,m} \le b_{e_m}$
- Symmetrically, there is a path \mathcal{P}_i from P_i to $P_{\mathsf{pred}(i)}$ in the network, which uses a fraction $p_{i,m}$ of the bandwidth b_{e_m} of link e_m

- A set of communications links: e_1, \ldots, e_n
- ullet Bandwidth of link e_m : b_{e_m}
- ullet There is a path \mathcal{S}_i from P_i to $P_{\mathsf{succ}(i)}$ in the network
 - ullet \mathcal{S}_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m
 - P_i needs a time $D_c \cdot \frac{1}{\min_{e_m \in \mathcal{S}_i} s_{i,m}}$ to send to its successor a message of size D_c
 - \bullet Constraints on the bandwidth of $e_m : \sum_{1 \leq i \leq p} s_{i,m} \leq b_{e_m}$
- Symmetrically, there is a path \mathcal{P}_i from P_i to $P_{\mathsf{pred}(i)}$ in the network, which uses a fraction $p_{i,m}$ of the bandwidth b_{e_m} of link e_m

- A set of communications links: e_1, \ldots, e_n
- Bandwidth of link e_m : b_{e_m}
- ullet There is a path \mathcal{S}_i from P_i to $P_{\mathsf{succ}(i)}$ in the network
 - ullet \mathcal{S}_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m
 - P_i needs a time $D_c \cdot \frac{1}{\min_{e_m \in \mathcal{S}_i} s_{i,m}}$ to send to its successor a message of size D_c
 - Constraints on the bandwidth of e_m : $\sum_{1 \leq i \leq p} s_{i,m} \leq b_{e_m}$
- Symmetrically, there is a path \mathcal{P}_i from P_i to $P_{\mathsf{pred}(i)}$ in the network, which uses a fraction $p_{i,m}$ of the bandwidth b_{e_m} of link e_m

- A set of communications links: e_1, \ldots, e_n
- ullet Bandwidth of link e_m : b_{e_m}
- ullet There is a path \mathcal{S}_i from P_i to $P_{\mathsf{succ}(i)}$ in the network
 - ullet \mathcal{S}_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m
 - P_i needs a time $D_c \cdot \frac{1}{\min_{e_m \in \mathcal{S}_i} s_{i,m}}$ to send to its successor a message of size D_c
 - \bullet Constraints on the bandwidth of e_m : $\sum_{1 \leq i \leq p} s_{i,m} \leq b_{e_m}$
- Symmetrically, there is a path \mathcal{P}_i from P_i to $P_{\mathsf{pred}(i)}$ in the network, which uses a fraction $p_{i,m}$ of the bandwidth b_{e_m} of link e_m

- A set of communications links: e_1, \ldots, e_n
- Bandwidth of link e_m : b_{e_m}
- ullet There is a path \mathcal{S}_i from P_i to $P_{\mathsf{succ}(i)}$ in the network
 - ullet \mathcal{S}_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m
 - P_i needs a time $D_c \cdot \frac{1}{\min_{e_m \in \mathcal{S}_i} s_{i,m}}$ to send to its successor a message of size D_c
 - \bullet Constraints on the bandwidth of $e_m : \sum_{1 \leq i \leq p} s_{i,m} \leq b_{e_m}$
- Symmetrically, there is a path \mathcal{P}_i from P_i to $P_{\mathsf{pred}(i)}$ in the network, which uses a fraction $p_{i,m}$ of the bandwidth b_{e_m} of link e_m

Toy example: choosing the ring

- 7 processors and 8 bidirectional communications links
- We choose a ring of 5 processors: $P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P_5$ (we use neither Q, nor R)

Toy example: choosing the ring

- 7 processors and 8 bidirectional communications links
- We choose a ring of 5 processors: $P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P_5$ (we use neither Q, nor R)

From P_1 to P_2 , we use the links a and b: $S_1 = \{a, b\}$. From P_2 to P_1 , we use the links b, g and h: $P_2 = \{b, g, h\}$.

```
From P_1: to P_2, \mathcal{S}_1 = \{a,b\} and to P_5, \mathcal{P}_1 = \{h\}
From P_2: to P_3, \mathcal{S}_2 = \{c,d\} and to P_1, \mathcal{P}_2 = \{b,g,h\}
From P_3: to P_4, \mathcal{S}_3 = \{d,e\} and to P_2, \mathcal{P}_3 = \{d,e,f\}
From P_4: to P_5, \mathcal{S}_4 = \{f,b,g\} and to P_3, \mathcal{P}_4 = \{e,d\}
From P_5: to P_1, \mathcal{S}_5 = \{h\} and to P_4, \mathcal{P}_5 = \{g,b,f\}
```


From P_1 to P_2 , we use the links a and b: $S_1 = \{a, b\}$.

