
Scheduling
Lecture 1: Introduction

Loris Marchal

1 My first scheduling problem

1.1 Definition of scheduling

• allocation of limited resources to activities over time

• activities : tasks in computer environment, steps of a construction project, opera-
tions in a production process, lectures at the University, etc.

• resources : processors, workers, machines, lecturers, rooms, etc.

• objective: minimize total time, energy consumption, average service time

Many variations on the model, on the resource/activity interaction and on the objec-
tive.

1.2 Small scheduling problem, to introduce the vocabulary

• n jobs (or tasks) j = 1, . . . n,

• r renewable resources i = 1, . . . , r

• Rk: amounts of resource k available at any time

• activity j processed for pj time units, using an amount rj,k of resource k

• Integer numbers

Objective: find starting time Sj (or σ(j)) for each activity, such that

• At each time, the total resource demand is less than (or equal to) the resource
availability for each resource

• Objective: Makespan Cmax = maxCj is minimized, with Cj = Sj + pj

• S defines a schedule

1

• S is called feasible if all resource constraints are fulfilled

Exemples:

• Road construction, resource 1 is the number of available trucks, and resource 2 is
the number of available caterpillars (or excavators). Jobs involve a given number
of each machine.

• 2 resources with R1 = 5 and R2 = 7

• 4 jobs

j 1 2 3 4
pj 4 3 5 8
rj,1 2 1 2 2
rj,2 3 5 2 4 (a) A feasible schedule

-

-1

1

2

2

3

3

4

4

1

1

0 4 7 12 15

R1 = 5

R2 = 7

(b) An optimal schedule

-

-2

2

3

3

4

4

1

11

1

0 4 7 12

R1 = 5

R2 = 7

NB: these figures are called Gantt charts.

1.3 Common additionnal constraints

• precedence: j cannot start before i is completed
precendence constraints are often modeled as a Directed Acyclic Graph (concept of
predecessor and successor in this graph)

• communication delays di,j is the delay between the completion of i and the starting
time of j

2 Processor scheduling & Graham notation

Classes of scheduling problems can be specified in terms of the three-field classification
α|β|γ where

• α specifies the machine environment,

• β specifies the job characteristics,

• γ and describes the objective function(s).

We will illustrate this notation on all following scheduling problems.

2

3 First example, with new objective, 1||
∑
wiCi, poly-

nomial (Smith-ratio)

• 1 machine

• no constraints on tasks (length pi)

• Objective: weighted sum of completion times

• Intuitions:

– put high weight first

– put longer tasks last

• ⇒ Order task by non-increasing Smith ratio: w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn

Proof:

• Consider a different optimal schedule S

• Let i and j be two consecutive tasks in this schedule such that wi/pi < wj/pj

• contribution of these tasks in S:
Si = (wi + wj)(t+ pi) + wjpj

• contribution of these tasks if switched:
Sj = (wi + wj)(t+ pj) + wipi

• we have
Si−Sj

wiwj
= pi

wi
− pj

wj

Thus we decrease the objective by switching these tasks.

4 More machines, example of P |prec|Cmax, NP-completeness

and Graham 2-approximation algorithm

More machines in the Graham notation:

• P parallel identical

• Q uniform machines
each machine has a given speed speed i, and all jobs have a size sizej, the processing
time is given by sizej/speed i

• R unrelated machines
the processing time of job j on machine i is given by ti,j, without any other con-
straints

3

• P: identical parallel machines

• prec: precedence constrants between tasks

• Cmax: minimizing the maximum makespan

Rersults:

• NP-complete

• reduction to 2-partition (or 3-partition, → unary NP-complete)

4.1 Recall on NP-completeness

Polynomial problems:

• a solution to a scheduling problem is a function h:

– x is the input (parameters)

– h(x) is the solution (starting times, etc.)

• |x| defined as the length of some encoding of x

– usually, binary encoding: integer a encoded in |a|2 = log2 a bits

• Complexity of an algorithm computing h(x) for all x: running time

• An algorithm is called polynomial, if it computes h(x) for all x it at most O(p(|x|2))
steps, where P is a polynomial

• A problem is called polynomial if it can be solved by a polynomial algorithm

Pseudo-polynomial problems
If we replace the binary encoding by an unary encoding (integer a encoded with size

|a|1 = O(a)): we can solve more difficult problems in time polynomial with |x|.

• An algorithm is pseudo-polynomial if it solves the problem for all x with a number
of steps at most O(p(x)) steps, where P is a polynomial.

Example:
An algorithm for a scheduling problem, whose running time is O(pj) is pseudo-polynomial.

