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SUMMARY

In this paper we consider the problem of scheduling on computing platforms composed of several inde-
pendent organizations, known as the Multi-Organization Scheduling Problem (MOSP). Each organization
provides both resources and jobs and follows its own objectives. We are interested in the best way to
minimize the makespan on the entire platform when the organizations behave in a selfish way. We study the
complexity of the MOSP problem with two different local objectives—makespan and average completion
time—and show that MOSP is strongly NP-Hard in both cases. We formally define a selfishness notion,
by means of restrictions on the schedules. We prove that selfish behavior imposes a lower bound of 2 on
the approximation ratio for the global makespan. We present various approximation algorithms of ratio 2
which validate selfishness restrictions. These algorithms are experimentally evaluated through simulation,
exhibiting good average performances and presenting good fairness to organizations’ local objectives.
Copyright � 2011 John Wiley & Sons, Ltd.

Received 15 November 2010; Revised 15 March 2011; Accepted 15 March 2011

KEY WORDS: scheduling; approximation algorithms; multi-organization scheduling

1. INTRODUCTION

1.1. Motivation and presentation of the problem

The new generation of many-core machines and the now mature grid computing systems allow
the creation of unprecedented massively distributed systems. In order to fully exploit such large
numbers of processors and cores available and reach the best performances, we need sophisticated
scheduling algorithms that encourage users to share their resources and, at the same time, respect
each user’s own interests.

Many of these new computing systems are composed of organizations that own and manage
clusters of computers. A user of such systems submits his/her jobs to a scheduling system that can
choose any available machine in any of these clusters. However, each organization that shares its
resources aims to take the maximum advantage of its own hardware. In order to improve cooper-
ation between the organizations, local jobs should be prioritized to ensure that local performance
objectives will be satisfied.

To find an efficient schedule for the jobs using the available machines is a crucial problem.
Although each user submits jobs locally in his/her own organization and has its own performance
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goals, it is necessary to optimize the allocation of the jobs for the whole platform in order to
achieve good performance.

This work extends the paper presented in the 2010 Euro-Par conference [1], by providing a new
algorithm to solve the problem and deeper results on the quality of the performances obtained. We
also study the notion of fairness on the results obtained by our algorithms.

1.2. Related work

From the classical scheduling theory, the problem of scheduling parallel jobs is related to Strip
packing [2]. It corresponds to packing a set of rectangles (without rotations and overlaps) into
a strip of machines in order to minimize the height used. Then, this problem was extended to
the case where the rectangles were packed into a finite number of strips [3, 4]. More recently,
an asymptotic (1+�)-approximation AFPTAS with additive constant O(1) and with running-time
polynomial in n and in 1/� was presented in [5].

Schwiegelshohn et al. [6] studied a very similar problem, where the jobs can be scheduled in
non-contiguous processors. Their algorithm is a 3-approximation for the maximum completion
time (makespan) if all jobs are known in advance, and a 5-approximation for the makespan on the
online, non-clairvoyant case.

The Multi-Organization Scheduling problem (MOSP) was introduced by Pascual et al. [7, 8]
and studies how to efficiently schedule parallel jobs in new computing platforms, while respecting
users’ own selfish objectives. A preliminary analysis of the scheduling problem on homogeneous
clusters was presented with the target of minimizing the makespan, resulting in a centralized
3-approximation algorithm. This problem was then extended for relaxed local objectives in [9].

The notion of cooperation between different organizations and the study of the impact of users’
selfish objectives are directly related to Game Theory. The study of the Price of Anarchy [10]
on non-cooperative games allows to analyze how far the social costs—results obtained by selfish
decisions—are from the social optimum on different problems. In selfish load-balancing games
(see [11] for more details), selfish agents aim to allocate their jobs on the machine with the smallest
load. In these games, the social cost is usually defined as the completion time of the last job
to finish (makespan). Several works studied this problem focusing on various aspects, such as
convergence time to a Nash equilibrium [12], characterization of the worst-case equilibria [13],
etc. We do not target here such game theoretical approaches.

1.3. Contributions and road map

As suggested in the previous section, the problem of scheduling in multi-organization clusters has
been studied from several different view points. In this paper, we propose a theoretical analysis of
the problem using classical combinatorial optimization approaches.

Our main contribution is the extension and analysis of the problem for the case in which
sequential jobs are submitted by selfish organizations that can handle different local objectives
(namely, makespan and average completion times).

We introduce new restrictions to the schedule that take into account the notion of selfish
organizations, i.e. organizations that refuse to cooperate if their objectives could be improved just
by executing earlier one of their jobs in one of their own machines. The formal description of the
problem and the notations used in this paper are described in Section 2.