From P_2 to P_1 , we use the links b, g and h: $\mathcal{P}_2 = \{b, g, h\}$.

```
From P_1: to P_2, \mathcal{S}_1 = \{a,b\} and to P_5, \mathcal{P}_1 = \{h\}
From P_2: to P_3, \mathcal{S}_2 = \{c,d\} and to P_1, \mathcal{P}_2 = \{b,g,h\}
From P_3: to P_4, \mathcal{S}_3 = \{d,e\} and to P_2, \mathcal{P}_3 = \{d,e,f\}
From P_4: to P_5, \mathcal{S}_4 = \{f,b,g\} and to P_3, \mathcal{P}_4 = \{e,d\}
From P_5: to P_1, \mathcal{S}_5 = \{h\} and to P_4, \mathcal{P}_5 = \{g,b,f\}
```


From P_1 to P_2 , we use the links a and b: $S_1 = \{a, b\}$. From P_2 to P_1 , we use the links b, g and h: $P_2 = \{b, g, h\}$.

```
From P_1: to P_2, \mathcal{S}_1=\{a,b\} and to P_5, \mathcal{P}_1=\{h\}
From P_2: to P_3, \mathcal{S}_2=\{c,d\} and to P_1, \mathcal{P}_2=\{b,g,h\}
From P_3: to P_4, \mathcal{S}_3=\{d,e\} and to P_2, \mathcal{P}_3=\{d,e,f\}
From P_4: to P_5, \mathcal{S}_4=\{f,b,g\} and to P_3, \mathcal{P}_4=\{e,d\}
From P_5: to P_1, \mathcal{S}_5=\{h\} and to P_4, \mathcal{P}_5=\{g,b,f\}
```


From P_1 to P_2 , we use the links a and b: $S_1 = \{a, b\}$. From P_2 to P_1 , we use the links b, g and h: $P_2 = \{b, g, h\}$.

```
From P_1: to P_2, S_1 = \{a,b\} and to P_5, \mathcal{P}_1 = \{h\}
From P_2: to P_3, S_2 = \{c,d\} and to P_1, \mathcal{P}_2 = \{b,g,h\}
From P_3: to P_4, S_3 = \{d,e\} and to P_2, \mathcal{P}_3 = \{d,e,f\}
From P_4: to P_5, S_4 = \{f,b,g\} and to P_3, \mathcal{P}_4 = \{e,d\}
From P_5: to P_1, S_5 = \{h\} and to P_4, \mathcal{P}_5 = \{g,b,f\}
```

Toy example: bandwidth sharing

From P_1 to P_2 we use links a and b: $c_{1,2}=\frac{1}{\min(s_{1,a},s_{1,b})}.$ From P_1 to P_5 we use the link h: $c_{1,5}=\frac{1}{p_{1,h}}.$

Set of all sharing constraints:

```
Link a: s_{1,a} \leq b_a

Link b: s_{1,b} + s_{4,b} + p_{2,b} + p_{5,b} \leq b_b

Link c: s_{2,c} \leq b_c

Link d: s_{2,d} + s_{3,d} + p_{3,d} + p_{4,d} \leq b_d

Link e: s_{3,e} + p_{3,e} + p_{4,e} \leq b_e

Link f: s_{4,f} + p_{3,f} + p_{5,f} \leq b_f

Link g: s_{4,g} + p_{2,g} + p_{5,g} \leq b_g

Link h: s_{5,b} + p_{1,b} + p_{2,b} \leq b_b
```

Toy example: bandwidth sharing

From P_1 to P_2 we use links a and b: $c_{1,2}=\frac{1}{\min(s_{1,a},s_{1,b})}.$ From P_1 to P_5 we use the link h: $c_{1,5}=\frac{1}{p_{1,h}}.$

Set of all sharing constraints:

$$\begin{split} & \text{Link } a \colon \ s_{1,a} \leq b_a \\ & \text{Link } b \colon \ s_{1,b} + s_{4,b} + p_{2,b} + p_{5,b} \leq b_b \\ & \text{Link } c \colon \ s_{2,c} \leq b_c \\ & \text{Link } d \colon \ s_{2,d} + s_{3,d} + p_{3,d} + p_{4,d} \leq b_d \\ & \text{Link } e \colon \ s_{3,e} + p_{3,e} + p_{4,e} \leq b_e \\ & \text{Link } f \colon \ s_{4,f} + p_{3,f} + p_{5,f} \leq b_f \\ & \text{Link } g \colon \ s_{4,g} + p_{2,g} + p_{5,g} \leq b_g \\ & \text{Link } h \colon \ s_{5,h} + p_{1,h} + p_{2,h} \leq b_h \end{split}$$

