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Summary: This tutorial provides an introduction into the area of polyno-
mial time approximation schemes. The underlying ideas, the main tools, and
the standard approaches for the construction of such schemes are explained in
great detail and illustrated in many examples and exercises. The tutorial also
discusses techniques for disproving the existence of approximation schemes.
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0.1 Introduction

All interesting problems are difficult to solve. This observation in particular
holds true in algorithm oriented areas like combinatorial optimization, math-
ematical programming, operations research, and theoretical computer science
where researchers often face computationally intractable problems. Since solv-
ing an intractable problem to optimality is a tough goal, these researchers usu-
ally resort to simpler suboptimal approaches that yield decent solutions, while
hoping that those decent solutions come at least close to the true optimum. An
approximation scheme is a suboptimal approach that provably works fast and
that provably yields solutions of very high quality. And that’s the topic of this
chapter: Approximation schemes. Let us illustrate this concept by an example
taken from the real world of Dilbert [1] cartoons.

Example 0.1.1 Let us suppose that you are the pointy-haired boss of the plan-
ning department of a huge company. The top-managers of your company have
decided that the company is going to generate gigantic profit by constructing a
spaceship that travels faster than light. Your department has to set up the sched-
ule for this project. And of course, the top-managers want you to find a schedule
that minimizes the cost incurred by the company. So you ask your experienced
programmers Wally and Dilbert to determine such a schedule. Wally and Dil-
bert tell you: “We can do that. Real programmers can do everything. And we
predict that the cost of the best schedule will be exactly one gazillion dollars.”
You say: “Sounds great! Wonderful! Go ahead and determine this schedule! I
will present it to our top-managers in the meeting tomorrow afternoon.” But
then Wally and Dilbert say: “We cannot do that by tomorrow afternoon. Real
programmers can do everything, but finding the schedule is going to take us
twenty-three and a half years.”

You are shocked by the incompetence of your employees, and you decide to
give the task to somebody who is really smart. So you consult Dogbert, the dog of
Dilbert. Dogbert tells you: “Call me up tomorrow, and I will have your schedule.
The schedule is going to cost exactly two gazillion dollars.” You complain:
“But Wally and Dilbert promised me that there is a schedule that only costs one
gazillion dollars. I do not want to spend an extra gazillion dollars on it!” And
Dogbert says: “Then please call me up again twenty-three and a half years from



0.1. INTRODUCTION 3

now. Or, you may call me up again the day after tomorrow, and I will have a
schedule for you that only costs one and a half gazillion dollars. Or, you may
call me up again the day after the day after tomorrow, and I will have a schedule
that only costs one and a third gazillion dollars.” Now you become really curious:
“What if I call you up exactly x days from now?” Dogbert: “Then I would have
found a schedule that costs at most 1 + 1/x gazillion dollars.”

Dogbert obviously has found an approximation scheme for the company’s tough
scheduling problem: Within reasonable time (which means: x days) he can come
fairly close (which means: at most a factor of 1+1/x away) to the true optimum
(which means: one gazillion dollars). Note that as x becomes very large, the
cost of Dogbert’s schedule comes arbitrarily close to the optimal cost. The goal
of this chapter is to give you a better understanding of Dogbert’s technique. We
will introduce you to the main ideas, and we will explain the standard tools for
finding approximation schemes. We identify three constructive approaches for
getting an approximation scheme, and we illustrate their underlying ideas by
stating many examples and exercises. Of course, not every optimization problem
has an approximation scheme – this just would be too good to be true. We will
explain how one can recognize optimization problems with bad approximability
behavior. Currently there are only a few tools available for getting such in-
approximability results, and we will discuss them in detail and illustrate them
with many examples.

The chapter uses the context of scheduling to present the techniques and
tools around approximation schemes, and all the illustrating examples and ex-
ercises are taken from the field of scheduling. However, the methodology is
general and it applies to all kinds of optimization problems in all kinds of areas
like networks, graph theory, geometry, etc.

——————————

In the following paragraphs we will give exact mathematical definitions of
the main concepts in the area of approximability. For these paragraphs and
also for the rest of the chapter, we will assume that the reader is familiar with
the basic concepts in computational complexity theory that are listed in the
Appendix Section 0.8.

An optimization problem is specified by a set I of inputs (or instances), by
a set Sol(I) of feasible solutions for every input I ∈ I, and by an objective
function c that specifies for every feasible solution σ in Sol(I) an objective
value or cost c(σ). We will only consider optimization problems in which all
feasible solutions have non-negative cost. An optimization problem may either
be a minimization problem where the optimal solution is a feasible solution with
minimum possible cost, or a maximization problem where the optimal solution
is a feasible solution with maximum possible cost. In any case, we will denote
the optimal objective value for instance I by Opt(I). By |I| we denote the
size of an instance I, i.e., the number of bits used in writing down I in some
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fixed encoding. Now assume that we are dealing with an NP-hard optimization
problem where it is difficult to find the exact optimal solution within polynomial
time in |I|. At the expense of reducing the quality of the solution, we can often
get considerable speed-up in the time complexity. This motivates the following
definition.

Definition 0.1.2 (Approximation algorithms)
Let X be a minimization (respectively, maximization) problem. Let ε > 0, and
set ρ = 1+ε (respectively, ρ = 1−ε). An algorithm A is called a ρ-approximation
algorithm for problem X, if for all instances I of X it delivers a feasible solution
with objective value A(I) such that

|A(I) − Opt(I)| ≤ ε · Opt(I). (0.1)

In this case, the value ρ is called the performance guarantee or the worst case
ratio of the approximation algorithm A.

Note that for minimization problems the inequality in (0.1) becomes A(I) ≤ (1+
ε)Opt(I), whereas for maximization problems it becomes A(I) ≥ (1−ε)Opt(I).
Note furthermore that for minimization problems the worst case ratio ρ = 1+ ε
is a real number greater or equal to 1, whereas for maximization problems
the worst case ratio ρ = 1 − ε is a real number from the interval [0, 1]. The
value ρ can be viewed as the quality measure of the approximation algorithm.
The closer ρ is to 1, the better the algorithm is. A worst case ratio ρ = 0
for a maximization problem, or a worst case ratio ρ = 106 for a minimization
problem are of rather poor quality. The complexity class APX consists of all
minimization problems that have a polynomial time approximation algorithm
with some finite worst case ratio, and of all maximization problems that have a
polynomial time approximation algorithm with some positive worst case ratio.

Definition 0.1.3 (Approximation schemes)
Let X be a minimization (respectively, maximization) problem.

• An approximation scheme for problem X is a family of (1 + ε)-approxi-
mation algorithms Aε (respectively, (1− ε)-approximation algorithms Aε)
for problem X over all 0 < ε < 1.

• A polynomial time approximation scheme (PTAS) for problem X is an
approximation scheme whose time complexity is polynomial in the input
size.

• A fully polynomial time approximation scheme (FPTAS) for problem X
is an approximation scheme whose time complexity is polynomial in the
input size and also polynomial in 1/ε.

Hence, for a PTAS it would be acceptable to have a time complexity proportional
to |I|2/ε; although this time complexity is exponential in 1/ε, it is polynomial
in the size of the input I exactly as we required in the definition of a PTAS.
An FPTAS cannot have a time complexity that grows exponentially in 1/ε,
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but a time complexity proportional to |I|8/ε3 would be fine. With respect to
worst case approximation, an FPTAS is the strongest possible result that we can
derive for an NP-hard problem. Figure 0.1 illustrates the relationships between
the classes NP, APX, P, the class of problems that are pseudo-polynomially
solvable, and the classes of problems that have a PTAS and FPTAS.
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Figure 0.1: Containment relations between some of the complexity classes dis-
cussed in this chapter.

A little bit of history. The first paper with a polynomial time approximation
algorithm for an NP-hard problem is probably the paper [26] by Graham from
1966. It studies simple heuristics for scheduling on identical parallel machines.
In 1969, Graham [27] extended his approach to a PTAS. However, at that time
these were isolated results. The concept of an approximation algorithm was
formalized in the beginning of the 1970s by Garey, Graham & Ullman [21].
The paper [45] by Johnson may be regarded as the real starting point of the
field; it raises the ‘right’ questions on the approximability of a wide range of
optimization problems. In the mid-1970s, a number of PTAS’s was developed
in the work of Horowitz & Sahni [42, 43], Sahni [69, 70], and Ibarra & Kim [44].
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The terms ‘approximation scheme’, ‘PTAS’, ‘FPTAS’ are due to a seminal paper
by Garey & Johnson [23] from 1978. Also the first in-approximability results
were derived around this time; in-approximability results are results that show
that unless P=NP some optimization problem does not have a PTAS or that
some optimization problem does not have a polynomial time ρ-approximation
algorithm for some specific value of ρ. Sahni & Gonzalez [71] proved that
the traveling salesman problem without the triangle-inequality cannot have a
polynomial time approximation algorithm with finite worst case ratio. Garey
& Johnson [22] derived in-approximability results for the chromatic number of
a graph. Lenstra & Rinnooy Kan [58] derived in-approximability results for
scheduling of precedence constrained jobs.

In the 1980s theoretical computer scientists started a systematic theoretical
study of these concepts; see for instance the papers Ausiello, D’Atri & Protasi
[11], Ausiello, Marchetti-Spaccamela & Protasi [12], Paz & Moran [65], and
Ausiello, Crescenzi & Protasi [10]. They derived deep and beautiful character-
izations of polynomial time approximable problems. These theoretical charac-
terizations are usually based on the existence of certain polynomial time com-
putable functions that are related to the optimization problem in a certain way,
and the characterizations do not provide any help in identifying these functions
and in constructing the PTAS. The reason for this is of course that all these
characterizations implicitly suffer from the difficulty of the P=NP question.