P and NP

• Decision problems

• To each optimization problem, we can define a decision problem

• P: class of polynomially solvable decision problems

• NP: class of polynomially checkable decision problems
for each ”yes”-answer, a certificate exists which can be used to check the answer in
polynomial time

4

• Decisions problems of scheduling problems belongs to NP

• P ⊆ NP . P
?
= NP still open

NP-complete problems

• a decision problem Q is NP-complete if all problems in NP can be polynomially
reduced to Q

• if any single NP-complete decision problem Q could be solved in polynomial time
then we would have P = NP.

• To prove that a problem is NP-complete: reduction to a well-known NP-complete
problem

• Weakly NP-complete (or binary NP-complete): strongly depends on the binary
coding of the input. If unary coding is used, the problem might become polynomial
(pseudo-polynomial).

– 2-Partition vs 3-Partition

How to solve NP-complete problems ?
Exact methods:

• Mixed integer linear programming/Constraint Programming

• Dynamic programming

• Branch and bound methods (A∗)

(usually limited to small or simple instances)

Approximate methods:

• Heuristics (no guarantee)

• Approximation algorithms

Approximation algorithms
Consider a minimization problem. On a given instance x,

f(x): value of the objective in the solution given by the algorithm
f ∗(x): optimal value of the objective

An algorithm is a ρ-approximation if for any instance x , f(x) ≤ ρ× f ∗(x)

APX class: problems for which there exists a polynomial-time ρ-approximation algo-
rithm, for some ρ > 0

An algorithm is a PTAS (Polynomial Time Approximation Scheme) if for any instance
x and any ε > 0, the algorithm computes a solution f(x) with f(x) ≤ (1 + ε)× f ∗(x) in
time polynomial in the problem size.

An algorithm is a FPTAS (Fully Polynomial Time Approximation Scheme) if for any
instance and any ε > 0, it produces a solution f(x) such that f(x) ≤ (1 + ε)× f ∗(x), in
time polynomial in the problem size and in 1ε.

5

4.2 Graham list scheduling approximation

A list scheduling algorithm is a heuristic which never leaves a processor idle when there
is some free tasks to schedule.

• Theorem: Any list scheduling heuristic gives a schedule, whose makespan is at most
2− 1/p times the optimal.

• Lemma: there exists a precedence path Ψ such that
Idle ≤ (p− 1)× w(Ψ)

– Consider the task with maximum termination time T1

– Let t1 be the last moment before σ(T1) when a processor is not active

– Since a processor is inactive at time t1, there exists a task T2, finishing at time
t1 (since at time t1, a new task can be started on the idle processor, freed by
the completion of T2). T2 is an ancestor of T1, otherwise T1 would T1 would
be free and scheduled at time t1 (or before).

– We iterate the processor and build up a path of dependent tasks Ψ.

– All idle times occur during the processing of the tasks on this dependency
path, and there are at most p− 1 processors, which concludes the proof of the
lemma.

• Notice that pCmax = Idle + Seq, with Seq =
∑
w(Ti)

• We also have Seq ≤ pCopt
max, thus Cmax ≤

(
(p− 1)× w(Ψ)

)
+
(
pCopt

max

)
• We also have w(Ψ) ≤ Copt

max, qed.

4.3 The approximation bound is tight

Let K > 0 be some large integer. Consider the following problem:

• p− 1 tasks T1, . . . Tp−1 of weight K(p− 1),

• a task Tp of weight 1,

• p tasks Tp+1, . . . , T2p of weight K

• one task T2p+1 of weight K(p− 1).

6

as discribed by the following DAG:

T
(K(p−1))
1 T

(K(p−1))
2 · · · T

(K(p−1))
p−1

T
(1)
p

T
(K)
p+1 T

(K)
p+2 T

(K)
2p· · ·

T
(K(p−1))
2p+1

A list scheduling heuristic will schedule all tasks T1, . . . , Tp at time 0. Then p − 1 of
the tasks of weight K will be scheduled on the processor holding Tp, and the last one on
another processor. The last task then starts at time K(p− 1) +K, and last for K(p− 1)
time-units, reaching a makespan of:

C list
max = Kp+K(p− 1) = K(2p− 1)

In the optimal schedule, we delay the processing of tasks T1, . . . , Tp−1 to the end: a
single processor processes Tp, then all processors process one task of weight K, then all
tasks of weight K(p− 1) are processed in parallel. This gives a makespan of

Copt
max = 1 +K +K(p− 1) = Kp+ 1

C list
max

Copt
max

>
K(2p− 1)

Kp+ 1
=

2p− 1

p
− 2p− 1

p(Kp+ 1)
= (2− 1

p
)− o(1/K).

