
Online scheduling

Frédéric Vivien

Frederic.Vivien@inria.fr

November 5, 2010

Outline

1 Introduction

2 Studying an algorithm: the FIFO case

3 Lower bound on the competitive ratio of any algorithm: the clair-
voyant max-stretch case

4 The non-clairvoyant case

5 How to derive a lower bound: the max-flow case with communi-
cations

Outline

1 Introduction

2 Studying an algorithm: the FIFO case

3 Lower bound on the competitive ratio of any algorithm: the clair-
voyant max-stretch case

4 The non-clairvoyant case

5 How to derive a lower bound: the max-flow case with communi-
cations

Offline vs. online algorithmics

Nature of the problem
Known

Objective function
Known

Characteristics of the instance
Known

Discovered during execution

beforehand

Characteristics of a job discovered
When the job is released When the job completes

Offline

(Clairvoyant) Online Non-clairvoyant online

Offline vs. online algorithmics

Nature of the problem
Known

Objective function
Known

Characteristics of the instance
Known Discovered during execution

beforehand

Characteristics of a job discovered
When the job is released When the job completes

Offline

(Clairvoyant) Online Non-clairvoyant online

Offline vs. online algorithmics

Nature of the problem
Known

Objective function
Known

Characteristics of the instance
Known Discovered during execution

beforehand Characteristics of a job discovered
When the job is released

When the job completes

Offline (Clairvoyant) Online

Non-clairvoyant online

Offline vs. online algorithmics

Nature of the problem
Known

Objective function
Known

Characteristics of the instance
Known Discovered during execution

beforehand Characteristics of a job discovered
When the job is released When the job completes

Offline (Clairvoyant) Online Non-clairvoyant online

Notation and hypotheses

Notation

I Jobs J1, ..., Jn
Job Jj arrives in the system at date rj
Job Jj has a weight (or a priority) wj
Job Jj has an execution time pj
∆ is the ratio of the largest to the shortest execution time

I Completion time of job Jj : Cj
Flow of job Jj : Fj = Cj − rj (time spent in the system)

Hypotheses

I Job may be preempted

I One machine (1 | pmtn | ???)

Evaluating the quality of an online schedule

An online algorithm has a competitive factor ρ if and only if

Whatever the set of jobs T1, ..., Tn

Online schedule cost(T1, ..., TN) ≤
ρ× Optimal off-line schedule cost(T1, ..., TN)

What should we optimize ?

I Makespan: maxj Cj

Time

I Average flow or response time:
∑

j(Cj − rj)

Inconvenient: starvation

I Maximum flow or maximum response time: maxj(Cj − rj)
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj)
Gives back some importance to short jobs.

Particular case of the stretch or slowdown:
wj=1/running time of the job on empty platform.

What should we optimize ?

I Makespan: maxj Cj

Schedule 2

Schedule 1

Time

I Average flow or response time:
∑

j(Cj − rj)

Inconvenient: starvation

I Maximum flow or maximum response time: maxj(Cj − rj)
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj)
Gives back some importance to short jobs.

Particular case of the stretch or slowdown:
wj=1/running time of the job on empty platform.

What should we optimize ?

I Makespan: maxj Cj
Arrival dates are not taken into account

I Average flow or response time:
∑

j(Cj − rj)
Inconvenient: starvation

I Maximum flow or maximum response time: maxj(Cj − rj)
No starvation. Favor long jobs. Worst-case optimization.

I Maximum weighted flow: maxj wj(Cj − rj)
Gives back some importance to short jobs.
Particular case of the stretch or slowdown:
wj=1/running time of the job on empty platform.