Major breakthroughs that give PTAS’s for specific optimization problems
were the papers by Fernandez de la Vega & Lueker [20] on bin packing, by
Hochbaum & Shmoys [37, 38] on the scheduling problem of minimizing the
makespan on an arbitrary number of parallel machines, by Baker [14] on many
optimization problems on planar graphs (like maximum independent set, mini-
mum vertex cover, minimum dominating set), and by Arora [5] on the Euclidean
traveling salesman problem. In the beginning of the 1990s, Papadimitriou &
Yannakakis [64] provided tools and ideas from computational complexity the-
ory for getting in-approximability results. The complexity class APX was born;
this class contains all optimization problems that possess a polynomial time
approximation algorithm with a finite, positive worst case ratio. In 1992 Arora,
Lund, Motwani, Sudan & Szegedy [6] showed that the hardest problems in APX
cannot have a PTAS unless P=NP. For an account of the developments that
led to these in-approximability results see the NP-completeness column [46] by
Johnson.

Organization of this chapter. Throughout the chapter we will distinguish
between so-called positive results which establish the existence of some approx-
imation scheme, and so-called negative results which disprove the existence of
good approximation results for some optimization problem under the assump-
tion that P 6=NP. Sections 0.2–0.5 are on positive results. First, in Section 0.2
we introduce three general approaches for the construction of approximation
schemes. These three approaches are then analyzed in detail and illustrated
with many examples in the subsequent three Sections 0.3, 0.4, and 0.5. In Sec-
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tion 0.6 we move on to methods for deriving negative results. At the end of each
of the Sections 0.3–0.6 there are lists of exercises. Section 0.7 contains a brief
conclusion. Finally, the Appendix Section 0.8 gives a very terse introduction
into computational complexity theory.

Some remarks on the notation. Throughout the chapter, we use the stan-
dard three-field α |β | γ scheduling notation (see for instance Graham, Lawler,
Lenstra & Rinnooy Kan [28] and Lawler, Lenstra, Rinnooy Kan & Shmoys
[55]). The field α specifies the machine environment, the field β specifies the
job environment, and the field γ specifies the objective function.

We denote the base two logarithm of a real number x by log(x), its natural
logarithm by ln(x), and its base b logarithm by logb(x). For a real number x,
we denote by ⌊x⌋ the largest integer less or equal to x, and we denote by ⌈x⌉
the smallest integer greater or equal to x. Note that ⌈x⌉ + ⌈y⌉ ≥ ⌊x + y⌋ and
⌊x⌋ + ⌊y⌋ ≤ ⌈x + y⌉ hold for all real numbers x and y. A d-dimensional vector
~v with coordinates vk (1 ≤ k ≤ d) will always be written in square brackets
as ~v = [v1, v2, . . . , vd]. For two d-dimensional vectors ~v = [v1, v2, . . . , vd] and
~u = [u1, u2, . . . , ud] we write ~u ≤ ~v if and only if uk ≤ vk holds for 1 ≤ k ≤ d.
For a finite set S, we denote its cardinality by |S|. For an instance I of a
computational problem, we denote its size by |I|, i.e., the number of bits that
are used for writing down I in some fixed encoding.

0.2 How to get positive results

Positive results in the area of approximation concern the design and analysis of
polynomial time approximation algorithms and polynomial time approximation
schemes. This section (and also the following three sections of this chapter)
concentrate on such positive results; in this section we will only outline the
main strategy. Assume that we need to find an approximation scheme for some
fixed NP-hard optimization problem X . How shall we proceed?

Let us start by considering an exact algorithm A that solves problem X
to optimality. Algorithm A takes an instance I of X , processes it for some
time, and finally outputs the solution A(I) for instance I. See Figure 0.2 for an
illustration. All known approaches to approximation schemes are based on the
diagram depicted in this figure. Since the optimization problem X is difficult
to solve, the exact algorithm A will have a bad (exponential) time complexity
and will be far away from yielding a PTAS or yielding an FPTAS. How can
we improve the behavior of such an algorithm and bring it closer to a PTAS?
The answer is to add structure to the diagram in Figure 0.2. This additional
structure depends on the desired precision ε of approximation. If ε is large, there
should be lots of additional structure. And as ε tends to 0, also the amount
of additional structure should tend to 0 and should eventually disappear. The
additional structure simplifies the situation and leads to simpler, perturbed and
blurred versions of the diagram in Figure 0.2.
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Figure 0.2: Algorithm A solves instance I and outputs the feasible solution
A(I).

Note that the diagram consists of three well-separated parts: The input
to the left, the output to the right, and the execution of the algorithm A in
the middle. And these three well-separated parts give us three ways to add
structure to the diagram. The three ways will be discussed in the following
three sections: Section 0.3 deals with the addition of structure to the input of
an algorithm, Section 0.4 deals with the addition of structure to the output of an
algorithm, and Section 0.5 deals with the addition of structure to the execution
of an algorithm.

0.3 Structuring the input

As first standard approach to the construction of approximation schemes we
will discuss the technique of adding structure to the input data. Here the main
idea is to turn a difficult instance into a more primitive instance that is easier
to tackle. Then we use the optimal solution for the primitive instance to get a
grip on the original instance. More formally, the approach can be described by
the following three-step procedure; see Figure 0.3 for an illustration.

(A) Simplify. Simplify instance I into a more primitive instance
I#. This simplification depends on the desired precision ε of ap-
proximation; the closer ε is to zero, the closer instance I# should
resemble instance I. The time needed for the simplification must be
polynomial in the input size.

(B) Solve. Determine an optimal solution Opt# for the simplified
instance I# in polynomial time.

(C) Translate back. Translate the solution Opt# for I# back
into an approximate solution App for instance I. This translation
exploits the similarity between instances I and I#. In the ideal case,
App will stay close to Opt# which in turn is close to Opt. In this
case we find an excellent approximation.
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Figure 0.3: Structuring the input. Instance I is very complicated and irregularly
shaped, and it would be difficult to go directly from I to its optimal solution
Opt. Hence, one takes the detour via the simplified instance I# for which it
is easy to obtain an optimal solution Opt#. Then one translates Opt# into
an approximate solution App for the original instance I. Let us hope that the
objective value of App is close to that of Opt!

Of course, finding the right simplification in step (A) is an art. If instance
I# is chosen too close to the original instance I, then I# might still be NP-
hard to solve to optimality. On the other hand, if instance I# is chosen too
far away from the original instance I, then solving I# will not tell us anything
about how to solve I. Under-simplifications (for instance, setting I# = I) and
over-simplifications (for instance, setting I# = ∅) are equally dangerous. The
following approaches to simplifying the input often work well.

Rounding. The simplest way of adding structure to the input is
to round some of the numbers in the input. For instance, we may
round all job lengths to perfect powers of two, or we may round
non-integral due dates up to the closest integers.

Merging. Another way of adding structure is to merge small pieces
into larger pieces of primitive shape. For instance, we may merge
a huge number of tiny jobs into a single job with processing time
equal to the processing time of the tiny jobs, or into a single job
with processing time equal to the processing time of the tiny jobs
rounded to some nice value.
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Cutting. Yet another way of adding structure is to cut away
irregular shaped pieces from the instance. For instance, we may
remove a small set of jobs with a broad spectrum of processing times
from the instance.

Aligning. Another way of adding structure to the input is to align
the shapes of several similar items. For instance, we may replace
thirty-six different jobs of roughly equal length by thirty-six identical
copies of the job with median length.

The approach of structuring the input has a long history that goes back
(at least) to the early 1970s. In 1974 Horowitz & Sahni [42] used it to attack
partition problems. In 1975 Sahni [69] applied it to the 0-1 knapsack problem,
and in 1976 Sahni [70] applied it to makespan minimization on two parallel
machines. Other prominent approximation schemes that use this approach can
be found in the paper of Fernandez de la Vega & Lueker [20] on bin packing,
and in the paper by Hochbaum & Shmoys [37] on makespan minimization on
parallel machines (the Hochbaum & Shmoys result will be discussed in detail
in Section 0.3.2). Arora [5] applied simplification of the input as a kind of
preprocessing step in his PTAS for the Euclidean traveling salesman problem,
and Van Hoesel & Wagelmans [77] used it to develop an FPTAS for the economic
lot-sizing problem.

In the following three sections, we will illustrate the technique of simplify-
ing the input data with the help of three examples. Section 0.3.1 deals with
makespan minimization on two identical machines, Section 0.3.2 deals with
makespan minimization on an arbitrary number of identical machines, and Sec-
tion 0.3.3 discusses total tardiness on a single machine. Section 0.3.4 contains
a number of exercises.

0.3.1 Makespan on two identical machines

The problem. In the scheduling problem P2 | |Cmax the input consists of n
jobs Jj (j = 1, . . . , n) with positive integer processing times pj . All jobs are
available at time zero, and preemption is not allowed. The goal is to schedule
the jobs on two identical parallel machines so as to minimize the maximum job
completion time, the so-called makespan Cmax. In other words, we would like to
assign roughly equal amounts of processing time to both machines (but without
cutting any of the jobs); the objective value is the total processing time on the
machine that finishes last. Throughout this section (and also in all subsequent
sections), the objective value of an optimal schedule will be denoted by Opt.

The problem P2 | |Cmax is NP-hard in the ordinary sense (Karp [48]).
We denote by psum =

∑n
j=1 pj the overall job processing time and by

pmax = maxn
j=1 pj the length of the longest job. It is easy to see that for

L = max{ 1
2psum, pmax}

L ≤ Opt. (0.2)

Indeed, pmax is a lower bound on Opt (the longest job must be entirely processed
on one of the two machines) and also 1

2psum is a lower bound on Opt (the overall
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job processing time psum must be assigned to the two machines, and even if we
reach a perfect split the makespan is still at least 1

2psum).
In this section, we will construct a PTAS for problem P2 | |Cmax by applying

the technique of simplifying the input. Later in this chapter we will meet this
problem again, once in Section 0.4.1 and once in Section 0.5.1: Since P2 | |Cmax

is very simple to state and since it is a very basic problem in scheduling, it is
the perfect candidate to illustrate all the three main approaches to approxima-
tion schemes. As we will see, the three resulting approximation schemes are
completely independent and very different from each other.