A fairness study is conducted using two different fairness metrics. The objective of this study is
to evaluate if the results obtained by all organizations equally improve every organization’s local
objective by constructing schedules that are considered fair according to these metrics. Unfairness
in the results obtained by each organization could be considered a reason to make an organization
stop cooperation with the others.

Section 3 shows that any algorithm respecting our new selfishness restrictions cannot achieve
approximation ratios better than 2 and that both problems are intractable. 2-approximation algo-
rithms for solving the problem are presented in Section 4. Those heuristics are analyzed using
fairness metrics presented in Section 5. Simulation experiments, discussed in Section 6, show
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the good results obtained by our algorithms in average and how each organization perceives the
fairness of the results obtained.

2. PROBLEM DESCRIPTION AND NOTATIONS

In this paper, we are interested in the scheduling problem in which different organizations own a
physical cluster of identical machines that are interconnected. They share resources and exchange
jobs with each other in order to simultaneously maximize the profits of the collectivity and their own
interests. All organizations intent to minimize the global makespan (i.e. the maximum completion
time in any local schedule) while they individually try to minimize their own objectives—either
the makespan or the average completion time of their own jobs—in a selfish way.

Although each organization accepts to cooperate with others in order to minimize the global
makespan, individually it behaves in a selfish way. An organization can refuse to cooperate if in
the final schedule one of its migrated jobs could be executed earlier in one of the machines owned
by the organization.

Formally, we define our target platform as a grid computing system with N different organizations
interconnected by a middleware. Each organization O (k) (1≤k ≤ N ) has m(k) identical machines
available that can be used to run jobs submitted by users from any organization.

Each organization O (k) has n(k) jobs to execute, and the total number of jobs is denoted by
n =∑k n(k). Each job J (k)

i (1≤ i ≤n(k)) will use one processor for exactly p(k)
i units of time‡. The

size of the largest job from organization O (k) is denoted as p(k)
max. No preemption is allowed, i.e.

after its activation, a job runs until its completion at time C (k)
i .

We denote the makespan of a particular organization k by C (k)
max =max1≤i≤n(k) (C (k)

i ) and its

sum of completion times as
∑

C (k)
i . The global makespan for the entire grid computing system is

defined as Cmax =max1≤k≤N (C (k)
max).

2.1. Local constraint

The MOSP, as first described in [7] consists in minimizing the global makespan (Cmax) with an
additional local constraint: at the end, no organization can have its makespan increased if compared
with the makespan that the organization could have by scheduling the jobs in its own machines
(C (k)local

max ). More formally, we call MOSP(Cmax) the following optimization problem:

minimize Cmax such that for all k(1≤k ≤ N ), C (k)
max ≤C (k)local

max .

In this work, we also study the case where all organizations are locally interested in minimizing
their average completion time while minimizing the global makespan. As in MOSP(Cmax), each
organization imposes that the sum of completion times of its jobs cannot be increased if compared
with what the organization could have obtained using only its own machines (

∑
C (k)local

i ). We
denote this problem MOSP(

∑
Ci ) and the goal of this optimization problem is to

minimize Cmax such that for all k(1≤k ≤ N ),
∑

C (k) ≤∑C (k)local
i .

2.2. Selfishness

In both MOSP(Cmax) and MOSP(
∑

Ci ), while the global schedule might be computed by a central
entity, the organizations keep control on the way they execute the jobs in the end. This property
means that, in theory, it is possible for organizations to cheat the devised global schedule by
re-inserting their jobs earlier in the local schedules.

‡All machines are identical, i.e. every job will be executed at the same speed irrespective of the chosen machine.
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In order to prevent such behavior, we define a new restriction on the schedule, called selfishness
restriction. The idea is that, in any schedule respecting this restriction, no single organization can
improve its local schedule by cheating.

Given a fixed schedule, let J (l)
f be the first foreign job scheduled to be executed in O (k) (or the

first idle time if O (k) has no foreign job) and J (k)
i any job belonging to O (k). Then, the selfishness

restriction forbids any schedule where C (l)
f − p(l)

f <C (k)
i − p(k)

i . In other words, O (k) refuses to

cooperate if one of its jobs could be executed earlier in one of O (k) machines even if this leads to
a larger global makespan.

3. COMPLEXITY ANALYSIS

3.1. Lower bounds

Pascual et al. [7] showed with an instance composed of two organizations and two machines per
organization that every algorithm that solves MOSP (for rigid, parallel jobs and Cmax as local
objectives) has at least a 3

2 -approximation ratio when compared to the optimal makespan that could
be obtained without the local constraints. We show that the same bound applies asymptotically
even with a larger number of organizations.