Toy example: final quadratic system

 $p_{5,f} \cdot c_{5,4} > 1$

The problem sums up to a quadratic system if

- The processors are selected;
- 2 The processors are ordered into a ring;
- The communication paths between the processors are known.
 In other words: a quadratic system if the ring is known.

- Complete graph: closed-form expression;
- General graph: quadratic system

The problem sums up to a quadratic system if

- The processors are selected;
- 2 The processors are ordered into a ring;
- The communication paths between the processors are known.
 In other words: a quadratic system if the ring is known.

- Complete graph: closed-form expression;
- General graph: quadratic system

The problem sums up to a quadratic system if

- The processors are selected;
- 2 The processors are ordered into a ring;
- 3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

- Complete graph: closed-form expression;
- General graph: quadratic system.

The problem sums up to a quadratic system if

- The processors are selected;
- The processors are ordered into a ring;
- 3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

- Complete graph: closed-form expression;
- General graph: quadratic system.

The problem sums up to a quadratic system if

- The processors are selected;
- The processors are ordered into a ring;
- 3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

- Complete graph: closed-form expression;
- General graph: quadratic system.

And, in practice?

We adapt our greedy heuristic:

- Initially: best pair of processors
- $oldsymbol{\circ}$ For each processor P_k (not already included in the ring)
 - ullet For each pair (P_i,P_j) of neighbors in the ring
 - ① We build the graph of the unused bandwidths (Without considering the paths between P_i and P_j)
 - ② We compute the shortest paths (in terms of bandwidth) between P_k and P_i and P_j
 - We evaluate the solution
- We keep the best solution found at step 2 and we start again
- + refinements (max-min fairness, quadratic solving)

- No guarantee, neither theoretical, nor practical
- Simple solution:
 - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
 - we apply the heuristic for complete graphs
 - we allocate the bandwidths

- No guarantee, neither theoretical, nor practical
- Simple solution:
 - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
 - we apply the heuristic for complete graphs
 - we allocate the bandwidths

- No guarantee, neither theoretical, nor practical
- Simple solution:
 - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
 - we apply the heuristic for complete graphs
 - we allocate the bandwidths

- No guarantee, neither theoretical, nor practical
- Simple solution:
 - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
 - 2 we apply the heuristic for complete graphs
 - we allocate the bandwidths

- No guarantee, neither theoretical, nor practical
- Simple solution:
 - we build the complete graph whose edges are labeled with the bandwidths of the best communication paths
 - we apply the heuristic for complete graphs
 - we allocate the bandwidths

An example of an actual platform (Lyon)

P_0								
0.0206	0.0206	0.0206	0.0206	0.0291	0.0206	0.0087	0.0206	0.0206
P_9							P_{16}	
0.0206	0.0206	0.0206	0.0291	0.0451	0	0	0	

Processors processing times (in seconds par megaflop)

Describing Lyon's platform

Abstracting Lyon's platform.

Results

First heuristic building the ring without taking link sharing into account

Second heuristic taking into account link sharing (and with quadratic programing)

Ratio D_c/D_w	H1	H2	Gain
0.64	0.008738 (1)	0.008738 (1)	0%
0.064	0.018837 (13)	0.006639 (14)	64.75%
0.0064	0.003819 (13)	0.001975 (14)	48.28%

Ratio D_c/D_w	H1		H2	Gain	
0.64	0.005825	(1)	0.005825	(1)	0 %
0.064	0.027919	(8)	0.004865	(6)	82.57%
0.0064	0.007218	(13)	0.001608	(8)	77.72%

Table: T_{step}/D_w for each heuristic on Lyon's and Strasbourg's platforms (the numbers in parentheses show the size of the rings built).

Outline

- 1 The problem
- Pully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms
- 6 Conclusion

New difficulties

The available processing power of each processor changes over time

The available bandwidth of each communication link changes over time

- \Rightarrow Need to reconsider the allocation previously done
- ⇒ Introduce dynamicity in a static approach

A possible approach

- If the actual performance is "too much" different from the characteristics used to build the solution
 - If the actual performance is "very" different
 - We compute a new ring
 - We redistribute data from the old ring to the new one
 - If the actual performance is "a little" different
 - We compute a new load-balancing in the existing ring
 - We redistribute the data in the ring

A possible approach

If the actual performance is "too much" different from the characteristics used to build the solution

Actual criterion defining "too much"?