(A) How to simplify an instance. We translate an arbitrary instance I
of P2 | |Cmax into a corresponding simplified instance I#. The jobs in I are
classified into big jobs and small jobs ; the classification depends on a precision
parameter 0 < ε < 1.

• A job Jj is called big if it has processing time pj > εL. The instance I#

contains all the big jobs from instance I.

• A job Jj is called small if it has processing time pj ≤ εL. Let S denote
the total processing time of all small jobs in I. Then instance I# contains
⌊S/(εL)⌋ jobs of length εL. In a pictorial setting, the small jobs in I are
first glued together to give a long job of length S, and then this long job
is cut into lots of chunks of length εL (if the last chunk is strictly smaller
than εL, then we simply disregard it).

And this completes the description of the simplified instance I#. Why do we
claim that I# is a simplified version of instance I? Well, the big jobs in I are
copied directly into I#. For the small jobs in I, we imagine that they are like
sand; their exact size does not matter, but we must be able to fit all this sand
into the schedule. Since the chunks of length εL in I# cover about the same
space as the small jobs in I do, the most important properties of the small jobs
are also present in instance I#.

We want to argue that the optimal makespan Opt# of I# is fairly close to
the optimal makespan Opt of I: Denote by Si (1 ≤ i ≤ 2) the total size of all
small jobs on machine Mi in an optimal schedule for I. On Mi, leave every big
job where it is, and replace the small jobs by ⌈Si/(εL)⌉ chunks of length εL.
Since

⌈S1/(εL)⌉ + ⌈S2/(εL)⌉ ≥ ⌊S1/(εL) + S2/(εL)⌋ = ⌊S/(εL)⌋,
this process assigns all the chunks of length εL to some machine. By assign-
ing the chunks, we increase the load of Mi by at most ⌈Si/(εL)⌉εL − Si ≤
(Si/(εL) + 1) εL − Si = εL. The resulting schedule is a feasible schedule for
instance I#. We conclude that

Opt# ≤ Opt + εL ≤ (1 + ε)Opt. (0.3)

Note that the stronger inequality Opt# ≤ Opt will not in general hold. Con-
sider for example an instance that consists of six jobs of length 1 with ε = 2/3.
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Then Opt = L = 3, and all the jobs are small. In I# they are replaced by 3
chunks of length 2, and this leads to Opt# = 4 > Opt.

(B) How to solve the simplified instance. How many jobs are there in
instance I#? When we replaced the small jobs in instance I by the chunks in
instance I#, we did not increase the total processing time. Hence, the total
processing time of all jobs in I# is at most psum ≤ 2L. Since each job in I# has
length at least εL, there are at most 2L/(εL) = 2/ε jobs in instance I#. The
number of jobs in I# is bounded by a finite constant that only depends on ε
and thus is completely independent of the number n of jobs in I.

Solving instance I# is easy as pie! We may simply try all possible schedules!
Since each of the 2/ε jobs is assigned to one of the two machines, there are at
most 22/ε possible schedules, and the makespan of each of these schedules can
be determined in O(2/ε) time. So, instance I# can be solved in constant time!
Of course this ‘constant’ is huge and grows exponentially in 1/ε, but after all
our goal is to get a PTAS (and not an FPTAS), and so we do not care at all
about the dependence of the time complexity on 1/ε.

(C) How to translate the solution back. Consider an optimal schedule σ#

for the simplified instance I#. For i = 1, 2 we denote by L#
i the load of machine

Mi in this optimal schedule, by B#
i the total size of the big jobs on Mi, and by

S#
i the total size of the chunks of small jobs on Mi. Clearly, L#

i = B#
i + S#

i

and

S#
1 + S#

2 = εL · ⌊ S

εL
⌋ > S − εL. (0.4)

We construct the following schedule σ for I: Every big job is put onto the same
machine as in schedule σ#. How shall we handle the small jobs? We reserve an
interval of length S#

1 + 2εL on machine M1, and an interval of length S#
2 on

machine M2. We then greedily put the small jobs into these reserved intervals:
First, we start packing small jobs into the reserved interval on M1, until we
meet some small job that does not fit in any more. Since the size of a small job
is at most εL, the total size of the packed small jobs on M1 is at least S#

1 + εL.

Then the total size of the unpacked jobs is at most S − S#
1 − εL, and by (0.4)

this is bounded from above by S#
2 . Hence, all remaining unpacked small jobs

together will fit into the reserved interval on machine M2. This completes the
description of schedule σ for instance I.

Let us compare the loads L1 and L2 of the machines in σ to the machine
completion times L#

1 and L#
2 in schedule σ#. Since the total size of the small

jobs on Mi is at most S#
i + 2εL, we conclude that

Li ≤ B#
i +(S#

i +2εL) = L#
i +2εL ≤ (1+ε)Opt+2εOpt = (1+3ε)Opt.

(0.5)

In this chain of inequalities we have used L ≤ Opt from (0.2), and L#
i ≤

Opt# ≤ (1+ ε)Opt which follows from (0.3). Hence, the makespan of schedule
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σ is at most a factor 1+3ε above the optimum makespan. Since 3ε can be made
arbitrary close to 0, we finally have reached the desired PTAS for P2 | |Cmax.

Discussion. At this moment, the reader might wonder whether for designing
the PTAS, it is essential whether we round the numbers up or whether we
do round them down. If we are dealing with the makespan criterion, then it
usually is not essential. If the rounding is done in a slightly different way, all
our claims and all the used inequalities still hold in some slightly modified form.
For example, suppose that we had defined the number of chunks in instance I#

to be ⌈S/(εL)⌉ instead of ⌊S/(εL)⌋. Then inequality (0.3) could be replaced by
Opt# ≤ (1 + 2ε)Opt. All our calculations could by updated in an appropriate
way, and eventually they would yield a worst case guarantee of 1 + 4ε. This
again yields a PTAS. Hence, there is lots of leeway in our argument and there
is sufficient leeway to do the rounding in a different way.

The time complexity of our PTAS is linear in n, but exponential in 1/ε: The
instance I# is easily determined in O(n) time, the time for solving I# grows
exponentially with 1/ε, and translating the solution back can again be done
in O(n) time. Is this the best time complexity we can expect from a PTAS
for P2 | |Cmax? No, there is even an FPTAS (but we will have to wait till
Section 0.5.1 to see it).

How would we tackle makespan minimization on m ≥ 3 machines? First,
we should redefine L = max{ 1

mpsum, pmax} instead of L = max{ 1
2psum, pmax} so

that the crucial inequality (0.2) is again satisfied. The simplification step (A)
and the translation step (C) do not need major modifications. Exercise 0.3.1
in Section 0.3.4 asks the reader to fill in the necessary details. However, the
simplified instance I# in step (B) now may consist of roughly m/ε jobs, and
so the time complexity becomes exponential in m/ε. As long as the number m
of machines is a fixed constant, this approach works fine and gives us a PTAS
for Pm | |Cmax. But if m is part of the input, the approach breaks down. The
corresponding problem P | |Cmax is the subject of the following section.

0.3.2 Makespan on an arbitrary number of identical ma-

chines

The problem. In the scheduling problem P | |Cmax the input consists of n jobs
Jj (j = 1, . . . , n) with positive integer processing times pj and of m identical
machines. The goal is to find a schedule that minimizes the makespan; the
optimal makespan will be denoted by Opt. This problem generalizes P2 | |Cmax

from Section 0.3.1. The crucial difference to P2 | |Cmax is that the number
m of machines is part of the input. Therefore, a polynomial time algorithm
dealing with this problem must have a time complexity that is also polynomially
bounded in m.

The problem P | |Cmax is NP-hard in the strong sense (Garey & John-
son [24]). Analogously to Section 0.3.1, we define psum =

∑n
j=1 pj , pmax =
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maxn
j=1 pj , and L = max{ 1

mpsum, pmax}. We claim that

L ≤ Opt ≤ 2L. (0.6)

Indeed, since 1
mpsum and pmax are lower bounds on Opt, L is also a lower bound

on Opt. We show that 2L is an upper bound on Opt by exhibiting a schedule
with makespan at most 2L. We assign the jobs one by one to the machines;
every time a job is assigned, it is put on a machine with the current minimal
workload. As this minimal workload is at most 1

mpsum and as the newly assigned
job adds at most pmax to the workload, the makespan always remains bounded
by 1

mpsum + pmax ≤ 2L.
We will now construct a PTAS for problem P | |Cmax by the technique of

simplifying the input. Many ideas and arguments from Section 0.3.1 directly
carry over to P | |Cmax. We mainly concentrate on the additional ideas that
were developed by Hochbaum & Shmoys [37] and by Alon, Azar, Woeginger &
Yadid [3] to solve the simplified instance in step (B).

(A) How to simplify an instance. To simplify the presentation, we assume
that ε = 1/E for some integer E. Jobs are classified into big and small ones,
exactly as in Section 0.3.1. The small jobs with total size S are replaced be
⌊S/(εL)⌋ chunks of length εL, exactly as in Section 0.3.1. The big jobs, however,
are handled in a different way: For each big job Jj in I, the instance I# contains

a corresponding job J#
j with processing time p#

j = ε2L⌊pj/(ε2L)⌋, i.e., p#
j is

obtained by rounding pj down to the next integer multiple of ε2L. Note that

pj ≤ p#
j + ε2L ≤ (1 + ε)p#

j holds. This yields the simplified instance I#.