Take the instance depicted in Figure 1(a). O (1) initially has two jobs of size N and all the others
initially have N jobs of size 1. All organizations contribute only with one machine each. The
optimal makespan for this instance is N +1 (Figure 1(b)), nevertheless, it delays jobs from O (2)

and, as a consequence, does not respect MOSP’s local constraints. The best possible makespan
that respects the local constraints (whenever the local objective is the makespan or the average
completion time) is 3N/2, as shown in Figure 1(c).

3.2. Selfishness and lower bounds

Although all organizations will likely cooperate with each other to achieve the best global makespan
possible, their selfish behavior will certainly impact the quality of the best attainable global
makespan.

We study here the impact of new selfishness restrictions on the quality of the achievable
schedules. We show that these restrictions impact MOSP(Cmax) and MOSP(

∑
Ci ) as compared

with unrestricted schedules and, moreover, that MOSP(Cmax) with selfishness restrictions suffers
from limited performances compared to MOSP(Cmax) with local constraints.

Proposition 1
No approximation algorithm for both MOSP(Cmax) and MOSP(

∑
Ci ) has a ratio asymptotically

better than 2 regarding the optimal makespan without constraints if all organizations behave
selfishly.

(a) (b) (c)

Figure 1. Ratio between global optimum makespan and the optimum makespan that can be
obtained for both MOSP(Cmax) and MOSP(

∑
Ci ). Jobs owned by organization O (2) are high-

lighted. (a) Initial instance—Cmax =2N . (b) Global optimum without constraints—Cmax = N +1.
(c) Optimum with MOSP constraints—Cmax =3N/2.
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(a) (b)

Figure 2. Ratio between global optimum makespan with MOSP constraints and the makespan that can be
obtained by MOSP(Cmax) with selfish organizations: (a) initial instance—Cmax =2N −2 and (b) global

optimum with MOSP constraints—Cmax = N .

Proof
We prove this result by using the example described in Figure 1. It is clear from Figure 1(b) that
an optimal solution for a schedule without local constraints can be achieved in N +1. However,
with added selfishness restrictions, Figure 1(a) (with a makespan of 2N ) represents the only
possible valid schedule. We can, therefore, conclude that local constraints combined with selfishness
restrictions imply that no algorithm can provide an approximation ratio asymptotically better than 2
when compared with the problem without constraints. �

Proposition 1 gives a ratio regarding the optimal makespan without the local constraints imposed
by MOSP. We can show that the same approximation ratio of 2 also applies for MOSP(Cmax)
regarding the optimal makespan even if MOSP constraints are respected.

Proposition 2
Any approximation algorithm for MOSP(Cmax) has a ratio greater than or equal to 2−(2/N )
regarding the optimal makespan with local constraints if all organizations behave selfishly.

Proof
Take the instance depicted in Figure 2(a). O (1) initially has N jobs of size 1 and O (N ) has two jobs
of size N −1. The optimal solution that respects MOSP local constraints is given in Figure 2(b)
and has Cmax equal to N . Nevertheless, the best solution that respects the selfishness restrictions
is the initial instance with a Cmax equal to 2N −2. Thus, the ratio of the optimal solution with the
selfishness restrictions to the optimal solution with MOSP constraints is 2−(2/N ). �

3.3. Computational complexity

This section studies how difficult it is to find optimal solutions for the MOSP problem. We consider
the decision version of the MOSP defined as follows:

Instance: A set of N organizations (for 1≤k ≤ N , organization O (k) has n(k) jobs, m(k) identical
machines, and makespan as the local objective) and an integer �.

Question: Does there exist a schedule with a makespan less than � that respects the local
constraints?

Theorem 1
MOSP(Cmax) and MOSP(

∑
Ci ) are strongly NP-complete.

A reduction from the classical 3-PARTITION problem [14] (see definition below) to MOSP is
straightforward and it is schematized in Figure 3. This reduction, however, represents a degenerate
case of the MOSP problem. The instance presents a configuration where initially one organization
is very loaded and some organizations do not contribute with any work. We believe that this
configuration misrepresents the concept of cooperation introduced by the MOSP problem.

We present in this section a slightly more complex proof for the complexity of MOSP(Cmax)
and MOSP(

∑
Ci ) with an instance where any organization could potentially have its makespan
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(a) (b)

Figure 3. Direct reduction of MOSP from 3-PARTITION: (a) initial instance and (b) optimum.

Figure 4. Reduction of MOSP(Cmax) and MOSP(
∑

Ci ) from 3-PARTITION.

improved by cooperating with others. We show that the problem remains difficult even for instances
limited to two jobs per organization.