- If the actual performance is "very" different
 - We compute a new ring
 - We redistribute data from the old ring to the new one Actual criterion defining "very" ?
 Cost of the redistribution ?
- If the actual performance is "a little" different
 - We compute a new load-balancing in the existing ring
 - We redistribute the data in the ringHow to efficiently do the redistribution ?

Principle of the load-balancing

Principle: the ring is modified only if this is profitable.

- T_{step} : length of an iteration before load-balancing;
- ullet T_{step}' : length of an iteration after load-balancing;
- T_{redistribution}: cost of the redistribution;
- n_{iter} : number of remaining iterations

Condition:
$$T_{\text{redistribution}} + n_{\text{iter}} \times T'_{\text{step}} \leq n_{\text{iter}} \times T_{\text{step}}$$

Load-balancing on a ring

- Homogeneous unidirectional ring
- Heterogeneous unidirectional ring
- Homogeneous bidirectional ring
- Heterogeneous bidirectional ring

Notations

• $C_{k,l}$ the set of the processors from P_k to P_l :

$$C_{k,l} = P_k, P_{k+1}, \dots, P_l$$

- $c_{i,i+1}$: time needed by processor P_i to send a data item to processor P_{i+1} (next one in the ring).
- Initially, processor P_i holds L_i data items (atomic). After redistribution, P_i will hold $L_i \delta_i$ data items. δ_i is the unbalance of processor P_i . $\delta_{k,l}$: unbalance of the set $C_{k,l}$: $\delta_{k,l} = \sum_{i=k}^l \delta_i$. Conservation law for the data: $\sum_i \delta_i = 0$ We assume that each processor at least one data item before and after the redistribution: $L_i \geq 1$ and $L_i \geq 1 + \delta_i$.

Homogeneous communication time: c.

 P_k can only send messages to P_{k+1} .

$$P_l$$
 needs a time $\delta_{k,l} \times c$ to send $\delta_{k,l}$ data (if $\delta_{k,l} > 0$).

Lower bound:
$$\left(\max_{1 \leq k \leq n, \ 0 \leq l \leq n-1} \delta_{k,k+l}\right) \times c$$

Homogeneous communication time: c.

 P_k can only send messages to P_{k+1} .

 P_l needs a time $\delta_{k,l} \times c$ to send $\delta_{k,l}$ data (if $\delta_{k,l} > 0)$

Lower bound:
$$\left(\max_{1\leq k\leq n,\ 0\leq l\leq n-1}\delta_{k,k+l}\right) imes c$$

$$\delta_{k,k+l} = \delta_k + \delta_{k+1} + \ldots + \delta_{k+l-1} + \delta_{k+l}$$

Homogeneous communication time: c.

 P_k can only send messages to P_{k+1} .

 P_l needs a time $\delta_{k,l} \times c$ to send $\delta_{k,l}$ data (if $\delta_{k,l} > 0$).

Lower bound:
$$\left(\max_{1 \leq k \leq n, \ 0 \leq l \leq n-1} \delta_{k,k+l}\right) \times \alpha$$

$$\delta_{k,k+l} = \delta_k + \delta_{k+1} + \ldots + \delta_{k+l-1} + \delta_{k+l}$$

Homogeneous communication time: c.

 P_k can only send messages to P_{k+1} .

 P_l needs a time $\delta_{k,l} \times c$ to send $\delta_{k,l}$ data (if $\delta_{k,l} > 0$).

Lower bound:
$$\left(\max_{1 \leq k \leq n, \ 0 \leq l \leq n-1} \delta_{k,k+l}\right) \times c$$

$$\delta_{k,k+l} = \delta_k + \delta_{k+1} + \ldots + \delta_{k+l-1} + \delta_{k+l}$$

Homogeneous communication time: c.

 P_k can only send messages to P_{k+1} .

 P_l needs a time $\delta_{k,l} \times c$ to send $\delta_{k,l}$ data (if $\delta_{k,l} > 0$).

Lower bound:
$$\left(\max_{1 \leq k \leq n, \ 0 \leq l \leq n-1} \delta_{k,k+l}\right) \times c$$

$$\delta_{\rm max} = 5$$

The redistribution algorithm is defined by the first processor of a "chain" of processors whose unbalance is maximal.