As in Section 0.3.1 it can be shown that the optimal makespan Opt# of I#

fulfills Opt# ≤ (1+ε)Opt. The main difference in the argument is that the big
jobs in I# may be slightly smaller than their counterparts in instance I. But
this actually works in our favor, since replacing jobs by slightly smaller ones can
only decrease the makespan (or leave it unchanged), but can never increase it.
With (0.6) and the definition ε = 1/E, we get

Opt# ≤ 2(1 + ε)L = (2E2 + 2E) ε2L. (0.7)

In I# the processing time of a rounded big job lies between εL and L. Hence,
it is of the form kε2L where k is an integer with E ≤ k ≤ E2. Note that
εL = Eε2L, and thus also the length of the chunks can be written in the form
kε2L. For k = E, . . . , E2, we denote by nk the number of jobs in I# whose

processing time equals kε2L. Notice that n ≥ ∑E2

k=E nk. A compact way of
representing I# is by collecting all the data in the vector ~n = [nE , . . . , nE2 ].

(B) How to solve the simplified instance. This step is more demanding
than the trivial solution we used in Section 0.3.1. We will formulate the simpli-
fied instance as an integer linear program whose number of integer variables is
bounded by some constant in E (and thus is independent of the input size). And
then we can apply machinery from the literature for integer linear programs of
fixed dimension to get a solution in polynomial time!
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We need to introduce some notation to describe the possible schedules for
instance I#. The packing pattern of a machine is a vector ~u = [uE, . . . , uE2 ],
where uk is the number of jobs of length kε2L assigned to that machine. For

every vector ~u we denote C(~u) =
∑E2

k=E uk · k. Note that the workload of the

corresponding machine equals
∑E2

k=E uk · kε2L = C(~u) ε2L. We denote by U
the set of all packing patterns ~u for which C(~u) ≤ 2E2 + 2E, i.e., for which the
corresponding machine has a workload of at most (2E2 + 2E) ε2L. Because of
inequality (0.7), we only need to consider packing patterns in U if we want to
solve I# to optimality. Since each job has length at least Eε2L, each packing
pattern ~u ∈ U consists of at most 2E+2 jobs. Therefore |U | ≤ (E2−E+1)2E+3

holds, and the cardinality of U is bounded by a constant in E (= 1/ε) that does
not depend on the input. This property is important, as our integer linear
program will have 2|U | + 1 integer variables.

Now consider some fixed schedule for instance I#. For each vector ~u ∈ U ,
we denote by x~u the numbers of machines with packing pattern ~u. The 0-1-
variable y~u serves as an indicator variable for x~u: It takes the value 0 if x~u = 0,
and it takes the value 1 if x~u ≥ 1. Finally, we use the variable z to denote
the makespan of the schedule. The integer linear program (ILP) is depicted in
Figure 0.4.

min z

s.t.
∑

~u∈U x~u = m
∑

~u∈U x~u · ~u = ~n

y~u ≤ x~u ≤ m · y~u ∀ ~u ∈ U

C(~u) · y~u ≤ z ∀ ~u ∈ U

x~u ≥ 0, x~u integer ∀ ~u ∈ U

y~u ∈ {0, 1} ∀ ~u ∈ U

z ≥ 0, z integer

Figure 0.4: The integer linear program (ILP) in Section 0.3.2.

The objective is to minimize the value z; the makespan of the underlying
schedule will be zε2L which is proportional to z. The first constraint states that
exactly m machines must be used. The second constraint (which in fact is a
set of E2 − E + 1 constraints) ensures that all jobs can be packed; recall that
~n = [nE , . . . , nE2 ]. The third set of constraints ties x~u to its indicator variable
y~u: x~u = 0 implies y~u = 0, and x~u ≥ 1 implies y~u = 1 (note that each variable x~u

takes an integer value between 0 and m). The fourth set of constraints ensures
that zε2L is at least as large as the makespan of the underlying schedule: If the
packing pattern ~u is not used in the schedule, then y~u = 0 and the constraint
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boils down to z ≥ 0. If the packing pattern ~u is used in the schedule, then y~u = 1
and the constraint becomes z ≥ C(~u) which is equivalent to zε2L ≥ C(~u) ε2L.
The remaining constraints are just integrality and non-negativity constraints.
Clearly, the optimal makespan Opt# of I# equals z∗ε2L where z∗ is the optimal
objective value z∗ of (ILP).

The number of integer variables in (ILP) is 2|U | + 1, and we have already
observed that this is a constant that does not depend at all on the instance
I. We now apply Lenstra’s famous algorithm [57] to solve (ILP). The time
complexity of Lenstra’s algorithm is exponential in the the number of variables,
but polynomial in the logarithms of the coefficients. The coefficients in (ILP) are
at most max{m, n, 2E2+2E}, and so (ILP) can be solved within an overall time

complexity of O(logO(1)(m + n)). Note that here the hidden constant depends
exponentially on 1/ε. To summarize, we can solve the simplified instance I# in
polynomial time.

(C) How to translate the solution back. We proceed as in step (C) in
Section 0.3.1: If in an optimal schedule for I# the total size of chunks on machine
Mi equals S#

i , then we reserve a time interval of length S#
i + 2εL on Mi and

greedily pack the small jobs into all these reserved intervals. There is sufficient
space to pack all small jobs. Big jobs in I# are replaced by their counterparts
in I. Since pj ≤ (1 + ε)p#

j holds, this may increase the total processing time of
big jobs on Mi by at most a factor of 1 + ε. Similarly as in (0.5) we conclude
that

Li ≤ (1 + ε)B#
i + S#

i + 2εL ≤ (1 + ε)Opt#
i + 2εL

≤ (1 + ε)2Opt + 2εOpt = (1 + 4ε + ε2)Opt.

Here we used Opt# ≤ (1 + ε)Opt, and we used (0.6) to bound L from above.
Since the term 4ε+ ε2 can be made arbitrarily close to 0, this yields the PTAS.

Discussion. The polynomial time complexity of the above PTAS heavily re-
lies on solving (ILP) by Lenstra’s method, which really is heavy machinery.
Are there other, simpler possibilities for solving the simplified instance I# in
polynomial time? Yes, there are. Hochbaum & Shmoys [37] use a dynamic
programming approach with time complexity polynomial in n. However, the
degree of this polynomial time complexity is proportional to |U |. This dynamic
program is outlined in Exercise 0.3.3 in Section 0.3.4.

0.3.3 Total tardiness on a single machine

The problem. In the scheduling problem 1 | | ∑
Tj , the input consists of n

jobs Jj (j = 1, . . . , n) with positive integer processing times pj and integer due
dates dj . All jobs are available for processing at time zero, and preemption
is not allowed. We denote by Cj the completion time of job Jj in some fixed
schedule. Then the tardiness of job Jj in this schedule is Tj = max{0, Cj − dj},
i.e., the amount of time by which Jj violates its deadline. The goal is to schedule
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the jobs on a single machine such that the total tardiness
∑n

j=1 Tj is minimized.
Clearly, in an optimal schedule the jobs will be processed without any idle time
between consecutive jobs and the optimal schedule can be fully specified by a
permutation π∗ of the n jobs. We use Opt to denote the objective value of the
optimal schedule π∗.

The problem 1 | | ∑
Tj is NP-hard in the ordinary sense (Du & Leung [18]).

Lawler [53] developed a dynamic programming formulation for 1 | | ∑
Tj . The

(pseudo-polynomial) time complexity of this dynamic program is O(n5TEDD).
Here TEDD denotes the maximum tardiness in the EDD-schedule, i.e., the sched-
ule produced by the earliest-due-date rule (EDD-rule). The EDD-rule sequences
the jobs in order of non-decreasing due date; this rule is easy to implement
in polynomial time O(n log n), and it is well-known that the resulting EDD-
schedule minimizes the maximum tardiness maxTj. Hence TEDD can be com-
puted in polynomial time; this is important, as our simplification step will explic-
itly use the value of TEDD. In case TEDD = 0 holds, all jobs in the EDD-schedule
have tardiness 0 and the EDD-schedule constitutes an optimal solution to prob-
lem 1 | | ∑

Tj . Therefore, we will only deal with the case TEDD > 0. Moreover,
since in the schedule that minimizes the total tardiness, the most tardy job has
tardiness at least TEDD, we have

TEDD ≤ Opt. (0.8)

We will not discuss any details of Lawler’s dynamic program here, since we will
only use it as a black box. For our purposes, it is sufficient to know its time
complexity O(n5TEDD) in terms of n and TEDD.

(A) How to simplify an instance. Following Lawler [54] we will now
add structure to the input, and thus eventually get an FPTAS. The additional
structure depends on the following parameter Z.

Z :=
2ε

n(n + 3)
· TEDD

Note that TEDD > 0 yields Z > 0. We translate an arbitrary instance I of
1 | | ∑

Tj into a corresponding simplified instance I#. The processing time of

the j-th job in I# equals p#
j = ⌊pj/Z⌋, and its due date equals d#

j = ⌈dj/Z⌉.
The alert reader will have noticed that scaling the data by Z causes the

processing times and due dates in instance I# to be very far away from the
corresponding processing times and due dates in the original instance I. How
can we claim that I# is a simplified version of I when it is so far away from
instance I? One way of looking at this situation is that in fact we produce
the simplified instance I# in two steps. In the first step, the processing times
in I are rounded down to the next integer multiple of Z, and the due dates
are rounded up to the next integer multiple of Z. This yields the intermediate
instance I ′ in which all the data are divisible by Z. In the second step we scale
all processing times and due dates in I ′ by Z, and thus arrive at the instance
I# with much smaller numbers. Up to the scaling by Z, the instances I ′ and
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I# are equivalent. See Figure 0.5 for a listing of the variables in these three
instances.

