1. My first scheduling problem

1.1 Definition of scheduling

- allocation of limited resources to activities over time
- *activities*: tasks in computer environment, steps of a construction project, operations in a production process, lectures at the University, etc.
- *resources*: processors, workers, machines, lecturers, rooms, etc.
- *objective*: minimize total time, energy consumption, average service time

Many variations on the model, on the resource/activity interaction and on the objective.

1.2 Small scheduling problem, to introduce the vocabulary

- *n jobs (or tasks)* \(j = 1, \ldots n \),
- *r* renewable *resources* \(i = 1, \ldots, r \)
- \(R_k \): amounts of resource \(k \) available at any time
- activity \(j \) processed for \(p_j \) time units, using an amount \(r_{j,k} \) of resource \(k \)
- Integer numbers

Objective: find *starting time* \(S_j \) (or \(\sigma(j) \)) for each activity, such that

- At each time, the total resource demand is less than (or equal to) the resource availability for each resource
- Objective: *Makespan* \(C_{\text{max}} = \max C_j \) is minimized, with \(C_j = S_j + p_j \)

- *S* defines a *schedule*
• S is called *feasible* if all resource constraints are fulfilled

Exemples:

• Road construction, resource 1 is the number of available trucks, and resource 2 is the number of available caterpillars (or excavators). Jobs involve a given number of each machine.

• 2 resources with $R_1 = 5$ and $R_2 = 7$

• 4 jobs

\[
\begin{array}{c|cccc}
 j & 1 & 2 & 3 & 4 \\
 p_j & 4 & 3 & 5 & 8 \\
r_{j,1} & 2 & 1 & 2 & 2 \\
r_{j,2} & 3 & 5 & 2 & 4 \\
\end{array}
\]

(a) A feasible schedule

\[
\begin{array}{c|cccc}
 j & 1 & 2 & 3 & 4 \\
 p_j & 4 & 3 & 5 & 8 \\
r_{j,1} & 2 & 1 & 2 & 2 \\
r_{j,2} & 3 & 5 & 2 & 4 \\
\end{array}
\]

(b) An optimal schedule

NB: these figures are called Gantt charts.

1.3 Common additional constraints

• precedence: j cannot start before i is completed

 precedence constraints are often modeled as a Directed Acyclic Graph (concept of predecessor and successor in this graph)

• communication delays $d_{i,j}$ is the delay between the completion of i and the starting time of j

2 Processor scheduling & Graham notation

Classes of scheduling problems can be specified in terms of the three-field classification $\alpha|\beta|\gamma$ where

• α specifies the machine environment,

• β specifies the job characteristics,

• γ and describes the objective function(s).

We will illustrate this notation on all following scheduling problems.
3 First example, with new objective, $1||\sum w_i C_i$, polynomial (Smith-ratio)

- 1 machine
- no constraints on tasks (length p_i)
- Objective: weighted sum of completion times

- Intuitions:
 - put high weight first
 - put longer tasks last
- \Rightarrow Order task by non-increasing Smith ratio: $w_1/p_1 \geq w_2/p_2 \geq \cdots \geq w_n/p_n$

Proof:

- Consider a different optimal schedule S
- Let i and j be two consecutive tasks in this schedule such that $w_i/p_i < w_j/p_j$
- contribution of these tasks in S:
 $S_i = (w_i + w_j)(t + p_i) + w_j p_j$
- contribution of these tasks if switched:
 $S_j = (w_i + w_j)(t + p_j) + w_i p_i$
- we have
 $$\frac{S_i - S_j}{w_i/w_j} = p_i - p_j$$
 Thus we decrease the objective by switching these tasks.

