Scheduling Lecture 1: Introduction

Loris Marchal

1 My first scheduling problem

1.1 Definition of scheduling

- allocation of limited resources to activities over time
- *activities*: tasks in computer environment, steps of a construction project, operations in a production process, lectures at the University, etc.
- resources: processors, workers, machines, lecturers, rooms, etc.
- *objective*: minimize total time, energy consumption, average service time

Many variations on the model, on the resource/activity interaction and on the objective.

1.2 Small scheduling problem, to introduce the vocabulary

- n jobs (or tasks) $j = 1, \ldots n$,
- r renewable resources $i = 1, \ldots, r$
- R_k : amounts of resource k available at any time
- activity j processed for p_j time units, using an amount $r_{j,k}$ of resource k
- Integer numbers

Objective: find starting time S_j (or $\sigma(j)$) for each activity, such that

- At each time, the total resource demand is less than (or equal to) the resource availability for each resource
- Objective: Makespan $C_{\max} = \max C_j$ is minimized, with $C_j = S_j + p_j$
- S defines a schedule

• S is called *feasible* if all resource constraints are fulfilled

Exemples:

- Road construction, resource 1 is the number of available trucks, and resource 2 is the number of available caterpillars (or excavators). Jobs involve a given number of each machine.
- 2 resources with $R_1 = 5$ and $R_2 = 7$
- 4 jobs

NB: these figures are called Gantt charts.

1.3 Common additionnal constraints

- precedence: *j* cannot start before *i* is completed precendence constraints are often modeled as a Directed Acyclic Graph (concept of predecessor and successor in this graph)
- communication delays $d_{i,j}$ is the delay between the completion of i and the starting time of j

2 Processor scheduling & Graham notation

Classes of scheduling problems can be specified in terms of the three-field classification $\alpha|\beta|\gamma$ where

- α specifies the machine environment,
- β specifies the job characteristics,
- γ and describes the objective function(s).

We will illustrate this notation on all following scheduling problems.

3 First example, with new objective, $1 || \sum w_i C_i$, polynomial (Smith-ratio)

- 1 machine
- no constraints on tasks (length p_i)
- Objective: weighted sum of completion times
- Intuitions:
 - put high weight first
 - put longer tasks last
- \Rightarrow Order task by non-increasing Smith ratio: $w_1/p_1 \ge w_2/p_2 \ge \cdots \ge w_n/p_n$

Proof:

- Consider a different optimal schedule S
- Let i and j be two consecutive tasks in this schedule such that $w_i/p_i < w_j/p_j$
- contribution of these tasks in S: $S_i = (w_i + w_j)(t + p_i) + w_j p_j$
- contribution of these tasks if switched: $S_j = (w_i + w_j)(t + p_j) + w_i p_i$
- we have $\frac{S_i - S_j}{w_i w_j} = \frac{p_i}{w_i} - \frac{p_j}{w_j}$ Thus we decrease the objective by switching these tasks.

4 More machines, example of $P|prec|C_{max}$, NP-completeness and Graham 2-approximation algorithm

More machines in the Graham notation:

- P parallel identical
- Q uniform machines each machine has a given speed speed_i, and all jobs have a size size_j, the processing time is given by size_j/speed_i
- R unrelated machines the processing time of job j on machine i is given by $t_{i,j}$, without any other constraints

- P: identical parallel machines
- prec: precedence constrants between tasks
- C_{max} : minimizing the maximum makespan

Rersults:

- NP-complete
- reduction to 2-partition (or 3-partition, \rightarrow unary NP-complete)

4.1 Recall on NP-completeness

Polynomial problems:

- a solution to a scheduling problem is a function h:
 - -x is the input (parameters)
 - -h(x) is the solution (starting times, etc.)
- |x| defined as the length of some encoding of x
 - usually, binary encoding: integer a encoded in $|a|_2 = \log_2 a$ bits
- Complexity of an algorithm computing h(x) for all x: running time
- An algorithm is called polynomial, if it computes h(x) for all x it at most $O(p(|x|_2))$ steps, where P is a polynomial
- A problem is called polynomial if it can be solved by a polynomial algorithm

Pseudo-polynomial problems

If we replace the binary encoding by an unary encoding (integer *a* encoded with size $|a|_1 = O(a)$): we can solve more difficult problems in time polynomial with |x|.

• An algorithm is pseudo-polynomial if it solves the problem for all x with a number of steps at most O(p(x)) steps, where P is a polynomial.