Instance I I ′ I#

length of Jj pj p′j = ⌊pj/Z⌋Z p#
j = ⌊pj/Z⌋

p′j ≤ pj p#
j = p′j/Z

due date of Jj dj d′j = ⌈dj/Z⌉Z d#
j = ⌈dj/Z⌉

d′j ≥ dj d#
j = d′j/Z

optimal value Opt Opt′ (≤ Opt) Opt# (= Opt′/Z)

Figure 0.5: The notation used in the PTAS for 1 | | ∑
Tj in Section 0.3.3.

(B) How to solve the simplified instance. We solve instance I# by apply-
ing Lawler’s dynamic programming algorithm, whose time complexity depends
on the number of jobs and on the maximum tardiness in the EDD-schedule.
Clearly, there are n jobs in instance I#. What about the maximum tardiness?
Let us consider the EDD-sequence π for the original instance I. When we move
to I ′ and to I#, all the due dates are changed in a monotone way and there-
fore π is also an EDD-sequence for the jobs in the instances I ′ and I#. When
we move from I to I ′, processing times cannot increase and due dates cannot
decrease. Therefore, T ′

EDD ≤ TEDD. Since I# results from I ′ by simple scaling,
we conclude that

T #
EDD = T ′

EDD/Z ≤ TEDD/Z = n(n + 3)/(2ε).

Consequently T #
EDD is O(n2/ε). With this the time complexity of Lawler’s

dynamic program for I# becomes O(n7/ε), which is polynomial in n and in
1/ε. And that is exactly the type of time complexity that we need for an
FPTAS! So, the simplified instance is indeed easy to solve.

(C) How to translate the solution back. Consider an optimal job sequence
for instance I#. To simplify the presentation, we renumber the jobs in such
a way that this optimal sequence becomes J1, J2, J3, . . . , Jn. Translating this
optimal solution back to the original instance I is easy: We take the same
sequence for the jobs in I to get an approximate solution. We now want to
argue that the objective value of this approximate solution is very close to the
optimal objective value. This is done by exploiting the structural similarities
between the three instances I, I ′, and I#.

We denote by Cj and Tj the completion time and the tardiness of the j-th

job in the schedule for I, and by C#
j and T #

j the completion time and the

tardiness of the j-th job in the schedule for instance I#. By the definition of
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p#
j and d#

j , we have pj ≤ Zp#
j + Z and dj > Zd#

j − Z. This yields for the
completion times Cj (j = 1, . . . , n) in the approximate solution that

Cj =

j∑

i=1

pj ≤ Z

j∑

i=1

p#
j + jZ = Z · C#

j + jZ.

As a consequence,

Tj = max{0, Cj−dj} ≤ max{0, (Z·C#
j +jZ)−(Zd#

j −z)} ≤ Z·T #
j +(j+1)Z.

This finally leads to

n∑

j=1

Tj ≤
n∑

j=1

Z · T #
j +

1

2
n(n + 3) · Z ≤ Opt + εTEDD ≤ (1 + ε)Opt.

Let us justify the correctness of the last two inequalities above. The penultimate
inequality is justified by comparing instance I ′ to instance I. Since I ′ is a scaled
version of I#, we have

∑n
j=1 Z · T #

j = Z · Opt# = Opt′. Since in I ′ the jobs

are shorter and have less restrictive due dates than in I, we have Opt′ ≤ Opt.
The last inequality follows from the observation (0.8) in the beginning of this
section. To summarize, for each ε > 0 we can find within a time of O(n7/ε) an
approximate schedule whose objective value is at most (1+ ε)Opt. And that is
exactly what is needed for an FPTAS!

0.3.4 Exercises

Exercise 0.3.1. Construct a PTAS for Pm | |Cmax by appropriately modifying
the approach described in Section 0.3.1. Work with L = max{ 1

mpsum, pmax},
and use the analogous definition of big and small jobs in the simplification step
(A). Argue that the inequality (0.3) is again satisfied. Modify the translation
step (C) appropriately so that all small jobs are packed. What is your worst
case guarantee in terms of ε and m? How does your time complexity depend
on ε and m?

Exercise 0.3.2. In the PTAS for P2 | |Cmax in Section 0.3.1, we replaced the
small jobs in instance I by lots of chunks of length εL in instance I#. Consider
the following alternative way of handling the small jobs in I: Put all the small
jobs into a canvas bag. While there are at least two jobs with lengths smaller
than εL in the bag, merge two such jobs. That is, repeatedly replace two jobs
with processing times p′, p′′ ≤ εL by a single new job of length p′ + p′′. The
simplified instance I#

alt consists of the final contents of the bag.

Will this lead to another PTAS for P2 | |Cmax? Does the inequality (0.3)
still hold true? How can you bound the number of jobs in the simplified instance
I#
alt? How would you translate an optimal schedule for I#

alt into an approximate
schedule for I?
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Exercise 0.3.3. This exercise deals with the dynamic programming approach
of Hochbaum & Shmoys [37] for the simplified instance I# of P | |Cmax. This
dynamic progam has already been mentioned at the end of Section 0.3.2, and
we will use the notation of this section in this exercise.

Let V be the set of integer vectors that encode subsets of the jobs in I#,
i.e. V = {~v : ~0 ≤ ~v ≤ ~n}. For every ~v ∈ V and for every i, 0 ≤ i ≤ m, denote
by F (i, ~v) the makespan of the optimal schedule for the jobs in ~v on exactly i
machines that only uses packing patterns from U . If no such schedule exists we
set F (i, ~v) = +∞. For example, F (1, ~v) = C(~v) ε2L if ~v ∈ U , and F (1, ~v) = +∞
if ~v 6∈ U .

(a) Show that the cardinality of V is bounded by a polynomial in n. How
does the degree of this polynomial depend on ε and E?

(b) Find a recurrence relation that for i ≥ 2 and ~v ∈ V expresses the value
F (i, ~v) in terms of the values F (i − 1, ~v − ~u) with ~u ≤ ~v.

(c) Use this recurrence relation to compute the value F (m,~n) in polynomial
time. How does the time complexity depend on n?

(d) Argue that the optimal makespan for I# equals F (m,~n). How can you get
the corresponding optimal schedule? [Hint: Store some extra information
in the dynamic program.]

Exercise 0.3.4. Consider n jobs Jj (j = 1, . . . , n) with positive integer pro-
cessing times pj on three identical machines. The goal is to find a schedule with
machine loads L1, L2, L3 that minimizes the value L2

1 + L2
2 + L2

3, the sum of
squared machine loads.

Construct a PTAS for this problem by following the approach described in
Section 0.3.1. Construct a PTAS for minimizing the sum of squared machine
loads when the number m of machines is part of the input by following the ap-
proach described in Section 0.3.2. For a more general discussion of this problem,
see Alon, Azar, Woeginger & Yadid [3].

Exercise 0.3.5. Consider n jobs Jj (j = 1, . . . , n) with positive integer pro-
cessing times pj on three identical machines M1, M2, and M3, together with
a positive integer T . You have already agreed to lease all three machines
for T time units. Hence, if machine Mi completes at time Li ≤ T , then
your cost for this machine still is proportional to T . If machine Mi com-
pletes at time Li > T , then you have to pay extra for the overtime, and your
cost is proportional to Li. To summarize, your goal is to minimize the value
max{T, L1} + max{T, L2} + max{T, L3}, your overall cost.

Construct a PTAS for this problem by following the approach described in
Section 0.3.1. Construct a PTAS for minimizing the corresponding objective
function when the number m of machines is part of the input by following
the approach described in Section 0.3.2. For a more general discussion of this
problem, see Alon, Azar, Woeginger & Yadid [3].



0.3. STRUCTURING THE INPUT 21

Exercise 0.3.6. Consider n jobs Jj (j = 1, . . . , n) with positive integer pro-
cessing times pj on two identical machines. The goal is to find a schedule with
machine loads L1 and L2 that minimizes the following objective value:

(a) |L1 − L2|

(b) max{L1, L2}/ min{L1, L2}

(c) (L1 − L2)
2

(d) L1 + L2 + L1 · L2

(e) max{L1, L2/2}

For which of these problems can you get a PTAS? Can you prove statements
analogous to inequality (0.3) in Section 0.3.1? For the problems where you fail
to get a PTAS, discuss where and why the approach of Section 0.3.1 breaks
down.

Exercise 0.3.7. Consider two instances I and I ′ of 1 | | ∑
Tj with n jobs,

processing times pj and p′j , and due dates dj and d′j . Denote by Opt and

Opt′ the respective optimal objective values. Furthermore, let ε > 0 be a real
number. Prove or disprove:

(a) If pj ≤ (1 + ε)p′j and dj = d′j for 1 ≤ j ≤ n, then Opt ≤ (1 + ε)Opt′.

(b) If dj ≥ (1+ε)d′j and pj ≤ (1+ε)p′j for 1 ≤ j ≤ n, then Opt ≤ (1+ε)Opt′.

(c) If d′j ≤ (1 − ε)dj and pj = p′j for 1 ≤ j ≤ n, then Opt ≤ (1 − ε)Opt′.

Exercise 0.3.8. In the problem 1 | | ∑
wjTj the input consists of n jobs Jj

(j = 1, . . . , n) with positive integer processing times pj, integer due dates dj ,
and positive integer weights wj . The goal is to schedule the jobs on a single
machine such that the total weighted tardiness

∑
wjTj is minimized.

Can you modify the approach in Section 0.3.3 so that it yields a PTAS for
1 | | ∑

wjTj? What are the main obstacles? Consult the paper by Lawler [53]
to learn more about the computational complexity of 1 | | ∑

wjTj !