4 More machines, example of $P|\text{prec}|C_{\text{max}}$, NP-completeness and Graham 2-approximation algorithm

More machines in the Graham notation:

- P parallel identical
- Q uniform machines
 each machine has a given speed speed_i, and all jobs have a size size_j, the processing time is given by $\text{size}_j/\text{speed}_i$
- R unrelated machines
 the processing time of job j on machine i is given by $t_{i,j}$, without any other constraints
• P: identical parallel machines
• prec: precedence constraints between tasks
• C_{max}: minimizing the maximum makespan

Results:
• NP-complete
• reduction to 2-partition (or 3-partition, → unary NP-complete)

4.1 Recall on NP-completeness

Polynomial problems:
• a solution to a scheduling problem is a function h:
 - x is the input (parameters)
 - $h(x)$ is the solution (starting times, etc.)
• $|x|$ defined as the length of some encoding of x
 - usually, binary encoding: integer a encoded in $|a|_2 = \log_2 a$ bits
• Complexity of an algorithm computing $h(x)$ for all x: running time
• An algorithm is called polynomial, if it computes $h(x)$ for all x it at most $O(p(|x|_2))$ steps, where P is a polynomial
• A problem is called polynomial if it can be solved by a polynomial algorithm

Pseudo-polynomial problems
If we replace the binary encoding by an unary encoding (integer a encoded with size $|a|_1 = O(a)$): we can solve more difficult problems in time polynomial with $|x|$.
• An algorithm is pseudo-polynomial if it solves the problem for all x with a number of steps at most $O(p(x))$ steps, where P is a polynomial.

Example:
An algorithm for a scheduling problem, whose running time is $O(p_j)$ is pseudo-polynomial.

P and NP
• Decision problems
• To each optimization problem, we can define a decision problem
• P: class of polynomially solvable decision problems
• NP: class of polynomially checkable decision problems
 for each "yes"-answer, a certificate exists which can be used to check the answer in polynomial time
• Decisions problems of scheduling problems belongs to NP

• $P \subseteq NP$. $P = NP$ still open

NP-complete problems
• a decision problem Q is NP-complete if all problems in NP can be polynomially reduced to Q
• if any single NP-complete decision problem Q could be solved in polynomial time then we would have $P = NP$.
• To prove that a problem is NP-complete: reduction to a well-known NP-complete problem

• Weakly NP-complete (or binary NP-complete): strongly depends on the binary coding of the input. If unary coding is used, the problem might become polynomial (pseudo-polynomial).

– 2-Partition vs 3-Partition

How to solve NP-complete problems?

Exact methods:
• Mixed integer linear programming/Constraint Programming
• Dynamic programming
• Branch and bound methods (A^*)

(usually limited to small or simple instances)

Approximate methods:
• Heuristics (no guarantee)
• Approximation algorithms

Approximation algorithms
Consider a minimization problem. On a given instance x,

$f(x)$: value of the objective in the solution given by the algorithm
$f^*(x)$: optimal value of the objective

An algorithm is a ρ-approximation if for any instance x, $f(x) \leq \rho \times f^*(x)$

APX class: problems for which there exists a polynomial-time ρ-approximation algorithm, for some $\rho > 0$

An algorithm is a $PTAS$ (Polynomial Time Approximation Scheme) if for any instance x and any $\epsilon > 0$, the algorithm computes a solution $f(x)$ with $f(x) \leq (1 + \epsilon) \times f^*(x)$ in time polynomial in the problem size.

An algorithm is a $FPTAS$ (Fully Polynomial Time Approximation Scheme) if for any instance and any $\epsilon > 0$, it produces a solution $f(x)$ such that $f(x) \leq (1 + \epsilon) \times f^*(x)$, in time polynomial in the problem size and in $1/\epsilon$.
4.2 Graham list scheduling approximation

A list scheduling algorithm is a heuristic which never leaves a processor idle when there is some free tasks to schedule.

- Theorem: Any list scheduling heuristic gives a schedule, whose makespan is at most \(2 - \frac{1}{p}\) times the optimal.