Theorem 2
MOSP(Cmax) and MOSP(

∑
Ci ) are strongly NP-complete even if each organization has exactly

two jobs per organization.

Proof
It is straightforward to see that MOSP(Cmax)∈ N P and MOSP(

∑
Ci )∈ N P . Our proof is based

on a reduction from the well-known 3-PARTITION problem [14]:
Instance: A bound B ∈ Z+ and a finite set A of 3m integers {a1, . . . ,a3m}, such that every

element of A is strictly between B/4 and B/2 and such that
∑3m

i=1 ai =m B.
Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that, for all 1≤ i ≤m,∑
a∈Ai

a = B and Ai is composed of exactly three elements?
Given an instance of 3-PARTITION, we construct an instance of MOSP where, for 1≤k ≤3m,

organization O (k) initially has two jobs J (k)
1 and J (k)

2 with p(k)
1 = (m+1)B +11 and p(k)

2 = (m+
1)ak +3, and all other organizations have two jobs with processing time equal to 1. We then set � to
be equal to (m+1)B +11. Figure 4 depicts the described instance. This construction is performed
in polynomial time. Now, we prove that A can be split into m disjoint subsets A1, . . . , Am , each one
summing up to B, if and only if this instance of MOSP has a solution with Cmax ≤ (m+1)B +11.

Assume that A={a1, . . . ,a3m} can be partitioned into m disjoint subsets A1, . . . , Am , each one
summing up to B. In this case, we can build an optimal schedule for the instance as follows:

• for 1≤k ≤3m, J (k)
1 is scheduled on machine k;

• for 3m+1≤k ≤4m, J (k)
1 and J (k)

2 are scheduled on machine k;

• for 1≤ i ≤m, let Ai ={ai1,ai2,ai3}⊆ A. The jobs J
(ai1 )
2 , J

(ai2 )
2 , and J

(ai3 )
2 are scheduled on

machine 3m+i .

This construction provides a schedule where the global Cmax is the optimal one. Also, it is easy to
see that the local constraints for MOSP(Cmax) and MOSP(

∑
Ci ) are respected: for MOSP(Cmax),
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it is sufficient to note that no organization has its makespan increased; for MOSP(
∑

Ci ), note that
each job either remains in its original organization and schedule (lighter colored jobs in Figure 4)
or is migrated to a different organization at an earlier time (darker colored jobs in Figure 4), strictly
decreasing the average completion time.

Conversely, assume that MOSP has a solution with Cmax ≤ (m+1)B +11. The total work (W )
of the jobs that must be executed is W =3m ·((m+1)B +11)+∑3m

i=1((m+1)B +ai )+m ·2=4m ·
((m+1)B +11). Since we have exactly 4m organizations, the solution must be the optimal solution
and there are no idle times in the scheduling. Moreover, 3m machines must execute only one job
of size (m+1)B +11. W.l.o.g, we can consider that for 3m+1≤k ≤4m, machine k performs jobs
of size less than (m+1)B +11.

To prove our proposition, we first show two lemmas that characterize the structure of the solution
for the MOSP problem:

Lemma 1
For all 3m+1≤k ≤4m, exactly three jobs of size not equal to 1 must be scheduled on machine k
if C (k)

max = (m+1)B +11.

Proof
We prove this lemma by contradiction. First, note that for all integers from the 3-PARTITION instance,
it holds that ai>B/4.

Assume that one machine has less than three jobs of size not equal to 1. 3m jobs of this kind
must be assigned to the last m organizations (since the first 3m organizations executes each one
large job of size (m+1)B +11). If one machine has less than three jobs, then we must have at
least one other machine with four or more jobs of this kind assigned to it. The makespan on
this other machine must be of at least 4 ·((m+1)ai +3)>4 ·((m+1)B/4+3)= (m+1)B +12. This
contradicts the fact that C (k)

max = (m+1)B +11 and shows that exactly three jobs of size not equal
to 1 must be scheduled on each machine. �

Lemma 2
For all 3m+1≤k ≤4m, exactly two jobs of size 1 are scheduled on each machine if C (k)

max =
(m+1)B +11.