Exercise 0.3.9. Consider the problem 1 | rj |
∑

Cj whose input consists of n
jobs Jj (j = 1, . . . , n) with processing times pj and release dates rj . In a feasible
schedule for this problem, no job Jj is started before its release date rj . The
goal is to find a feasible schedule of the jobs on a single machine such that the
total job completion time

∑
Cj is minimized.

Consider two instances I and I ′ of 1 | rj |
∑

Cj with n jobs, processing times
pj and p′j , and release dates rj and r′j . Denote by Opt and Opt′ the respective
optimal objective values. Furthermore, let ε > 0 be a real number. Prove or
disprove:

(a) If pj ≤ (1 + ε)p′j and rj = r′j for 1 ≤ j ≤ n, then Opt ≤ (1 + ε)Opt′.
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(b) If rj ≤ (1 + ε)r′j and pj = p′j for 1 ≤ j ≤ n, then Opt ≤ (1 + ε)Opt′.

(c) If rj ≤ (1+ε)r′j and pj ≤ (1+ε)p′j for 1 ≤ j ≤ n, then Opt ≤ (1+ε)Opt′.

Exercise 0.3.10. An instance of the flow shop problem F3 | |Cmax consists
of three machines M1, M2, M3 together with n jobs J1, . . . , Jn. Every job Jj

first has to be processed for pj,1 time units on machine M1, then (an arbitrary
time later) for pj,2 time units on M2, and finally (again an arbitrary time later)
for pj,3 time units on M3. The goal is to find a schedule that minimizes the
makespan. In the closely related no-wait flow shop problem F3 |no-wait |Cmax,
there is no waiting time allowed between the processing of a job on consecutive
machines.

Consider two flow shop instances I and I ′ with processing times pj,i and p′j,i
such that pj,i ≤ p′j,i holds for 1 ≤ j ≤ n and 1 ≤ i ≤ 3.

(a) Prove: In the problem F3 | |Cmax, the optimal objective value of I is
always less or equal to the optimal objective value of I ′.

(b) Disprove: In the problem F3 |no-wait |Cmax, the optimal objective value
of I is always less or equal to the optimal objective value of I ′. [Hint:
Look for a counter-example with three jobs.]

0.4 Structuring the output

As second standard approach to the construction of approximation schemes
we discuss the technique of adding structure to the output. Here the main
idea is to cut the output space (i.e., the set of feasible solutions) into lots of
smaller regions over which the optimization problem is easy to approximate.
Tackling the problem separately for each smaller region and taking the best
approximate solution over all regions will then yield a globally good approximate
solution. More formally, the approach can be described by the following three-
step procedure; see Figure 0.6 for an illustration.

(A) Partition. Partition the feasible solution space F of in-
stance I into a number of districts F (1),F (2), . . . ,F (d) such that⋃d

ℓ=1 F (ℓ) = F . This partition depends on the desired precision ε of
approximation. The closer ε is to zero, the finer should this partition
be. The number d of districts must be polynomially bounded in the
size of the input.

(B) Find representatives. For each district F (ℓ) determine a good

representative whose objective value App(ℓ) is a good approximation
of the optimal objective value Opt(ℓ) in F (ℓ). The time needed for
finding the representative must be polynomial in the input size.

(C) Take the best. Select the best of all representatives as ap-
proximate solution with objective value App for instance I.
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Figure 0.6: Structuring the output. It is difficult to optimize over the entire
feasible region F . Hence, one cuts F into many districts and finds a good
representative (symbolized by ⋆) for each district. Locally, i.e., within their
districts, the representatives are excellent approximate solutions. The best of
the representatives constitutes a good approximation of the globally optimal
solution (symbolized by ⋄).

The overall time complexity of this approach is polynomial: There is a poly-
nomial number of districts, and each district is handled in polynomial time in
step (B). Step (C) optimizes over a polynomial number of representatives. The
globally optimal solution with objective value Opt must be contained in at
least one of the districts, say in district F (ℓ). Then Opt = Opt(ℓ). Since the
representative for F (ℓ) gives a good approximation of Opt(ℓ), it also yields a
good approximation of the global optimum. Hence, also the final output of the
algorithm will be a good approximation of the global optimum. Note that this
argument still works, if we only compute representatives for districts that con-
tain a gobal optimum. Although generally it is difficult to identify the districts
that contain a gobal optimum, there sometimes is some simple a priori reason
why a certain district cannot contain a global optimum. In this case we can
save time by excluding the district from further computations (see Section 0.4.2
for an illustration of this idea).

The whole approach hinges on the choice of the districts in step (A). If the
partition chosen is too fine (for instance, if every feasible solution in F forms its
own district), then we will have an exponential number of districts and steps (B)
and (C) probably cannot be done in polynomial time. If the partition chosen
is too crude (for instance, if the set F itself forms the only district), then the
computation of the representatives in step (B) will be about as difficult as finding
an approximation scheme for the original problem. The idea is to work with a
moderately small number of districts. Here moderately small means polynomial
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in the size of the instance I, exactly as required in the statement of step (A).
In every district, all the feasible solutions share a certain common property (for
instance, some district may contain all feasible solutions that run the same job
J11 at time 8 on machine M3). This common property fixes several parameters
of the feasible solutions in the district, whereas other parameters are still free.
And in the ideal case, it is easy to approximately optimize the remaining free
parameters.

To our knowledge the approach of structuring the output was first used
in 1969 in a paper by Graham [27] on makespan minimization on identical
machines. Remarkably, in the last section of his paper Graham attributes the
approach to a suggestion by Dan Kleitman and Donald E. Knuth. So it seems
that this approach has many fathers. Hochbaum & Maass [36] use the approach
of structuring the output to get a PTAS for covering a Euclidean point set
by the minimum number of unit-squares. In the 1990s, Leslie Hall and David
Shmoys wrote a sequence of very influential papers (see Hall [29, 31], Hall &
Shmoys [32, 33, 34]) that all are based on the concept of a so-called outline.
An outline is a compact way of specifying the common properties of a set of
schedules that form a district. Hence, approximation schemes based on outlines
follow the approach of structuring the output.

In the following two sections, we will illustrate the technique of simplifying
the output with the help of two examples. Section 0.4.1 deals with makespan
minimization on two identical machines; we will discuss the arguments of Gra-
ham [27]. Section 0.4.2 deals with makespan minimization on two unrelated
machines. Section 0.4.3 lists several exercises.

0.4.1 Makespan on two identical machines

The problem. We return to the problem P2 | |Cmax that was introduced
and thoroughly discussed in Section 0.3.1: There are n jobs Jj (j = 1, . . . , n)
with processing times pj, and the goal is to find a schedule on two identical
machines that minimizes the makespan. Again, we denote psum =

∑n
j=1 pj ,

pmax = maxn
j=1 pj , and L = max{ 1

2psum, pmax} with

L ≤ Opt. (0.9)

In this section we will construct another PTAS for P2 | |Cmax, but this time the
PTAS will be based on the technique of structuring the output. We will roughly
follow the argument in the paper of Graham [27] from 1969.

(A) How to define the districts. Let I be an instance of P2 | |Cmax, and let
ε > 0 be a precision parameter. Recall from Section 0.3.1 that a small job is a
job with processing time at most εL, that a big job is a job with processing time
strictly greater than εL, and that there are at most 2/ε big jobs in I. Consider
the set F of feasible solutions for I. Every feasible solution σ ∈ F specifies an
assignment of the n jobs to the two machines.

We define the districts F (1),F (2), . . . according to the assignment of the big
jobs to the two machines: Two feasible solutions σ1 and σ2 lie in the same
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district if and only if σ1 assigns every big jobs to the same machine as σ2 does.
Note that the assignment of the small jobs remains absolutely free. Since there
are at most 2/ε big jobs, there are at most 22/ε different ways for assigning these
jobs to two machines. Hence, the number of districts in our partition is bounded
by a fixed constant whose value is independent of the input size. Perfect! In
order to make the approach work, we could have afforded that the number of
districts grows polynomially with the size of I, but we even manage to get along
with only a constant number of districts!

(B) How to find good representatives. Consider a fixed district F (ℓ), and

denote by Opt(ℓ) the makespan of the best schedule in this district. In F (ℓ) the

assignments of the big jobs to their machines are fixed, and we denote by B
(ℓ)
i

(i = 1, 2) the total processing time of big jobs assigned to machine Mi. Clearly,

T := max{B(ℓ)
1 , B

(ℓ)
2 } ≤ Opt(ℓ). (0.10)

Our goal is to determine in polynomial time some schedule in F (ℓ) with
makespan App(ℓ) ≤ (1+ ε)Opt(ℓ). Only the small items remain to be assigned.
Small items behave like sand, and it is easy to pack this sand in a very dense
way by sprinkling it across the machines. More formally, we do the following:

The initial workload of machines M1 and M2 are B
(ℓ)
1 and B

(ℓ)
2 , respectively.

We assign the small jobs one by one to the machines; every time a job is as-
signed, it is put on the machine with the currently smaller workload (ties are

broken arbitrarily). The resulting schedule σ(ℓ) with makespan App(ℓ) is our
representative for the district F (ℓ). Clearly, σ(ℓ) is computable in polynomial
time.

How close is App(ℓ) to Opt(ℓ)? In case App(ℓ) = T holds, the inequality
(0.10) yields that σ(ℓ) in fact is an optimal schedule for the district F (ℓ). In

case App(ℓ) > T holds, we consider the machine Mi with higher workload in
the schedule σ(ℓ). Then the last job that was assigned to M is a small job and
thus has processing time at most εL. At the moment when this small job was
assigned to Mi, the workload of Mi was at most 1

2psum. By using (0.9) we get
that

App(ℓ) ≤ 1

2
psum + εL ≤ (1 + ε)L ≤ (1 + ε)Opt ≤ (1 + ε)Opt(ℓ).