During the algorithm execution processor P_i sends $\delta_{2,i}$ data.

At step 1, P_i sends a data item if and only if $\delta_{2,i} \geq 1$

At step 1, P_i sends a data item if and only if $\delta_{2,i} \geq 1$

At step 2, P_i sends a data item if and only if $\delta_{2,i} \geq 2$

At step 2, P_i sends a data item if and only if $\delta_{2,i} \geq 2$

At step 3, P_i sends a data item if and only if $\delta_{2,i} \geq 3$

At step 3, P_i sends a data item if and only if $\delta_{2,i} \geq 3$

At step 4, P_i sends a data item if and only if $\delta_{2,i} \geq 4$

At step 4, P_i sends a data item if and only if $\delta_{2,i} \geq 4$

At step 5, P_i sends a data item if and only if $\delta_{2,i} \geq 5$

At step 5, P_i sends a data item if and only if $\delta_{2,i} \geq 5$

Homogeneous unidirectional ring: formal algorithm

- 1: Let $\delta_{\max} = (\max_{1 \le k \le n, 0 \le l \le n-1} |\delta_{k,k+l}|)$
- 2: Let start and end be two indices such that the slice $C_{\mathtt{start},\mathtt{end}}$ is of maximal imbalance: $\delta_{\mathtt{start},\mathtt{end}} = \delta_{\mathtt{max}}$.
- 3: for s=1 to δ_{\max} do
- 4: for all l=0 to n-1 do
- 5: if $\delta_{\mathtt{start},\mathtt{start}+l} \geq s$ then
- 6: $P_{\mathtt{start}+l}$ sends to $P_{\mathtt{start}+l+1}$ a data item during the time interval $[(s-1) \times c, s \times c[$

Theorem

This redistribution algorithm is optimal

Homogeneous unidirectional ring: formal algorithm

- 1: Let $\delta_{\max} = (\max_{1 \le k \le n, 0 \le l \le n-1} |\delta_{k,k+l}|)$
- 2: Let start and end be two indices such that the slice $C_{\mathtt{start},\mathtt{end}}$ is of maximal imbalance: $\delta_{\mathtt{start},\mathtt{end}} = \delta_{\mathtt{max}}$.
- 3: for s=1 to δ_{\max} do
- 4: **for all** l = 0 to n 1 **do**
- 5: if $\delta_{\mathtt{start},\mathtt{start}+l} \geq s$ then
- 6: $P_{\mathtt{start}+l}$ sends to $P_{\mathtt{start}+l+1}$ a data item during the time interval $[(s-1) \times c, s \times c[$

Theorem

This redistribution algorithm is optimal.

Heterogeneous unidirectional ring: lower bound

Processor P_i needs a time $c_{i,i+1}$ to send a data to processor P_{i+1} .

Principle of the lower bound: same as for the homogeneous case.

 P_l needs a time $\delta_{k,l} \times c_{l,l+1}$ to send $\delta_{k,l}$ data items to P_{l+1} (if $\delta_{k,l} > 0$).

Lower bound:
$$\max_{1 \leq k \leq n, \ 0 \leq l \leq n-1} \delta_{k,k+l} \times c_{k+l,k+l+1}$$

Heterogeneous unidirectional ring: lower bound

Processor P_i needs a time $c_{i,i+1}$ to send a data to processor P_{i+1} .

Principle of the lower bound : same as for the homogeneous case.

 P_l needs a time $\delta_{k,l} \times c_{l,l+1}$ to send $\delta_{k,l}$ data items to P_{l+1} (if $\delta_{k,l} > 0$).

Lower bound:
$$\max_{1 \le k \le n, \ 0 \le l \le n-1} \delta_{k,k+l} \times c_{k+l,k+l+1}$$

Consequences of the heterogeneity of communications

 P_6 can have to receive some data items from P_5 to complete sending all the necessary data items to P_7 .

We cannot express with a simple closed-form expression the time needed by P_6 to complete its share of the work.

The redistribution algorithm is asynchronous

Consequences of the heterogeneity of communications

 P_6 can have to receive some data items from P_5 to complete sending all the necessary data items to P_7 .

We cannot express with a simple closed-form expression the time needed by P_6 to complete its share of the work.

The redistribution algorithm is asynchronous.

The redistribution algorithm

This is just an asynchronous version of the previous algorithm.