Outline

1 Introduction

2 Studying an algorithm: the FIFO case

3 Lower bound on the competitive ratio of any algorithm: the clair-
voyant max-stretch case

4 The non-clairvoyant case

5 How to derive a lower bound: the max-flow case with communi-
cations

FIFO competitiveness

Theorem

First come, first served is:

I optimal for the online minimization of max-flow

I ∆-competitive for the online minimization of sum-flow

I ∆-competitive for the online minimization of max-stretch

I ∆2-competitive for the online minimization of sum-stretch

FIFO competitiveness

Theorem

First come, first served is:

I optimal for the online minimization of max-flow

I ∆-competitive for the online minimization of sum-flow

I ∆-competitive for the online minimization of max-stretch

I ∆2-competitive for the online minimization of sum-stretch

FIFO is optimal for max-flow

Consider any instance and a schedule Θ s.t. there exists two jobs
executed consecutively: Ji and Jj with ri < rj and Ci ≥ Cj

Time

In schedule Θ′ we exchange the execution order of Ji and Jj

max
1≤k≤n

C ′k − rk = max{ max
1≤k≤n
k/∈{i,j}

Ck − rk, C ′i − ri, C ′j − rj}

C ′i − ri < Ci − ri and C ′j − rj = Ci − rj < Ci − ri

⇒ max
1≤k≤n

C ′k − rk ≤ max
1≤k≤n

Ck − rk

FIFO is optimal for max-flow

Consider any instance and a schedule Θ s.t. there exists two jobs
executed consecutively: Ji and Jj with ri < rj and Ci ≥ Cj

Time

In schedule Θ′ we exchange the execution order of Ji and Jj

max
1≤k≤n

C ′k − rk = max{ max
1≤k≤n
k/∈{i,j}

Ck − rk, C ′i − ri, C ′j − rj}

C ′i − ri < Ci − ri and C ′j − rj = Ci − rj < Ci − ri

⇒ max
1≤k≤n

C ′k − rk ≤ max
1≤k≤n

Ck − rk

FIFO competitiveness for max-stretch

Theorem

FIFO is ∆ competitive for maximum stretch minimization

This means that

1 FIFO has a competitive factor of ∆ (i.e., on no instance is
FIFO’s max-stretch more than ∆ that of the optimal solution)

2 This bound is tight (=cannot be improved)

Upper bound for max-stretch

Time

During [ri, Cl], FIFO exactly executes Ji, Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl. Then:

S∗ = max
j
S∗j ≥ S∗k =

C∗k − rk
pk

≥ Cl − rl
pk

=
Cl − rl
pl

pl
pk
≥ Sl ×

1

∆

∀l,Sl > S∗l ⇒ ∆× S∗ ≥ Sl

Upper bound for max-stretch

FIFO

Optimal Θ∗
Time

During [ri, Cl], FIFO exactly executes Ji, Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl. Then:

S∗ = max
j
S∗j ≥ S∗k =

C∗k − rk
pk

≥ Cl − rl
pk

=
Cl − rl
pl

pl
pk
≥ Sl ×

1

∆

∀l,Sl > S∗l ⇒ ∆× S∗ ≥ Sl

Upper bound for max-stretch

FIFO

Optimal Θ∗
Time

Cl > C∗lt

Any job Jl s.t. Sl > S∗l (⇔ Cl > C∗l)
t last time before Cl s.t. the processor was idle under FIFO.
t is the release date ri of some job Ji.

During [ri, Cl], FIFO exactly executes Ji, Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl. Then:

S∗ = max
j
S∗j ≥ S∗k =

C∗k − rk
pk

≥ Cl − rl
pk

=
Cl − rl
pl

pl
pk
≥ Sl ×

1

∆

∀l,Sl > S∗l ⇒ ∆× S∗ ≥ Sl

Upper bound for max-stretch

FIFO

Optimal Θ∗
Time

Cl > C∗lt

Any job Jl s.t. Sl > S∗l (⇔ Cl > C∗l)
During [ri, Cl], FIFO exactly executes Ji, Ji+1, ..., Jl−1, Jl.