Proof
Since C (k)

max = (m+1)B +11, each large job of size (m+1)B +11 must remain in its original
organization. Consequently, the 2m jobs of size 1 must be scheduled in one of the m organizations
not having a large job assigned to it. However, each of these organizations have C (k)local

max =2, which
means that any migration that results in a schedule with one organization not having two jobs of
size 1 will result in a schedule that does not respect both MOSP(Cmax) and MOSP(

∑
Ci ) local

constraints. �

From the solution for the MOSP problem, we construct m disjoint subsets A1, A2, . . . , Am of A
as follows: for all 1≤ i ≤m, a j is in Ai if the job with size (m+1)a j +3 is scheduled on machine
3m+i . Note that all elements of A belong to one and only one set in {A1, . . . , Am}. We prove that
A is a partition with the desired properties.

We focus on organization O (3m+i), where Ai was assigned. Lemmas 1 and 2 show how the jobs
will be assigned to this organization. First, Lemma 1 shows that Ai is composed of exactly three
jobs that will be executed on O (3m+i). Second, Lemma 2 shows that exactly two jobs of size 1
will be scheduled at the beginning of the schedule.

Since all organizations must have a local Cmax exactly equal to (m+1)B +11, we have that
C (3m+i)

max = (m+1)B +11=1+1+∑a j ∈Ai
((m+1)a j +3), which implies that:

2+ ∑
a j ∈Ai

((m+1)a j +3)= (m+1)B +11⇒ ∑
a j ∈Ai

(m+1)a j = (m+1)B ⇒ ∑
a j ∈Ai

a j = B.
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Thus, we can deduce that Ai is composed of exactly three elements and
∑

a j ∈Ai
a j = B. In other

words, {Ai , . . . , Am} is a solution for the 3-PARTITION problem. �

4. ALGORITHMS

In this section, we present four different heuristics to solve MOSP(Cmax) and MOSP(
∑

Ci ). All
algorithms present the additional property of respecting selfishness restrictions.

4.1. Iterative load balancing algorithm (ILBA)

ILBA [8] is a heuristic that redistributes the load from the most loaded organizations.
The idea is to incrementally rebalance the load without delaying any job. First, the less loaded

organizations are rebalanced. Then, one-by-one, each organization has its load rebalanced.
The heuristic works as follows. First, each organization schedules its own jobs locally and

the organizations are enumerated by non-decreasing makespans, i.e. C (1)
max ≤C (2)

max ≤·· ·≤C (N )
max. For

k =2 until N , jobs from O (k) are rescheduled sequentially, and assigned to the less loaded of
organizations O (1) . . . O (k).

Each job is rescheduled by ILBA either earlier or at the same time that the job was scheduled
before the migration. In other words, no job is delayed by ILBA, which guarantees that the local
constraint is respected for MOSP(Cmax) and MOSP(

∑
Ci ).

ILBA has the same time complexity as any list scheduling algorithm for the classical problem
of minimizing the makespan. Its time complexity is O(n logn). We recall that n is the total number
of jobs.

4.2. LPT-LPT and SPT-LPT heuristics

We developed and evaluated (see Section 6) two new heuristics based on the classical LPT (Longest
Processing Time First [15]) and SPT (Smallest Processing Time First [16]) algorithms for solving
MOSP(Cmax) and MOSP(

∑
Ci ), respectively. Both heuristics work in two phases. During the first

phase, all organizations minimize their own local objectives. Each organization starts applying
LPT for its own jobs if the organization is interested in minimizing its own makespan, or starts
applying SPT if the organization is interested in its own average completion time.

The second phase is when all organizations cooperatively minimize the makespan of the entire
grid computing system without worsening any local objective. This phase works as follows: each
time an organization becomes idle, i.e. it finishes the execution of all jobs assigned to it, the
longest job that has not started yet is migrated and executed by the idle organization. This greedy
algorithm works like a global LPT, always choosing the longest job yet to be executed among jobs
from all organizations.

The first and second phases correspond to a list scheduling algorithm, hence the total running
time of both algorithms is O(n logn).

4.3. Less Helped First heuristic

Like the previous algorithms, Less Helped First works in two phases. First, each organization
O (k) is classified according to the total work originally submitted by a user in O (k) that was actually
executed by a different organization. Locally, the order of the jobs is arbitrary (it could be the
submission order, for instance).

Second, each time a processor becomes idle, the algorithm will prioritize the organization that
received less help from the others, i.e. that had less work executed by other organizations. The
algorithm will migrate any job from the less helped organization that has not started yet to be
executed by the idle processor.

The running time of the first phase is O(n logn). During the second phase, after each job
migration, the classification of the organizations must be updated. This update can be done in
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O(logn) and there are at most n migrations (one per job). Since the number of organizations is
negligible compared to the number of jobs, the total running time of the algorithm is O(n logn).