1: Let
$$\delta_{\mathsf{max}} = (\max_{1 \leq k \leq n, 0 \leq l \leq n-1} |\delta_{k,k+l}|)$$

- 2: Let start and end be two indices such that the slice $C_{\mathtt{start},\mathtt{end}}$ is of maximal unbalance: $\delta_{\mathtt{start},\mathtt{end}} = \delta_{\mathtt{max}}$.
- 3: for all l=0 to n-1 do
- 4: $P_{\mathtt{start}+l}$ sends $\delta_{\mathtt{start},\mathtt{start}+l}$ data items one by one and as soon as possible to processor $P_{\mathtt{start}+l+1}$

Optimality

Obvious by construction

Lemma

The execution time of the redistribution algorithm is

$$\max_{0 \le l \le n-1} \delta_{start, start+l} \times c_{start+l, start+l+1}$$

In other words, there is no propagation delay, whatever the initial distribution of the data, and whatever the communication speeds. . .

Optimality

Obvious by construction

Lemma

The execution time of the redistribution algorithm is

$$\max_{0 < l < n-1} \delta_{start, start+l} \times c_{start+l, start+l+1}.$$

In other words, there is no propagation delay, whatever the initial distribution of the data, and whatever the communication speeds. . .

Optimality

Obvious by construction

Lemma

The execution time of the redistribution algorithm is

$$\max_{0 \leq l \leq n-1} \delta_{start,start+l} \times c_{start+l,start+l+1}.$$

In other words, there is no propagation delay, whatever the initial distribution of the data, and whatever the communication speeds. . .

Optimality: principle of the proof

The execution time of the algorithm is

$$\max_{0 \leq l \leq n-1} \delta_{\texttt{start}, \texttt{start}+l} \times c_{\texttt{start}+l, \texttt{start}+l+1}.$$

Homogeneous bidirectional ring: framework

Homogeneous communication time: c.

Bidirectional communications

$$\text{Lower bound:} \qquad \max\left\{ \max_{1 \leq i \leq n} |\delta_i|, \max_{1 \leq i \leq n, 1 \leq l \leq n-1} \left\lceil \frac{|\delta_{i,i+l}|}{2} \right\rceil \right\} \times \epsilon^{-1}$$

Homogeneous communication time: c.

Bidirectional communications

$$\text{Lower bound:} \qquad \max\left\{\max_{1\leq i\leq n}|\delta_i|,\max_{1\leq i\leq n,1\leq l\leq n-1}\left\lceil\frac{|\delta_{i,i+l}|}{2}\right\rceil\right\}\times \epsilon^{-1}$$

$$\delta_{k,k+l} = \delta_k + \delta_{k+1} + \ldots + \delta_{k+l-1} + \delta_{k+l}$$

Homogeneous communication time: c.

Bidirectional communications

Lower bound:
$$\max\left\{\max_{1\leq i\leq n}|\delta_i|,\max_{1\leq i\leq n,1\leq l\leq n-1}\left\lceil\frac{|\delta_{i,i+l}|}{2}\right\rceil\right\}\times \epsilon$$

Homogeneous communication time: c.

We need a time $\left\lceil \frac{\delta_{k,k+l}}{2} \right\rceil \times c$ to send $\delta_{k,k+l}$ data items of the processor "chain" P_k,\ldots,P_{k+l} (if $\delta_{k,l}>0$).

Lower bound:
$$\max\left\{\max_{1\leq i\leq n}|\delta_i|,\max_{1\leq i\leq n,1\leq l\leq n-1}\left\lceil\frac{|\delta_{i,i+l}|}{2}\right\rceil\right\}\times \epsilon$$

 $\delta_{k,k+l} = \delta_k + \delta_{k+1} + \dots + \delta_{k+l-1} + \delta_{k+l}$

Homogeneous communication time: c.

We need a time $\left\lceil \frac{\delta_{k,k+l}}{2} \right\rceil \times c$ to send $\delta_{k,k+l}$ data items of the processor "chain" P_k,\ldots,P_{k+l} (if $\delta_{k,l}>0$).