As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl. Then:

S∗ = max
j
S∗j ≥ S∗k =

C∗k − rk
pk

≥ Cl − rl
pk

=
Cl − rl
pl

pl
pk
≥ Sl ×

1

∆

∀l,Sl > S∗l ⇒ ∆× S∗ ≥ Sl

Upper bound for max-stretch

FIFO

Optimal Θ∗
Time

Cl > C∗lt

Any job Jl s.t. Sl > S∗l (⇔ Cl > C∗l)
During [ri, Cl], FIFO exactly executes Ji, Ji+1, ..., Jl−1, Jl.
As C∗l < Cl, there is a job Jk, i ≤ k ≤ l − 1 s.t. C∗k ≥ Cl. Then:

S∗ = max
j
S∗j ≥ S∗k =

C∗k − rk
pk

≥ Cl − rl
pk

=
Cl − rl
pl

pl
pk
≥ Sl ×

1

∆

∀l,Sl > S∗l ⇒ ∆× S∗ ≥ Sl

The bound is tight

time0 ε

∆

1

Competitive ratio: 1+∆−ε
1+∆

∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε

The bound is tight

0 ε

∆

1

time

Max-stretch = 1+∆−ε
1

FIFO

Competitive ratio: 1+∆−ε
1+∆

∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε

The bound is tight

0 ε

∆

1

time

Max-stretch = 1+∆−ε
1

FIFO

Optimal Max-stretch = 1+∆
∆

Competitive ratio: 1+∆−ε
1+∆

∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε

The bound is tight

0 ε

∆

1

time

Max-stretch = 1+∆−ε
1

FIFO

Optimal Max-stretch = 1+∆
∆

Competitive ratio: 1+∆−ε
1+∆

∆

= ∆1+∆−ε
1+∆ = ∆− ε ∆

1+∆ ≥ ∆− ε

Outline

1 Introduction

2 Studying an algorithm: the FIFO case

3 Lower bound on the competitive ratio of any algorithm: the clair-
voyant max-stretch case

4 The non-clairvoyant case

5 How to derive a lower bound: the max-flow case with communi-
cations

Bound on the competitive ratio

Theorem

On one processor, any online scheduling algorithm with preemption
minimizing the max-stretch has a competitive ratio greater than
1
2∆
√

2−1, if the system receives at least jobs of three different sizes,
and if ∆ is the ratio between the size of the largest and the smallest
job.

Proof principle: by contradiction we assume that there exists an
algorithm and we build a sequence of jobs and a scenario to make
the algorithm fail.

Bound on the competitive ratio

Theorem

On one processor, any online scheduling algorithm with preemption
minimizing the max-stretch has a competitive ratio greater than
1
2∆
√

2−1, if the system receives at least jobs of three different sizes,
and if ∆ is the ratio between the size of the largest and the smallest
job.

Proof principle: by contradiction we assume that there exists an
algorithm and we build a sequence of jobs and a scenario to make
the algorithm fail.

The adversary

0

The adversary

0

δ

The adversary

0

δ

δ 2δ

Achievable stretch:
2δ − 0

δ
= 2.

The adversary

k

0

δ

δ 2δ

2δ − k

The adversary

0

δ

δ 2δ

2δ − k 2δ + (α− 2)k

α tasks of size k

The job T2+j arrives at time 2δ + (j − 2)k.

The adversary

0

δ

δ 2δ

2δ − k 2δ + (α− 2)k

α tasks of size k

The job T2+j arrives at time 2δ + (j − 2)k.

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

The job T2+j arrives at time 2δ + (j − 2)k.

Achievable stretch:
(2δ + jk)− (2δ + (j − 2)k)

k
= 2.

The adversary

0

δ

2δδ

2δ − k 2δ + (α− 2)k

α tasks of size k

In practice: we do not know what happens after 2δ − k.

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date).

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date).

The algorithm being 1
2∆
√

2−1-competitive, T1 and T2 must be com-

pleted at the latest at time: 2 · 1

2
∆
√

2−1 · δ = 2 · 1

2

(
δ

k

)√2−1

· δ

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

We want to forbid this case (each size-k job being executed at its
release date).