4.4. Analysis

ILBA, LPT-LPT, SPT-LPT, and Less Helped First do not delay any of the jobs when compared
to the initial local schedule. During the rebalancing phase, all jobs either remain in their orig-
inal organization or are migrated to an organization that became idle at a preceding time. The
implications are

• the selfishness restriction is respected—if a job is migrated, it will start before any foreign
jobs that may have been assigned to its original organization;

• if organizations’ local objective is to minimize the makespan, migrating a job to a previous
moment in time will decrease the job’s completion time and, as a consequence, it will not
increase the initial makespan of the organization;

• if organizations’ local objective is to minimize the average completion time, migrating a job
from the initial organization to another that became idle at a previous moment in time will
not increase the completion time of any job. This means that the

∑
Ci of the jobs from the

initial organization is either decreased or remains constant;
• the rebalancing phase of all four algorithms works as the list scheduling algorithms. Graham’s

classical approximation ratio 2−(1/N ) of list scheduling algorithms [15] holds for all of
them.

Proposition 1 (Section 3.2) states that no algorithm respecting selfishness restrictions can achieve
an approximation ratio for MOSP(Cmax) better than 2 regarding the optimal makespan without
constraints. Since all our algorithms reach an approximation ratio of 2, no further enhancements
are possible without removing selfishness restrictions.

5. FAIRNESS

Another form of encouragement of cooperation between the organizations is providing algorithms
that equally improve their local objectives. Organizations that are not invidious of other orga-
nizations are more likely to share their resources to the platform. Selfish organizations could
potentially become invidious if the results obtained when solving the MOSP problem improve the
local objectives of the organizations in an unfair manner.

Some fairness metrics can be found in the literature—Variance, Coefficient of Variance
(Variance/Mean), Min-Max ratio, etc. The Jain Index [17] is nowadays one of the most popular
metrics used to measure fairness [18]. We also studied the Stretch as an index of fairness, as we
will show in the subsequent sections.

In this section we study the fairness of the results produced by the algorithms presented in
Section 4. Using the same workload generated for the experimental results shown in Section 6, we
evaluate the fairness of these algorithms for two important metrics: Stretch and the Jain Index.

5.1. Stretch

Stretch is a performance metric that was extensively studied in the scheduling literature. This
performance metric can also be considered as a fairness metric. We adapted the notion of Stretch
to the MOSP problem, to measure the Stretch of an entire organization. We define Stretch as the
ratio of the local Cmax obtained by the organization to the Cmax that the organization could have
obtained if it had all the machines available only for its jobs (denoted by C (k)alone

max ). Formally, the
Stretch is calculated as follows:

Stretch=max
k

C (k)
max

C (k)alone
max

.
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Since C (k)alone
max is bounded by the theoretical lower bound

∑
i p(k)

i /N =C (k)local
max /N and since

MOSP(Cmax) constraint guarantees that C (k)
max ≤C (k)local

max , we have

Stretch=max
k

C (k)
max

C (k)alone
max

≤ C (k)local
max

C (k)local
max

N

≤ N .

Note that this upper bound for the Stretch metric is tight. Consider the instance with N orga-
nizations, each one having N jobs with processing times equal to 1. C (k)alone

max is equal to 1 for all
organizations k, and C (k)local

max = N . There is only one scheduling that respects MOSP(Cmax) local
constraint, the one that schedules all jobs in their original organizations.

5.2. Jain Index

Originally, the Jain Index was introduced for the study of resource sharing and allocation problems.
The Jain Index of a set of n users receiving an ‘allocation’ xi [17] is defined as

f (x)=
(∑n

i=1 xi
)2

n
∑n

i=1 x2
i

, xi ≥0. (1)

If the values of xi follow a certain random distribution, the index is the ratio of the first moment
(the mean) to the second moment of the distribution.

The Jain Index has the following useful properties:

• it is independent of the size of the population;
• it is independent of the scale (or metric unit) used;
• the values of the index are bound between 1/n and 1;
• it is continuous.

We evaluated the fairness of the heuristics presented in Section 4 regarding the improvements
obtained on the local Cmax by each organization. We define this improvement as the ratio of the
obtained Cmax to the theoretical lower bound of each organization over all available machines of
the system.

The lower bound of each organization is calculated by L B(k) =max(
∑

i
p(k)

i
N , p(k)

max). The improve-

ment for organization O (k) (the xk of Equation 1) is then defined as: C (k)
max/L B(k). Thus, the final

Jain Index calculated to measure the fairness of the improvements can be stated as follows:

Jain Index=

(∑N
k=1

C (k)
max

L B(k)

)2

N
∑N

k=1

(
C (k)

max

L B(k)

)2
.