- Lemma: there exists a precedence path \(\Psi\) such that
 \[\text{Idle} \leq (p - 1) \times w(\Psi)\]
 - Consider the task with maximum termination time \(T_1\)
 - Let \(t_1\) be the last moment before \(\sigma(T_1)\) when a processor is not active
 - Since a processor is inactive at time \(t_1\), there exists a task \(T_2\), finishing at time \(t_1\) (since at time \(t_1\), a new task can be started on the idle processor, freed by the completion of \(T_2\). \(T_2\) is an ancestor of \(T_1\), otherwise \(T_1\) would be free and scheduled at time \(t_1\) (or before).
 - We iterate the processor and build up a path of dependent tasks \(\Psi\).
 - All idle times occur during the processing of the tasks on this dependency path, and there are at most \(p - 1\) processors, which concludes the proof of the lemma.

- Notice that \(pC_{\text{max}} = \text{Idle} + \text{Seq}\), with \(\text{Seq} = \sum w(T_i)\)
- We also have \(\text{Seq} \leq pC_{\text{opt}}\), thus \(C_{\text{max}} \leq ((p - 1) \times w(\Psi)) + (pC_{\text{opt}})\)
- We also have \(w(\Psi) \leq C_{\text{opt}}\), qed.

4.3 The approximation bound is tight

Let \(K > 0\) be some large integer. Consider the following problem:

- \(p - 1\) tasks \(T_1, \ldots T_{p-1}\) of weight \(K(p - 1)\),
- a task \(T_p\) of weight 1,
- \(p\) tasks \(T_{p+1}, \ldots, T_{2p}\) of weight \(K\)
- one task \(T_{2p+1}\) of weight \(K(p - 1)\).
as described by the following DAG:

\[
T_1^{(K(p-1))} \quad T_2^{(K(p-1))} \quad \ldots \quad T_{p-1}^{(K(p-1))}
\]

A list scheduling heuristic will schedule all tasks \(T_1, \ldots, T_p \) at time 0. Then \(p - 1 \) of the tasks of weight \(K \) will be scheduled on the processor holding \(T_p \), and the last one on another processor. The last task then starts at time \(K(p - 1) + K \), and last for \(K(p - 1) \) time-units, reaching a makespan of:

\[
C_{\text{list max}} = Kp + K(p - 1) = K(2p - 1)
\]

In the optimal schedule, we delay the processing of tasks \(T_1, \ldots, T_{p-1} \) to the end: a single processor processes \(T_p \), then all processors process one task of weight \(K \), then all tasks of weight \(K(p - 1) \) are processed in parallel. This gives a makespan of

\[
C_{\text{opt max}} = 1 + K + K(p - 1) = Kp + 1
\]

\[
\frac{C_{\text{list max}}}{C_{\text{opt max}}} \geq \frac{K(2p - 1)}{Kp + 1} = \frac{2p - 1}{p} - \frac{2p - 1}{p(Kp + 1)} = (2 - \frac{1}{p}) - o(1/K).
\]

5 More objectives, example of \(1||\sum U_i \), Moore-Hodgson algorithm

Other objectives in the Graham notations:

- Using \(C_i \)
 - Total flow time: \(\sum_{j=1}^{n} C_j \)
 - Weighted (total) flow time: \(\sum_{j=1}^{n} w_j C_j \)

- With due dates \(d_j \) (appears in the job characteristics):
 - lateness: \(L_j = C_j - d_j \)
 - tardiness: \(T_j = \max\{0, C_j - d_j\} \)
 - unit penalty: \(U_j = 0 \) if \(C_j \leq d_j \), 1 otherwise
which gives the following objectives:

- maximum lateness: \(L_{\text{max}} = \max L_j \)
- total tardiness \(\sum T_j \)
- total weighted tardiness \(\sum w_j T_j \)
- number of late activities \(\sum U_j \)
- weighted number of late activities \(\sum w_j U_j \)

- With release dates \(r_j \): flow becomes \(C_j - r_j \) (online, stretch)

One machine, minimize the number of late jobs

Example:

<table>
<thead>
<tr>
<th>job</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_j)</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>(p_j)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Tasks are sorted by non-decreasing \(d_i : d_1 \leq \cdots \leq d_n \)

- \(A := \emptyset \)
- For \(i = 1 \ldots n \)
 - If \(p(A) + p_i \leq d_i \), then \(A := A \cup \{i\} \)
 - Otherwise,
 * Let \(j \) be the longest task in \(A \cup \{i\} \)
 * \(A := A \cup \{i\} - \{j\} \)

Optimal solution: \(A = \{2, 3, 5\} \)

Proof.