The algorithm being 1
2∆
√

2−1-competitive, T1 and T2 must be com-

pleted at the latest at time: 2 · 1

2
∆
√

2−1 · δ = 2 · 1

2

(
δ

k

)√2−1

· δ

We let α = d1 +k− 2δ
k e and then 2δ+ (α− 1)k ≥ 2 · 1

2

(
δ
k

)√2−1 · δ.

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

k + 1

We want to forbid this case (each size-k job being executed at its
release date).

The algorithm being 1
2∆
√

2−1-competitive, T1 and T2 must be com-

pleted at the latest at time: 2 · 1

2
∆
√

2−1 · δ = 2 · 1

2

(
δ

k

)√2−1

· δ

We let α = d1 +k− 2δ
k e and then 2δ+ (α− 1)k ≥ 2 · 1

2

(
δ
k

)√2−1 · δ.

The adversary

0

δ

2δδ

2δ − k 2δ + (α− 2)k

α tasks of size k

The adversary

0

δ

2δδ

2δ − k

α tasks of size k

2δ + (α− 2)k

β tasks of size 1

2δ + αk + β

The job T2+α+j arrives at time 2δ + (α− 1)k + (j − 1).

The adversary

0

δ

2δδ

2δ − k

α tasks of size k

2δ + (α− 2)k 2δ + αk + β

β tasks of size 1

Achievable stretch (off-line)

Stretch of each job of size k or 1 : 1.

Stretch of T1 or T2:
2δ + αk + β

δ

Optimal stretch ≤ 2δ + αk + β

δ

The adversary

0

δ

2δδ

2δ − k

α tasks of size k

2δ + (α− 2)k

β tasks of size 1

2δ + αk + β

Achievable stretch (online)

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

β tasks of size 1

2δ + αk + β

Achievable stretch (online)

The last completed job is of size k.

Stretch ≥ (2δ + αk + β)− (2δ + (α− 2)k)

k
= 2 +

β

k
.

The adversary

0

δ

δ 2δ

2δ − k

α tasks of size k

2δ + (α− 2)k

β tasks of size 1

2δ + αk + β

Achievable stretch (online)

The last completed job is of size 1.

Stretch ≥ (2δ + αk + β)− (2δ + (α− 1)k + (β − 1))

1
= k + 1.

The adversary

0

δ

2δδ

2δ − k

α tasks of size k

2δ + (α− 2)k

β tasks of size 1

2δ + αk + β

Achievable stretch (online)

Stretch ≥ min

{
2 +

β

k
, k + 1

}
We let: β = dk(k − 1)e

Then: stretch ≥ k + 1.

The adversary: summing things up

α =

⌈
1 + k − 2δ

k

⌉
β = dk(k − 1)e

Optimal stretch ≤ 2δ + αk + β

δ

Achieved stretch ≥ k + 1.

We let k = δ2−
√

2

Therefore k + 1 >

(
1

2
δ
√

2−1

)(
2δ + αk + β

δ

)

The adversary: summing things up

α =

⌈
1 + k − 2δ

k

⌉
β = dk(k − 1)e

Optimal stretch ≤ 2δ + αk + β

δ

Achieved stretch ≥ k + 1.

We let k = δ2−
√

2

Therefore k + 1 >

(
1

2
δ
√

2−1

)(
2δ + αk + β

δ

)

The adversary: summing things up

α =

⌈
1 + k − 2δ

k

⌉
β = dk(k − 1)e

Optimal stretch ≤ 2δ + αk + β

δ

Achieved stretch ≥ k + 1.