6. EXPERIMENTS

We conducted an extensive series of simulations comparing ILBA, LPT-LPT, SPT-LPT, and Less
Helped First under various experimental settings. The workload was randomly generated with
parameters matching the typical environment found in academic grid computing systems [8].

We generated random workloads with N =5, 10, and 20 organizations. For each number of
organizations, we have generated instances with different number of total jobs (from 100 to 1000),
with sizes chosen uniformly at random from 1 to 1000. For each combination of these parameters,
we generated 20 000 random instances. In our tests, the number of initial jobs in each organization
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(a) (b) (c)

Figure 5. Mean and confidence interval of the measured C (k)
max obtained by ILBA, LPT-LPT, SPT-LPT,

and Less Helped First: (a) N =5; (b) N =10; and (c) N =20.

follows a Zipf distribution with exponent equal to 1.4267, which best models virtual organiza-
tions in real-world grid computing systems [19]. All results are presented with confidence level
of 95%.

6.1. Global Cmax analysis

We are interested in the improvement of the global Cmax provided by the different algorithms. The
results are evaluated with a comparison to Cmax obtained by the algorithms with the well-known

theoretical lower bound for the scheduling problem without constraints L B =max(
∑

i,k
p(k)

i
m(k) , pmax).

Our main conclusion is that, despite the fact that the selfishness restrictions are respected by all
heuristics, ILBA and LPT-LPT obtained near optimal results for most cases. This is not unusual,
since it follows the patterns of experimental behavior of standard list scheduling algorithms, in
which it is easy to obtain a near optimal schedule when the number of jobs grows large. SPT-LPT
and Less Helped First produce worse results due to the effect of the local order of the jobs.
Figure 5 shows the average global Cmax obtained by the heuristics for instances with different
number of organizations and the total number of jobs.

However, in some particular cases, in which the number of jobs is not much larger than the
number of machines available, the experiments yield more interesting results. Figure 6 shows the
histogram of a representative instance of such a particular case. The histograms show the frequency
of the ratio Cmax obtained to the lower bound over 20 000 different instances with 20 organizations
and 100 jobs for ILBA, LPT-LPT, SPT-LPT, and Less Helped First. Similar results have been
obtained for many different sets of parameters. LPT-LPT outperforms ILBA (and SPT-LPT) for
most instances and its average ratio to the lower bound is less than 1.3. Less Helped First is the
heuristic that produces the worst results.

6.2. Local Cmax analysis

We are also interested in the improvements obtained by each organization that our four algorithms
provide. In order to have a global view of the total improvement obtained, we have evaluated
the sum of the local makespans obtained by all organizations:

∑
k C (k)

max. The sum of the local
makespans is important because it shows the average results that each selfish organization obtains.

The experiments show that ILBA produces results with a lower makespan in average. LPT-LPT,
SPT-LPT, and Less Helped First produce similar results in average. Recall from Section 4.1 that
ILBA rebalances the load of all organizations, from the less loaded to the more loaded organization.
This mechanism minimizes the makespan of the organization individually in a more aggressive
way and, therefore, produces lower average local makespans. Figure 7 shows the average local
Cmax obtained by all heuristics.

It is interesting to note that the gap between the average result obtained by ILBA and the other
heuristics increases as the number of organizations and the total number of jobs increases.
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(a) (b)

(c) (d)

Figure 6. Frequency of results obtained by ILBA, LPT-LPT, SPT-LPT, and Less Helped First for N =20
and n =100: (a) ILBA; (b) LPT-LPT; (c) SPT-LPT; and (d) Less Helped First.

(a) (b) (c)

Figure 7. Mean and confidence interval of the measured
∑

k C (k)
max obtained by ILBA, LPT-LPT, SPT-LPT,

and Less Helped First: (a) N =5; (b) N =10; and (c) N =20.

6.3. Fairness analysis

In the two previous sections we have analyzed the performance obtained by the four algorithms
presented in Section 4 for the global makespan obtained and for the local makespan obtained
by each organization. In this section we use the same testbed to study how each organization
perceives the fairness of these results. To study the fairness, we use the Stretch and Jain Index
metrics presented in Section 5.

6.3.1. Stretch. We have measured the worst—i.e. maximum—Stretch (as defined in Section 5.1)
obtained during the simulations. Figure 8 shows how the Stretch varies according to the total
number of jobs of the system.
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(a) (b) (c)

Figure 8. Mean and confidence interval of the measured Stretch obtained by ILBA, LPT-LPT, SPT-LPT,
and Less Helped First: (a) N =5; (b) N =10; and (c) N =20.

(a) (b) (c)

Figure 9. Mean and confidence interval of the measured Jain Index obtained by ILBA, LPT-LPT, SPT-LPT,
and Less Helped First: (a) N =5; (b) N =10; and (c) N =20.