Lower bound:
$$\max \left\{ \max_{1 \le i \le n} |\delta_i|, \max_{1 \le i \le n, 1 \le l \le n-1} \left\lceil \frac{|\delta_{i,i+l}|}{2} \right\rceil \right\} \times c$$

Homogeneous bidirectional ring: principle of the algorithm

- Each non trivial set $C_{k,l}$ such that $\left|\frac{|\delta_{k,l}|}{2}\right| = \delta_{\max}$ and $\delta_{k,l} \geq 0$ must send two data items at each step, one by each of its two extremities.
- ② Each non trivial set $C_{k,l}$ such that $\left|\frac{|o_{k,l}|}{2}\right| = \delta_{\max}$ and $\delta_{k,l} \leq 0$ must receive two data items at each step, one by each of its two extremities.
- ① Once the communications required by the two previous cases are defined, we take care of P_i such that $|\delta_i| = \delta_{\max}$. If P_i is already implied in a communication: everything is already set up.
 - Otherwise, we have the choice of the processor to which P_i sends (case $\delta_i \geq 0$) or from which P_i receives (case $\delta_i \leq 0$) a data item.
 - For the sake of simplicity: all these communications are in the same direction "from P_i to P_{i+1} ".

51/58

Homogeneous bidirectional ring: principle of the algorithm

- Each non trivial set $C_{k,l}$ such that $\left|\frac{|\delta_{k,l}|}{2}\right| = \delta_{\max}$ and $\delta_{k,l} \ge 0$ must send two data items at each step, one by each of its two extremities.
- $\textbf{2} \ \, \text{Each non trivial set} \,\, C_{k,l} \,\, \text{such that} \,\, \Big\lceil \frac{|\delta_{k,l}|}{2} \Big\rceil = \delta_{\max} \,\, \text{and} \,\, \delta_{k,l} \leq 0 \\ \,\, \text{must receive two data items at each step, one by each of its} \\ \,\, \text{two extremities}.$
- ③ Once the communications required by the two previous cases are defined, we take care of P_i such that $|\delta_i| = \delta_{\max}$. If P_i is already implied in a communication: everything is already set up.
 - Otherwise, we have the choice of the processor to which P_i sends (case $\delta_i \geq 0$) or from which P_i receives (case $\delta_i \leq 0$) a data item.
 - For the sake of simplicity: all these communications are in the same direction "from P_i to P_{i+1} ".

51/58

Homogeneous bidirectional ring: principle of the algorithm

- Each non trivial set $C_{k,l}$ such that $\left\lceil \frac{|\delta_{k,l}|}{2} \right\rceil = \delta_{\max}$ and $\delta_{k,l} \geq 0$ must send two data items at each step, one by each of its two extremities.
- ② Each non trivial set $C_{k,l}$ such that $\left\lceil \frac{|\delta_{k,l}|}{2} \right\rceil = \delta_{\max}$ and $\delta_{k,l} \leq 0$ must receive two data items at each step, one by each of its two extremities.
- ① Once the communications required by the two previous cases are defined, we take care of P_i such that $|\delta_i| = \delta_{\max}$. If P_i is already implied in a communication: everything is already set up.
 - Otherwise, we have the choice of the processor to which P_i sends (case $\delta_i \geq 0$) or from which P_i receives (case $\delta_i \leq 0$) a data item.

For the sake of simplicity: all these communications are in the same direction "from P_i to P_{i+1} ".

Homogeneous bidirectional ring: optimality

Difficulties:

- Particular cases (taking care of the termination)
- Proof of the correctness of the algorithm (the optimality is then obvious)

```
\tau \geq \max \begin{cases} \max_{1 \leq k \leq n, \, \delta_k > 0} \delta_k \min\{c_{k,k-1}, c_{k,k+1}\} \\ \max_{1 \leq k \leq n, \, \delta_k < 0} -\delta_k \min\{c_{k-1,k}, c_{k+1,k}\} \\ \max_{1 \leq k \leq n, \, \delta_k < 0} \min_{1 \leq k \leq n, \, 0 \leq i \leq \delta_{k,k+l}} \max\{i \cdot c_{k,k-1}, (\delta_{k,k+l} - i) \cdot c_{k+l,k+l+1}\} \\ \max_{1 \leq k \leq n, \, 0 \leq i \leq \delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max_{1 \leq k \leq n, \, 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \end{cases}
```

```
\tau \geq \max \begin{cases} \max_{1 \leq k \leq n, \, \delta_k > 0} \delta_k \min\{c_{k,k-1}, c_{k,k+1}\} \\ \max_{1 \leq k \leq n, \, \delta_k < 0} -\delta_k \min\{c_{k-1,k}, c_{k+1,k}\} \\ \max_{1 \leq k \leq n, \, \delta_k < 0} \min_{1 \leq k \leq n, \, 0 \leq i \leq \delta_{k,k+l}} \max\{i \cdot c_{k,k-1}, (\delta_{k,k+l} - i) \cdot c_{k+l,k+l+1}\} \\ \max_{1 \leq k \leq n, \, 0 \leq i \leq \delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max_{1 \leq k \leq n, \, 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max_{1 \leq l \leq n-2, \, \delta_{k,k+l} < 0} \min_{1 \leq k \leq n, \, \delta_k < 0} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \end{cases}
```

```
\tau \geq \max \begin{cases} \max_{1 \leq k \leq n, \ \delta_k > 0} \delta_k \min\{c_{k,k-1}, c_{k,k+1}\} \\ \max_{1 \leq k \leq n, \ \delta_k < 0} -\delta_k \min\{c_{k-1,k}, c_{k+1,k}\} \\ \max_{1 \leq k \leq n, \ \delta_k < 0} \min_{0 \leq i \leq \delta_{k,k+l}} \max\{i \cdot c_{k,k-1}, (\delta_{k,k+l} - i) \cdot c_{k+l,k+l+1}\} \\ \max_{1 \leq l \leq n-2, \ \delta_{k,k+l} > 0} \max_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max_{1 \leq l \leq n-2, \ \delta_{k,k+l} < 0} \min_{0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \end{cases}
```