5 More objectives, example of 1||
∑
Ui, Moore-Hodgson

algorithm

Other objectives in the Graham notations:

• Using Ci

– Total flow time:
∑n

j=1Cj

– Weighted (total) flow time:
∑n

j=1wjCj

• With due dates dj (appears in the job characteristics):

– lateness : Lj = Cj − dj
– tardiness : Tj = max{0, Cj − dj}
– unit penalty : Uj = 0 if Cj ≤ dj, 1 otherwise

7

wich gives the following objectives:

– maximum lateness: Lmax = maxLj

– total tardiness
∑
Tj

– total weighted tardiness
∑
wjTj

– number of late activities
∑
Uj

– weighted number of late activities
∑
wjUj

• With release dates rj: flow becomes Cj − rj
(online, stretch)

One machine, minimize the number of late jobs

Example:
job 1 2 3 4 5
dj 6 7 8 9 11
pj 4 3 2 5 6

Tasks are sorted by non-decreasing di : d1 ≤ · · · ≤ dn

• A := ∅

• For i = 1 . . . n

– If p(A) + pi ≤ di, then A := A ∪ {i}
– Otherwise,

∗ Let j be the longest task in A ∪ {i}
∗ A := A ∪ {i} − {j}

Optimal solution : A = {2, 3, 5}

Proof. • Feasibility:
We first prove that the algorithm produces a feasible schedule:

– By induction: if no task is rejected, ok

– Assume that A is feasible, prove that A ∪ {i} − {j} is feasible too

∗ all tasks in A before j: no change

∗ all tasks in A after j: shorter completion

∗ task i: let k be the last task in A: p(A) ≤ dk
since task j is the longest: pi ≤ pj, thus p(A∪{i}−{j}) ≤ p(A) ≤ dk ≤ di
(because tasks are sorted)
That is, the new task i terminates earlier than k before j was rejected.
Since di ≥ dk, this is enough.

• Optimality:

Assume that there exist an optimal set O different from the set Af output by the
Moore-Hodgson algorithm

8

– Let j be the first task rejected by the algorithm

– We prove that there exists an optimal solution without j

– We consider the set A = {1, . . . , i− 1} at the moment when task j is rejected
from A, and i the task being added at this moment

– A+ i is not feasible, thus O does not contain {1, . . . , i}
– Let k be a task of {1, . . . , i} which is not in O

– Since the algorithm rejects the longest task, p(O ∪ {k} − {j}) ≤ p(O), and by
the same arguments than before, O ∪ {k} − {j} is feasible

– We can suppress j from the problem instance, without modifying the behavior
of the algorithm or the objective

We can repeat this process, until we get the set of tasks scheduled by the algorithm.

6 Shop and Job-Shop problems, and other variants

6.1 Shop scheduling

Jobs consist in several operations, to be processed on different resources.

General shop scheduling problem:

• jobs J1, . . . Jn

• processors P1, . . . , Pm

• Jj consists in nj operation O1,j, . . . , Onj ,j

• two operations of the same job cannot be processed at the same time

• a processor can process one operation at a time

• operations Oi,j has processing time pi,j and makes use of processor µi,j

• arbitrary precedence pattern

6.2 Job-Shop scheduling problem

• chain of precedence constraints:

O1,j → O2,j → · · · → Onj ,j

flow-shop scheduling problem:

• special job-shop scheduling problem

9

• nj = m for all j, and µi,j = Pi for all i, j:
operation Oi,j must be processed by Pi

open-shop scheduling problem:

• like a flow-shop, but no precedence constraints

Graham notations:

• J job-shop

• F flow-shop

• O open-shop

6.3 Other variants

Other job characteristics in Graham notation:

• pj = 1 or pj = p or pj ∈ 1, 2: restricted processing times

• prec : arbitrary precedence constraints

• intree: (outtree) intree (or outtree) precedences

• chains: chain precedences

• series-parallel: a series- parallel precedence graph

Other types of scheduling problems, that we will discover in the next lectures:

• Online problems

– contrarily to offline, information about future jobs is not known in advance

– competitive ratio: ratio to the optimal offline algorithm

• Distributed scheduling

– use only local information

• Multi-criteria scheduling

– several objectives to optimize simultaneously

– and/or several users, link with game theory

• Cyclic scheduling

– infinite but regular pattern of tasks

10

	1 My first scheduling problem
	1.1 Definition of scheduling
	1.2 Small scheduling problem, to introduce the vocabulary
	1.3 Common additionnal constraints

	2 Processor scheduling & Graham notation
	3 First example, with new objective, 1||wi Ci, polynomial (Smith-ratio)
	4 More machines, example of P|prec|Cmax, NP-completeness and Graham 2-approximation algorithm
	4.1 Recall on NP-completeness
	4.2 Graham list scheduling approximation
	4.3 The approximation bound is tight

	5 More objectives, example of 1||Ui, Moore-Hodgson algorithm
	6 Shop and Job-Shop problems, and other variants
	6.1 Shop scheduling
	6.2 Job-Shop scheduling problem
	6.3 Other variants