The results show that the Stretch increases asymptotically to the upper bound of the metric (i.e.
the number of organizations) as the total number of jobs on the system increases.

The Stretch obtained with our algorithms is given by the less loaded organization. Our heuristics
never migrate jobs from the organization that has the lower local Cmax. For this organization, the
C (k)

max will always be equal to the C (k)local
max and the Stretch will be higher. The Zipf distribution

used to randomly assign the jobs to the organizations distributes more jobs to the less loaded
organization when the total number of organizations is smaller. For this reason, the average Stretch
grows faster for N =5.

When the number of jobs is small, the performance of ILBA degrades more slowly because
ILBA rebalances first the less loaded organizations, while the others rebalance the organizations
in a dynamic order.

LPT-LPT presented the worst values for Stretch. Bigger Stretch values indicate that organizations
are more penalized by the jobs from other organizations. Recall from Section 6 that LPT-LPT
produces better results for the global Cmax. To achieve these results, LPT-LPT must penalize some
organizations, and Stretch measures exactly this behavior.

6.3.2. Jain Index. Jain Index and Stretch metrics measure two different forms of fairness. The
former measures how each organization perceives the improvements on its own Cmax, while
the latter shows how Cmax of each individual organization is affected by the jobs from other
organizations.

When the number of organizations N is 5, our experiments showed that the four heuristics
provide fair results, with Jain Index higher than 0.88. Recall that the Jain Index is bounded from
1/N (unfair) to 1 (perfect fairness).

Figure 9(a) indicates that the ILBA heuristics have two moments. In the first, when the number
of jobs is smaller, ILBA heuristic produces more fair results than the other heuristics. Its Jain Index
varies from 0.92 up to 0.95.
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During the second moment, when the number of jobs is higher, ILBA produces the less fair
results between all the four heuristics. LPT-LPT, SPT-LPT, and Less Helped First produce
results with similar fairness indices, while ILBA fairness is clearly worse when compared to the
others. Recall that the index is almost constant when N =5 and there are more than 300 jobs on
the platform.

The experiments with N =10 shows that ILBA produces results with fairness similar to the
results with N =5. Its Jain Index is of about 0.90. When the number of jobs is over 700, LPT-LPT,
SPT-LPT, and Less Helped First are fairer. Their Jain Index varies between 0.79 and 0.91.

For N =20, the difference between the performance of ILBA and the others are higher. ILBA
has Jain Index of about 0.90 while the fairness of the other three heuristics decreases from 0.94
to 0.70. The number of jobs of the simulations shown in Figure 9(c) was increased up to 2000
to show that for N =20 the results indicate that ILBA has also two moments, like for the cases
where N =5 and N =10.

Even if ILBA provided fairer results than the others with less jobs on the system, all four
algorithms improve the local Cmax obtained by each organization in a fair way.

7. CONCLUDING REMARKS

In this paper, we have investigated the scheduling on multi-organization platforms. We presented the
MOSP(Cmax) problem from the literature and extended it to a new related problem MOSP(

∑
Ci )

with another local objective. In each case we studied how to improve the global makespan while
guaranteeing that no organization will worsen its own results.

We showed first that both versions MOSP(Cmax) and MOSP(
∑

Ci ) of the problem are strongly
NP-hard. Furthermore, we introduced the concept of selfishness in these problems which corre-
sponds to additional scheduling restrictions designed to reduce the incentive for the organizations
to cheat locally and disrupt the global schedule. We proved that any algorithm respecting selfish-
ness restrictions cannot achieve a better approximation ratio than 2 for MOSP(Cmax) regarding the
optimal makespan without MOSP local constraints.

Three new scheduling algorithms were proposed, namely LPT-LPT, SPT-LPT, and Less Helped
First in addition to ILBA from the literature. All these algorithms are list scheduling, and thus
achieve a 2-approximation. We provided an in-depth analysis of these algorithms, showing that all
of them respect the selfishness restrictions.

Finally, all these algorithms were implemented and analyzed through experimental simulations.
The results show that when considering the global makespan, our new LPT-LPT outperforms
ILBA, and that all algorithms exhibit near optimal global performances when the number of jobs
becomes large.

Considering the local objectives, ILBA achieves better average local makespans. ILBA also
proved to present more fair results according to the Stretch metric. All the four algorithms presented
good fairness using the Jain Index, showing that the local makespan of all organizations is equally
improved.

The future research directions will be more focused on game theory. We intend to study schedules
in the case where several organizations secretly cooperate to cheat the central authority.
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