Hence, in either case the makespan of the representative is at most 1 + ε times
the optimal makespan in F (ℓ). Since the selection step (C) is trivial to do, we
get the PTAS.

Discussion. Let us compare our new PTAS for P2 | |Cmax to the old PTAS for
P2 | |Cmax from Section 0.3.1 that was based on the technique of structuring the
input. An obvious similarity is that both approximation schemes classify the
jobs into big ones and small ones, and then treat big jobs differently from small
jobs. Another similarity is that the time complexity of both approximation
schemes is linear in n, but exponential in 1/ε. But apart from this, the two
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approaches are very different: The old PTAS manipulates and modifies the
instance I until it becomes trivial to solve, whereas the strategy of the new
PTAS is to distinguish lots of cases that all are relatively easy to handle.

0.4.2 Makespan on two unrelated machines

The problem. In the scheduling problem R2 | |Cmax the input consists of two
unrelated machines A and B, together with n jobs Jj (j = 1, . . . , n). If job Jj

is assigned to machine A then its processing time is aj , and if it is assigned to
machine B then its processing time is bj. The objective is to find a schedule that
minimizes the makespan. The problem R2 | |Cmax is NP-hard in the ordinary
sense. We will construct a PTAS for R2 | |Cmax that uses the technique of
structuring the output. This section is based on Potts [67].

Let I be an instance of R2 | |Cmax, and let ε > 0 be a precision parameter.
We denote K =

∑n
j=1 min{aj , bj}, and we observe that

1

2
K ≤ Opt ≤ K. (0.11)

To see the lower bound in (0.11), we observe that in the optimal schedule job
Jj will run for at least min{aj, bj} time units. Hence, the total processing time
in the optimal schedule is at least K and the makespan is at least 1

2K. To see
the upper bound in (0.11), consider the schedule that assigns Jj to machine A if
aj ≤ bj and to machine B if aj > bj . This schedule is feasible, and its makespan
is at most K.

(A) How to define the districts. Consider the set F of feasible solutions
for I. Every feasible solution σ ∈ F specifies an assignment of the n jobs to the
two machines. A scheduled job in some feasible solution is called big if and only
if its processing time is greater than εK. Note that this time we define big jobs
only relative to a feasible solution! There is no obvious way of doing an absolute
job classification that is independent of the schedules, since there might be jobs
with aj > εK and bj ≤ εK, or jobs with aj ≤ εK and bj > εK. Would one
call such a job big or small? Our definition is a simple way of avoiding this
difficulty.

The districts are defined according to the assignment of the big jobs to the
two machines: Two feasible solutions σ1 and σ2 lie in the same district if and
only if σ1 and σ2 process the same big jobs on machine A and the same big
jobs on machine B. For a district F (ℓ), we denote by A(ℓ) the total processing
time of big jobs assigned to machine A, and by B(ℓ) the total processing time
of big jobs assigned to machine B. We kill all districts F (ℓ) for which A(ℓ) > K
or B(ℓ) > K holds, and we disregard them from further consideration. Because
of inequality (0.11), these districts cannot contain an optimal schedule and
hence are worthless for our investigation. Exercise 0.4.4 in Section 0.4.3 even
demonstrates that killing these districts is essential, since otherwise the time
complexity of the approach might explode and become exponential!
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Now let us estimate the number of surviving districts. Since A(ℓ) ≤ K holds
in every surviving district F (ℓ), at most 1/ε big jobs are assigned to machine
A. By an analogous argument, at most 1/ε big jobs are assigned to machine B.
Hence, the district is fully specified by up to 2/ε big jobs that are chosen from
a pool of up to n jobs. This yields O(n2/ε) surviving districts. Since ε is fixed
and not part of the input, the number of districts is polynomially bounded in
the size of the input.

(B) How to find good representatives. Consider some surviving district
F (ℓ) in which the assignment of the big jobs has been fixed. The unassigned
jobs belong to one of the following four types:

(i) aj ≤ εK and bj ≤ εK,

(ii) aj > εK and bj ≤ εK,

(iii) aj ≤ εK and bj > εK,

(iv) aj > εK and bj > εK.

If there is an unassigned job of type (iv), the district F (ℓ) is empty, and we may
disregard it. If there are unassigned jobs of type (ii) or (iii), then we assign them
in the obvious way without producing any additional big jobs. The resulting
fixed total processing time on machines A and B is denoted by α(ℓ) and β(ℓ),
respectively. We renumber the jobs such that J1, . . . , Jk with k ≤ n become the
remaining unassigned jobs. Only jobs of type (i) remain to be assigned, and
this is done by means of the integer linear program (ILP) and its relaxation
(LPR) that both are depicted in Figure 0.7: For each job Jj with 1 ≤ j ≤ k,
there is a 0-1-variable xj in (ILP) that encodes the assignment of Jk. If xj = 1,
then Jj is assigned to machine A, and if xj = 0, then Jj is assigned to machine
B. The variable z denotes the makespan of the schedule. The first and second
constraints state that z is an upper bound on the total processing time on the
machines A and B. The remaining constraints in (ILP) are just integrality
constraints. The linear programming relaxation (LPR) is identical to (ILP),
except that here the xj are continuous variables in the interval [0, 1].

(ILP ) (LPR)

min z min z

s.t. α(ℓ) +
∑k

j=1 ajxj ≤ z s.t. α(ℓ) +
∑k

j=1 ajxj ≤ z

β(ℓ) +
∑k

j=1 bj(1 − xj) ≤ z β(ℓ) +
∑k

j=1 bj(1 − xj) ≤ z

xj ∈ {0, 1} j = 1, . . . , k. 0 ≤ xj ≤ 1 j = 1, . . . , k.

Figure 0.7: The integer linear program (ILP) and its relaxation (LPR) in Sec-
tion 0.4.2.
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The integrality constraints on the xj make it NP-hard to find a feasible
solution for (ILP). But this does not really matter to us, since the linear pro-
gramming relaxation (LPR) is easy to solve! We determine in polynomial time
a basic feasible solution x∗

j with j = 1, . . . , n and z∗ for (LPR). Assume that
exactly f of the values x∗

j are fractional, and that the remaing k − f values are
integral. We want to analyze which of the 2k + 2 inequalities of (LPR) may
be fulfilled as an equality by the basic feasible solution: For every integral x∗

j ,
equality holds in exactly one of the two inequalities 0 ≤ x∗

j and x∗

j ≤ 1. For
every fractional x∗

j , equality holds in none of the two inequalities 0 ≤ x∗

j and
x∗

j ≤ 1. Moreover, the first two constraints may be fulfilled with equality. All
in all, this yields that at most k − f + 2 of the constraints can be fulfilled with
equality. On the other hand, a basic feasible solution is a vertex of the under-
lying polyhedron in (k + 1)-dimensional space. It is only determined if equality
holds in at least k + 1 of the 2k + 2 inequalities in (LPR). We conclude that
k + 1 ≤ k − f + 2, which is equivalent to f ≤ 1.

We have shown that at most one of the values x∗

j is not integral. In other
words, we have almost found a feasible solution for (ILP)! Now it is easy to get
a good representative: Each job Jj with x∗

j = 1 is assigned to machine A, each
Jj with x∗

j = 0 is assigned to machine B, and if there is a fractional x∗

j then the
corresponding job is assigned to machine A. This increases the total processing
time on A by at most εK. The makespan App(ℓ) of the resulting representative
fulfills

App(ℓ) ≤ z∗ + εK ≤ Opt(ℓ) + εK.

Consider a district that contains an optimal solution with makespan Opt. Then
the makespan of the corresponding representative is at most Opt + εK which
by (0.11) is at most (1 + 2ε)Opt. To summarize, the selection step (C) will
find a representative with makespan at most (1 + 2ε)Opt, and thus we get the
PTAS.

0.4.3 Exercises

Exercise 0.4.1. Construct a PTAS for Pm | |Cmax by appropriately modi-
fying the approach described in Section 0.4.1. Classify the jobs according to
L = max{ 1

mpsum, pmax}, and define the districts according to the assignment
of the big jobs. How many districts do you get? How do you compute good
representatives in polynomial time? What is your worst case guarantee in terms
of ε and m? How does your time complexity depend on ε and m?

Can you modify the PTAS from Section 0.4.1 so that it works for the problem
P | |Cmax with an arbitrary number of machines? What are the main obstacles
in this approach?

Exercise 0.4.2. This exercise concerns the PTAS for P2 | |Cmax in Sec-
tion 0.4.1. Recall that in every district F (ℓ), all the schedules had the same

workloads B
(ℓ)
1 and B

(ℓ)
2 of big jobs on the machines M1 and M2, respectively.

We first computed a representative for every district by greedily adding the
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small jobs, and afterwards selected the globally best representative.

(a) Suppose that we mess up these two steps in the following way: First, we

select the district F (ℓ) that minimizes max{B(ℓ)
1 , B

(ℓ)
2 }. We immediately

abandon all the other districts. Then we compute the representative for
the selected district by greedily adding the small jobs, and finally output
this representative. Would this still yield a PTAS?

(b) Generalize your answer from (a) to the problem Pm | |Cmax. To do this,
you probably should first work your way through Exercise 0.4.1.

Exercise 0.4.3. Consider n jobs Jj (j = 1, . . . , n) with positive integer pro-
cessing times pj on three identical machines. The goal is to find a schedule with
machine loads L1, L2, and L3 that minimizes the value L2

1 + L2
2 + L2

3, i.e., the
sum of squared machine loads.

(a) Construct a PTAS for this problem by following the approach described
in Section 0.4.1.