Example:

An algorithm for a scheduling problem, whose running time is $O(p_j)$ is pseudo-polynomial. <u>P and NP</u>

- Decision problems
- To each optimization problem, we can define a decision problem
- P: class of polynomially solvable decision problems
- NP: class of polynomially *checkable* decision problems for each "yes"-answer, a certificate exists which can be used to check the answer in polynomial time

- Decisions problems of scheduling problems belongs to NP
- $P \subseteq NP$. $P \stackrel{?}{=} NP$ still open

NP-complete problems

- a decision problem Q is NP-complete if all problems in NP can be polynomially reduced to Q
- if any single NP-complete decision problem Q could be solved in polynomial time then we would have P = NP.
- To prove that a problem is NP-complete: reduction to a well-known NP-complete problem
- Weakly NP-complete (or binary NP-complete): strongly depends on the binary coding of the input. If unary coding is used, the problem might become polynomial (pseudo-polynomial).
 - 2-Partition vs 3-Partition

How to solve NP-complete problems ? Exact methods:

- Mixed integer linear programming/Constraint Programming
- Dynamic programming
- Branch and bound methods (A^*)

(usually limited to small or simple instances)

Approximate methods:

- Heuristics (no guarantee)
- Approximation algorithms

Approximation algorithms

Consider a minimization problem. On a given instance x, f(x): value of the objective in the solution given by the algorithm $f^*(x)$: optimal value of the objective

An algorithm is a ρ -approximation if for any instance x, $f(x) \leq \rho \times f^*(x)$

APX class: problems for which there exists a polynomial-time $\rho\text{-approximation}$ algorithm, for some $\rho>0$

An algorithm is a *PTAS* (Polynomial Time Approximation Scheme) if for any instance x and any $\epsilon > 0$, the algorithm computes a solution f(x) with $f(x) \leq (1 + \epsilon) \times f^*(x)$ in time polynomial in the problem size.

An algorithm is a *FPTAS* (Fully Polynomial Time Approximation Scheme) if for any instance and any $\epsilon > 0$, it produces a solution f(x) such that $f(x) \leq (1 + \epsilon) \times f^*(x)$, in time polynomial in the problem size and in 1ϵ .

4.2 Graham list scheduling approximation

A *list scheduling* algorithm is a heuristic which never leaves a processor *idle* when there is some *free* tasks to schedule.

- Theorem: Any list scheduling heuristic gives a schedule, whose makespan is at most 2 1/p times the optimal.
- Lemma: there exists a precedence path Ψ such that $Idle \leq (p-1) \times w(\Psi)$
 - Consider the task with maximum termination time T_1
 - Let t_1 be the last moment before $\sigma(T_1)$ when a processor is not active
 - Since a processor is inactive at time t_1 , there exists a task T_2 , finishing at time t_1 (since at time t_1 , a new task can be started on the idle processor, freed by the completion of T_2). T_2 is an ancestor of T_1 , otherwise T_1 would T_1 would be free and scheduled at time t_1 (or before).
 - We iterate the processor and build up a path of dependent tasks Ψ .
 - All idle times occur during the processing of the tasks on this dependency path, and there are at most p-1 processors, which concludes the proof of the lemma.
- Notice that $pC_{\text{max}} = \text{Idle} + \text{Seq}$, with $\text{Seq} = \sum w(T_i)$
- We also have Seq $\leq pC_{\max}^{\text{opt}}$, thus $C_{\max} \leq ((p-1) \times w(\Psi)) + (pC_{\max}^{\text{opt}})$
- We also have $w(\Psi) \leq C_{\max}^{\text{opt}}$, qed.

4.3 The approximation bound is tight

Let K > 0 be some large integer. Consider the following problem:

- p-1 tasks $T_1, \ldots T_{p-1}$ of weight K(p-1),
- a task T_p of weight 1,
- p tasks T_{p+1}, \ldots, T_{2p} of weight K
- one task T_{2p+1} of weight K(p-1).

as discribed by the following DAG:

A list scheduling heuristic will schedule all tasks T_1, \ldots, T_p at time 0. Then p-1 of the tasks of weight K will be scheduled on the processor holding T_p , and the last one on another processor. The last task then starts at time K(p-1) + K, and last for K(p-1) time-units, reaching a makespan of:

$$C_{\max}^{list} = Kp + K(p-1) = K(2p-1)$$

In the optimal schedule, we delay the processing of tasks T_1, \ldots, T_{p-1} to the end: a single processor processes T_p , then all processors process one task of weight K, then all tasks of weight K(p-1) are processed in parallel. This gives a makespan of

$$C_{\max}^{opt} = 1 + K + K(p-1) = Kp + 1$$

$$\frac{C_{\max}^{list}}{C_{\max}^{opt}} \ge \frac{K(2p-1)}{Kp+1} = \frac{2p-1}{p} - \frac{2p-1}{p(Kp+1)} = (2-\frac{1}{p}) - o(1/K).$$

5 More objectives, example of $1 || \sum U_i$, Moore-Hodgson algorithm

Other objectives in the Graham notations:

- Using C_i
 - Total flow time: $\sum_{j=1}^{n} C_j$
 - Weighted (total) flow time: $\sum_{j=1}^{n} w_j C_j$
- With due dates d_j (appears in the job characteristics):
 - lateness: $L_j = C_j d_j$
 - tardiness: $T_j = \max\{0, C_j d_j\}$
 - unit penalty: $U_j = 0$ if $C_j \le d_j$, 1 otherwise

wich gives the following objectives:

- maximum lateness: $L_{\max} = \max L_j$
- total tardiness $\sum T_j$
- total weighted tardiness $\sum w_j T_j$
- number of late activities $\sum U_j$
- weighted number of late activities $\sum w_j U_j$
- With release dates r_j : flow becomes $C_j r_j$ (online, stretch)

One machine, minimize the number of late jobs

	job	1	2	3	4	5	
Example:	d_j	6	7	8	9	11	
	p_j	4	3	2	5	6	

Tasks are sorted by non-decreasing $d_i : d_1 \leq \cdots \leq d_n$

- $A := \emptyset$
- For $i = 1 \dots n$
 - If $p(A) + p_i \leq d_i$, then $A := A \cup \{i\}$
 - Otherwise,
 - * Let j be the longest task in $A \cup \{i\}$
 - $* A := A \cup \{i\} \{j\}$

Optimal solution : $A = \{2, 3, 5\}$

Proof. • Feasibility:

We first prove that the algorithm produces a feasible schedule:

- By induction: if no task is rejected, ok
- Assume that A is feasible, prove that $A \cup \{i\} \{j\}$ is feasible too
 - * all tasks in A before j: no change
 - * all tasks in A after j: shorter completion
 - * task *i*: let *k* be the last task in *A*: $p(A) \leq d_k$ since task *j* is the longest: $p_i \leq p_j$, thus $p(A \cup \{i\} - \{j\}) \leq p(A) \leq d_k \leq d_i$ (because tasks are sorted) That is, the new task *i* terminates earlier than *k* before *j* was rejected. Since $d_i \geq d_k$, this is enough.
- Optimality:

Assume that there exist an optimal set O different from the set A_f output by the Moore-Hodgson algorithm

- Let j be the first task rejected by the algorithm
- We prove that there exists an optimal solution without j
- We consider the set $A = \{1, ..., i 1\}$ at the moment when task j is rejected from A, and i the task being added at this moment
- -A + i is not feasible, thus O does not contain $\{1, \ldots, i\}$
- Let k be a task of $\{1, \ldots, i\}$ which is not in O
- Since the algorithm rejects the longest task, $p(O \cup \{k\} \{j\}) \le p(O)$, and by the same arguments than before, $O \cup \{k\} \{j\}$ is feasible
- We can suppress j from the problem instance, without modifying the behavior of the algorithm or the objective

We can repeat this process, until we get the set of tasks scheduled by the algorithm. $\hfill\square$

6 Shop and Job-Shop problems, and other variants

6.1 Shop scheduling

Jobs consist in several operations, to be processed on different resources.

General shop scheduling problem:

- jobs $J_1, \ldots J_n$
- processors P_1, \ldots, P_m
- J_j consists in n_j operation $O_{1,j}, \ldots, O_{n_j,j}$
- two operations of the same job cannot be processed at the same time
- a processor can process one operation at a time
- operations $O_{i,j}$ has processing time $p_{i,j}$ and makes use of processor $\mu_{i,j}$
- arbitrary precedence pattern

6.2 Job-Shop scheduling problem

• chain of precedence constraints:

$$O_{1,j} \to O_{2,j} \to \dots \to O_{n_j,j}$$

flow-shop scheduling problem:

• special job-shop scheduling problem

• $n_j = m$ for all j, and $\mu_{i,j} = P_i$ for all i, j: operation $O_{i,j}$ must be processed by P_i

open-shop scheduling problem:

• like a flow-shop, but no precedence constraints

Graham notations:

- J job-shop
- F flow-shop
- O open-shop

6.3 Other variants

Other job characteristics in Graham notation:

- $p_j = 1$ or $p_j = p$ or $p_j \in 1, 2$: restricted processing times
- prec : arbitrary precedence constraints
- intree: (outtree) intree (or outtree) precedences
- chains: chain precedences
- series-parallel: a series- parallel precedence graph
- Other types of scheduling problems, that we will discover in the next lectures:
- Online problems
 - contrarily to offline, information about future jobs is not known in advance
 - competitive ratio: ratio to the optimal offline algorithm
- Distributed scheduling
 - use only local information
- Multi-criteria scheduling
 - several objectives to optimize simultaneously
 - and/or several users, link with game theory
- Cyclic scheduling
 - infinite but regular pattern of tasks