We let k = δ2−
√

2

Therefore k + 1 >

(
1

2
δ
√

2−1

)(
2δ + αk + β

δ

)

Outline

1 Introduction

2 Studying an algorithm: the FIFO case

3 Lower bound on the competitive ratio of any algorithm: the clair-
voyant max-stretch case

4 The non-clairvoyant case

5 How to derive a lower bound: the max-flow case with communi-
cations

FIFO competitiveness

Theorem

First come, first served is:

I optimal for the online minimization of max-flow

I ∆-competitive for the online minimization of sum-flow

I ∆-competitive for the online minimization of max-stretch

I ∆2-competitive for the online minimization of sum-stretch

Lower bound as a function of n

Theorem

There is no c-competitive preemptive online algorithm minimizing
the maximum stretch with c < n

Principle of the proof
I We suppose there exists an algorithm whose ratio c = n− ε
I n jobs are released at time 0
I Whatever the scheduler does, no job completes before time n
I Jobs are sorted by non-decreasing cumulative computation time

computed at time n: the (i+ 1)-th job is of size λi−1

I The maximum stretch is at least n (first job has size 1 and is
not completed at n)

I Optimal: execute jobs in Shortest Processing Time first order:∑i
j=1 λ

j−1

λi−1
=

λi − 1

λi−1(λ− 1)
−−−−→
λ→+∞

1

EquiPartition

Theorem

EquiPartition is n-competitive for the minimization of maximum
stretch.

However, EquiPartition is at best ∆+1
2+ln(∆) competitive (when FIFO

is ∆ competitive)

Outline

1 Introduction

2 Studying an algorithm: the FIFO case

3 Lower bound on the competitive ratio of any algorithm: the clair-
voyant max-stretch case

4 The non-clairvoyant case

5 How to derive a lower bound: the max-flow case with communi-
cations

The scheduling problem

The scheduler

I Gather the tasks

I Send them to the processors

The aim

Distribute identical tasks to the
processors, in order to process
these tasks

Network

Processors

Master

Tasks

The scheduling problem

Formally

I n tasks, m processors

I pj : processing time of a task on processor j

I cj : time to send a task from the master to the worker j

I ri: arrival date

I Ci: completion time
I The objective function:

I maximal flow: max Ci − ri

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

Idea:

I a fast processor with slow communications (c1 > 1)

I two identical and slow processors, with fast communications

I if only one task, one must choose the fast processor (c1 + p1 <
1 + p2)

Finding a lower bound on the competitiveness (1)

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0 τ

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

We look at time τ ≥ 1 to see what has happened. Three possibili-
ties:

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

We look at time τ ≥ 1 to see what has happened. Three possibilities:

1 Optimal : task on P1, max-flow ≥ c1 + p1.

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

We look at time τ ≥ 1 to see what has happened. Three possibilities:

1 Optimal : task on P1, max-flow ≥ c1 + p1.

2 Nothing done: max-flow ≥ τ + c1 + p1, ratio ≥ τ+c1+p1

c1+p1
.

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

We look at time τ ≥ 1 to see what has happened. Three possibilities:

1 Optimal : task on P1, max-flow ≥ c1 + p1.

2 Nothing done: max-flow ≥ τ + c1 + p1, ratio ≥ τ+c1+p1

c1+p1
.

3 Task send to P2, max-flow ≥ 1 + p2. Ratio ≥ 1+p2

c1+p1
.

We want to force the algorithm to process the first task on P1.

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

We look at time τ ≥ 1 to see what has happened. We will choose
τ , c1, p1 and p2 such that:

min

{
1 + p2

c1 + p1
,
τ + c1 + p1

c1 + p1

}
≥ ρ

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

At time τ we send two new tasks.
We consider all the possible cases.