$$\tau \geq \max \left\{ \begin{array}{l} \max\limits_{1 \leq k \leq n, \ \delta_k > 0} \delta_k \min\{c_{k,k-1}, c_{k,k+1}\} \\ \max\limits_{1 \leq k \leq n, \ \delta_k < 0} -\delta_k \min\{c_{k-1,k}, c_{k+1,k}\} \\ \max\limits_{1 \leq k \leq n, \ \delta_k < 0} \min\limits_{1 \leq k \leq n, \ 0 \leq i \leq \delta_{k,k+l}} \max\{i \cdot c_{k,k-1}, (\delta_{k,k+l} - i) \cdot c_{k+l,k+l+1}\} \\ \max\limits_{1 \leq l \leq n-2, \ \delta_{k,k+l} > 0} \min\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq l \leq n-2, \ \delta_{k,k+l} < 0} \min\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq l \leq n-2, \ \delta_{k,k+l} < 0} \min\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq l \leq n-2, \ \delta_{k,k+l} < 0} \min\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \max\{i \cdot c_{k-1,k+l}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \min\{i \cdot c_{k-1,k+l}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \max\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \min\{i \cdot c_{k-1,k+l}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \min\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \min\{i \cdot c_{k-1,k+l}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \min\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k,k+l}} \min\{i \cdot c_{k-1,k+l}, -(\delta_{k,k+l} + i) \cdot c_{k+l+1,k+l}\} \\ \min\limits_{1 \leq k \leq n, \ 0 \leq i \leq -\delta_{k+l}} \min\{$$

Heterogeneous bidirectional ring: "light" redistributions (1)

Definition: we say that a redistribution is "light" if each processor initially holds all the data items it needs to send during the execution of the algorithm.

 $\mathcal{S}_{i,j}$: amount of data sent by P_i to its neighbor P_j .

$$\begin{cases} S_{i,i+1} \geq 0 & 1 \leq i \leq n \\ S_{i,i-1} \geq 0 & 1 \leq i \leq n \\ S_{i,i+1} + S_{i,i-1} - S_{i+1,i} - S_{i-1,i} = \delta_i & 1 \leq i \leq n \\ S_{i,i+1}c_{i,i+1} + S_{i,i-1}c_{i,i-1} \leq \tau & 1 \leq i \leq n \\ S_{i+1,i}c_{i+1,i} + S_{i-1,i}c_{i-1,i} \leq \tau & 1 \leq i \leq n \end{cases}$$

Heterogeneous bidirectional ring: "light" redistributions (2)

Any integral solution is feasible.

Ex.: P_i sends its $S_{i,i+1}$ data to P_{i+1} starting at time 0. Once this communication is completed, P_i sends $S_{i,i-1}$ data to P_{i-1} as soon as it is possible under the one port model.

If we solve the system in rational, one of the two natural rounding in integer defines an optimal integral solution.

Heterogeneous bidirectional ring: general case

Any idea anybody?

Outline

- 1 The problem
- Pully homogeneous network
- 3 Heterogeneous network (complete)
- 4 Heterogeneous network (general case)
- 5 Non dedicated platforms
- **6** Conclusion

Conclusion

"Regular" parallelism was already complicated, now we have:

- Processors with different characteristics
- Communications links with different characteristics
- Irregular interconnection networks
- Resources whose characteristics evolve over time

We need to use a realistic model of networks...but a more realistic model may lead to a more complicated problem.