- **Feasibility:**
 We first prove that the algorithm produces a feasible schedule:
 - By induction: if no task is rejected, ok
 - Assume that \(A \) is feasible, prove that \(A \cup \{i\} - \{j\} \) is feasible too
 * all tasks in \(A \) before \(j \): no change
 * all tasks in \(A \) after \(j \): shorter completion
 * task \(i \): let \(k \) be the last task in \(A \): \(p(A) \leq d_k \)
 since task \(j \) is the longest: \(p_i \leq p_j \), thus \(p(A \cup \{i\} - \{j\}) \leq p(A) \leq d_k \leq d_i \)
 (because tasks are sorted)
 That is, the new task \(i \) terminates earlier than \(k \) before \(j \) was rejected.
 Since \(d_i \geq d_k \), this is enough.

- **Optimality:**

Assume that there exist an optimal set \(O \) different from the set \(A_f \) output by the Moore-Hodgson algorithm
Let j be the first task rejected by the algorithm

We prove that there exists an optimal solution without j

We consider the set $A = \{1, \ldots, i - 1\}$ at the moment when task j is rejected from A, and i the task being added at this moment

$A + i$ is not feasible, thus O does not contain $\{1, \ldots, i\}$

Let k be a task of $\{1, \ldots, i\}$ which is not in O

Since the algorithm rejects the longest task, $p(O \cup \{k\} - \{j\}) \leq p(O)$, and by the same arguments than before, $O \cup \{k\} - \{j\}$ is feasible

We can suppress j from the problem instance, without modifying the behavior of the algorithm or the objective

We can repeat this process, until we get the set of tasks scheduled by the algorithm.

\[\square\]

6 Shop and Job-Shop problems, and other variants

6.1 Shop scheduling

Jobs consist in several operations, to be processed on different resources.

General shop scheduling problem:

- jobs $J_1, \ldots J_n$
- processors P_1, \ldots, P_m
- J_j consists in n_j operation $O_{1,j}, \ldots, O_{n_j,j}$
- two operations of the same job cannot be processed at the same time
- a processor can process one operation at a time
- operations $O_{i,j}$ has processing time $p_{i,j}$ and makes use of processor $\mu_{i,j}$
- arbitrary precedence pattern

6.2 Job-Shop scheduling problem

- chain of precedence constraints:
 \[
 O_{1,j} \rightarrow O_{2,j} \rightarrow \cdots \rightarrow O_{n_j,j}
 \]

Flow-shop scheduling problem:

- special job-shop scheduling problem
\[n_j = m \text{ for all } j \text{, and } \mu_{i,j} = P_i \text{ for all } i, j: \]
operation \(O_{i,j} \) must be processed by \(P_i \)

open-shop scheduling problem:

- like a flow-shop, but no precedence constraints

Graham notations:

- J job-shop
- F flow-shop
- O open-shop

6.3 Other variants

Other job characteristics in Graham notation:

- \(p_j = 1 \) or \(p_j = p \) or \(p_j \in 1, 2 \): restricted processing times
- prec: arbitrary precedence constraints
- intree: (outtree) intree (or outtree) precedences
- chains: chain precedences
- series-parallel: a series-parallel precedence graph

Other types of scheduling problems, that we will discover in the next lectures:

- Online problems
 - contrarily to offline, information about future jobs is not known in advance
 - competitive ratio: ratio to the optimal offline algorithm

- Distributed scheduling
 - use only local information

- Multi-criteria scheduling
 - several objectives to optimize simultaneously
 - and/or several users, link with game theory

- Cyclic scheduling
 - infinite but regular pattern of tasks