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

At time τ we send two new tasks.
The two tasks are executed on P1:

max{c1 + p1,

max{max{c1, τ}+ c1 + p1, c1 + 2p1} − τ,
max{max{c1, τ}+ c1 + p1 + max{c1, p1}, c1 + 3p1} − τ}

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

At time τ we send two new tasks.
The first of the two tasks is executed on P2 (or P3), and the other
one on P1.

max{c1 + p1,

(max{c1, τ}+ c2 + p2)− τ,
max{max{c1, τ}+ c2 + c1 + p1, c1 + 2p1} − τ}

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

At time τ we send two new tasks.
The first of the two tasks is executed on P1, and the other one on
P2 (or P3).

max{c1 + p1,

max{max{c1, τ}+ c1 + p1, c1 + 2p1} − τ,
(max{c1, τ}+ c1 + c2 + p2)− τ}

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

At time τ we send two new tasks.
One of the two tasks is executed on P2 and the other one on P3.

max{c1+p1, (max{c1, τ}+c2+p2)−τ, (max{c1, τ}+c2+c2+p2)−τ}

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

At time τ we send two new tasks.
The case where both tasks are executed on P2 (or both on P3) is
worse than the previous one, therefore, we do not need to study it.

Finding a lower bound on the competitiveness (1)

τ

P3(1, p2)

P2(1, p2)

P1(c1, p1)

time0

At time τ we send two new tasks.
The (desired) optimal: the first task on P2, the second on P3, and
the third on P1.

max{c2+p2, (max{c2, τ}+c2+p2)−τ, (max{c2, τ}+c2+c1+p1)−τ}

Finding a lower bound on the competitiveness (2)

Lower bound on the competitiveness of any online algorithm:

min



τ+c1+p1
c1+p1

,

1+p2
c1+p1

,

min



max{c1 + p1,max{max{c1, τ} + c1 + p1, c1 + 2p1} − τ,
max{max{c1, τ} + c1 + p1 + max{c1, p1}, c1 + 3p1} − τ}

max{c1 + p1, (max{c1, τ} + c2 + p2)− τ,max{max{c1, τ} + c2 + c1 + p1, c1 + 2p1} − τ}
max{c1 + p1,max{max{c1, τ} + c1 + p1, c1 + 2p1} − τ, (max{c1, τ} + c1 + c2 + p2)− τ}
max{c1 + p1, (max{c1, τ} + c2 + p2)− τ, (max{c1, τ} + c2 + c2 + p2)− τ}

max{c2+p2,(max{c2,τ}+c2+p2)−τ,(max{c2,τ}+c2+c1+p1)−τ}

Problem : to find τ , c1, p1, and p2 (as c2 = 1) which maximizes
this lower bound.
Constraints : c1 + p1 < 1 + p2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution

2 Characterization of the shape of the optimal : τ < c1, p1 = 0,
etc.

3 New system:

min



τ+c1
c1

1+p2
c1

min



3c1 − τ
c1 + 1− τ + p2

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min



τ+c1
c1

1+p2
c1

c1+1−τ+p2
1+p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution
2 Characterization of the shape of the optimal : τ < c1, p1 = 0,

etc.

3 New system:

min



τ+c1
c1

1+p2
c1

min



3c1 − τ
c1 + 1− τ + p2

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min



τ+c1
c1

1+p2
c1

c1+1−τ+p2
1+p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution
2 Characterization of the shape of the optimal : τ < c1, p1 = 0,

etc.
3 New system:

min



τ+c1
c1

1+p2
c1

min



3c1 − τ
c1 + 1− τ + p2

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min



τ+c1
c1

1+p2
c1

c1+1−τ+p2
1+p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

Finding a lower bound on the competitiveness (3)

1 Numeric resolution
2 Characterization of the shape of the optimal : τ < c1, p1 = 0,

etc.
3 New system:

min



τ+c1
c1

1+p2
c1

min



3c1 − τ
c1 + 1− τ + p2

2c1 − τ + 1 + p2

c1 + 2 + p2 − τ
1+p2

= min



τ+c1
c1

1+p2
c1

c1+1−τ+p2
1+p2

4 Solution: c1 = 2(1 +
√

2), p2 =
√

2c1 − 1, τ = 2, ρ =
√

2.

	Introduction
	Studying an algorithm: the FIFO case
	Lower bound on the competitive ratio of any algorithm: the clairvoyant max-stretch case
	The non-clairvoyant case
	How to derive a lower bound: the max-flow case with communications