(b) Now consider the messed up approach from Exercise 0.4.2 that first selects
the ‘best’ district by only judging from the assignment of the big jobs, and
afterwards outputs the representative for the selected district. Will this
still yield a PTAS?

[Hint: For a fixed precision ε, define E = ⌈1/ε⌉. Investigate the instance
I(ε) that consists of six jobs with lengths 13, 9, 9, 6, 6, 6 together with E
tiny jobs of length 5/E.]

(c) Does the messed up approach from Exercise 0.4.2 yield a PTAS for mini-
mizing the sum of squared machine loads on m = 2 machines?

Exercise 0.4.4. When we defined the districts in Section 0.4.2, we decided to
kill all districts F (ℓ) with A(ℓ) > K or B(ℓ) > K. Consider an instance I of
R2 | |Cmax with n jobs, where aj = 0 and bj ≡ b > 0 for 1 ≤ j ≤ n. How
many districts are there overall? How many of these districts are killed, and
how many of them survive and get representatives?

Exercise 0.4.5. Construct a PTAS for Rm | |Cmax via the approach described
in Section 0.4.2. How do you define your districts? How many districts do you
get? How many constraints are there in your integer linear program? What can
you say about the number of fractional values in a basic feasible solution for the
relaxation? How do you find the representatives?

Exercise 0.4.6. This exercise deals with problem P3 | pmtn |Rej+Cmax, a vari-
ant of parallel machine scheduling with job rejections. An instance consists of
n jobs Jj (j = 1, . . . , n) with a rejection penalty ej and a processing time pj .
The goal is to reject a subset of the jobs and to schedule the remaining jobs
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preemptively on three identical machines, such that the total penalty of all re-
jected jobs plus the makespan of the scheduled jobs becomes minimum. This
problem is NP-hard in the ordinary sense (Hoogeveen, Skutella & Woeginger
[41]). The optimal makespan for preemptive scheduling without rejections is
the maximum of the length of the longest job and of the average machine load;
see [55].

Design a PTAS for P3 | pmtn |Rej+Cmax! [Hint: First get upper and lower
estimates on the optimal solution. Define big jobs with respect to these esti-
mates. The districts are defined with respect to the rejected big jobs. As in
Section 0.4.2, use a linear relaxation of an integer program to schedule the small
jobs in the representatives.]

Exercise 0.4.7. This exercise asks you to construct a PTAS for the following
variant of the knapsack problem. The input consists of n items with positive
integer sizes aj (j = 1, . . . , n) and of a knapsack with capacity b. The goal is
to pack the knapsack as full as possible but without overpacking it. In other
words, the goal is to determine J ⊆ {1, . . . , n} such that

∑
j∈J aj is maximized

subject to the constraint
∑

j∈J aj ≤ b.

(a) Classify items into big ones (those with size greater than εb) and small
ones (those with size at most εb). Define your districts via the set of
big items that a feasible solution packs into the knapsack. What is the
maximum number of big items that can fit into the knapsack? How many
districts do you get?

(b) Explain how to find good representatives for the districts.

Exercise 0.4.8. This exercise asks you to construct a PTAS for the following
problem. The input consists of n items with positive integer sizes aj (j =
1, . . . , n) and of two knapsacks with capacity b. The goal is to pack the maximum
number of items into the two knapsacks.

(a) Define one special district that contains all feasible packings with up to 2/ε
items. The remaining districts are defined according to the placement of
the big items. How do you define the big items? And how many districts
do you get?

(b) Explain how you find good representatives for the districts. How do you
handle the special district?

Exercise 0.4.9. All the PTAS’s we have seen so far were heavily based on some
a priori upper and lower estimates on the optimal objective value. For instance,
in Sections 0.3.1, 0.3.2, and Section 0.4.1 we used the bounds L and 2L on Opt,
and in Section 0.4.2 we used the bounds 1

2K and K on Opt, and so on. This
exercise discusses a general trick for getting a PTAS that works even if you only
know very crude upper and lower bounds on the optimal objective value. The
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trick demonstrates that you may concentrate on the special situation where you
have an a priori guess x for Opt with Opt ≤ x and where your goals is to find
a feasible solution with cost at most (1 + ε)x.

Assume that you want to find an approximate solution for a minimization
problem with optimal objective value Opt. The optimal objective value itself
is unknown to you, but you know that it is bounded by Tlow ≤ Opt ≤ Tupp.
The only tool that you have at your disposal is a black box (this black box is
the PTAS for the special situation described above). If you feed the black box
with an integer x ≥ Opt, then the black box will give you a feasible solution
with objective value at most (1 + ε)x. If you feed the black box with an integer
x < Opt, then the black box will return a random feasible solution.

How can you use this black to find a globally good approximate solution?
How often will you use the black box in terms of Tupp/Tlow? [Hint: Call an
integer x a winner, if the black box returns a feasible solution with cost at most
(1 + ε)x, and call it a loser otherwise. Note that every loser x fulfills x < Opt.
For k ≥ 0, define xk = (1 + ε)kTlow. Call the black box for the inputs xk until
you find a winner.]

0.5 Structuring the execution of an algorithm

As third standard approach to the construction of approximation schemes we
discuss the technique of adding structure to the execution of an algorithm. Here
the main idea is to take an exact but slow algorithm A, and to interact with
it while it is working. If the algorithm accumulates a lot of auxiliary data
during its execution, then we may remove part of this data and clean up the
algorithm’s memory. As a result the algorithm becomes faster (since there is
less data to process) and generates an incorrect output (since the removal of
data introduces errors). In the ideal case, the time complexity of the algorithm
becomes polynomial and the incorrect output constitutes a good approximation
of the true optimum.

This approach can only work out if the algorithm itself is highly structured.
In this chapter we will only deal with rather primitive algorithms that do not
even try to optimize something. They simply generate all feasible solutions and
only suppress obvious duplicates. They are of a severely restricted form and
work in a severely restricted environment. The following two Definitions 0.5.1
and 0.5.2 define the type of optimization problem X and the type of algorithm
A to which this approach applies.

Definition 0.5.1 (Properties of the optimization problem)

Every instance I of the optimization problem X naturally decomposes into
n pieces P1, . . . , Pn. For every k with 1 ≤ k ≤ n, the prefix sequence P1, . . . , Pk

of pieces forms an instance of the optimization problem X. We write Ik short
for this prefix sequence.



32

The relevant properties of every feasible solution σ of I can be concisely
encoded by a d-dimensional vector ~v(σ) with non-negative coordinates such that
the following two conditions are satisfied:

(i) The objective value of σ can be deduced in constant time from ~v(σ).

(ii) An algorithm (as described in Definition 0.5.2 below) is able to digest the
vectors that encode the feasible solutions for Ik and to deduce from them
and from the piece Pk the vectors for all feasible solutions of Ik+1.

This definition is so vague that it needs an immediate illustration. Consider
once again the scheduling problem P2 | |Cmax from Sections 0.3.1 and 0.4.1.
The job Jk (k = 1, . . . , n) forms the input piece Pk, and the instance Ik is the
restriction of instance I to the first k jobs. The concise encoding of a feasible
schedule σ with machine loads L1 and L2 simply is the two-dimensional vector
~v(σ) = [L1, L2]. And the objective value of σ can be deduced from ~v(σ) by
taking the maximum of the two coordinates, as we required in condition (i)
above.

Definition 0.5.2 (Properties of the algorithm)

(Initialization). Algorithm A computes in constant time all feasible solutions
for the instance I1 and puts the corresponding encoding vectors into the vector
set VS1.

(Phases). Algorithm A works in phases. In the k-th phase (k = 2, . . . , n) the
algorithm processes the input piece Pk and generates the vector set VSk. This
is done as follows. The algorithm takes every possible vector ~v(σ) in VSk−1

and combines the input piece Pk in all possible ways with the underlying feasible
solution σ. The vectors that encode the resulting feasible solutions form the set
VSk. We assume that every single vector in VSk−1 can be handled in constant
time and only generates a constant number of vectors in VSk.

(Output). After the n-th phase, the algorithm computes for every vector in
VSn the corresponding objective value and outputs the best solution that it finds.

Note that two distinct feasible solutions σ1 and σ2 with ~v(σ1) = ~v(σ2) are
only stored once in any vector set. Now assume that X is an optimization
problem as described in Definition 0.5.1 and that A is an algorithm for X as
described in Definition 0.5.2. What can we say about the time complexity of A?
The initialization step of A needs only constant time. Since every single vector
in VSk−1 is handled in constant time, the time complexity for the k-th phase
is proportional to |VSk−1|. The time complexity for the output step is propor-
tional to |VSn|. To summarize, the overall time complexity of A is proportional
to

∑n
k=1 |VSk|. In general this value

∑n
k=1 |VSk| will be exponential in the size

of the input, and hence algorithm A will not have polynomial time complexity.
Let us try to transform algorithm A into an approximation algorithm for

problem X . Note that algorithm A accumulates a lot of intermediate data –
all the vector sets VSk – during its execution. We consider the vectors in VSk

as geometric points in d-dimensional Euclidean space. If two of these points
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are very close to each other (in the geometric sense) then they should also
encode very similar feasible solutions. And in this case there is no reason to
keep both of them! We simply remove one of them from the vector set. By
doing many such removals in an approriate way, we may thin out the vector
sets and (hopefully) bring their cardinalities down to something small. And if
the cardinalities of all vector sets VSk are small, then the time complexity of
algorithm A is (polynomially) small, too. And as only feasible solutions were
removed that had surviving feasible solutions close to them, we probably will
get a fairly good approximate solution in the end.

The approach of adding structure to the execution of an algorithm was
introduced by Ibarra & Kim [44] in 1975. Then Sahni [70] applied it to get
an FPTAS for a variety of scheduling problems, and Gens & Levner [25] applied
it to get an FPTAS for minimizing the weighted number of tardy jobs on a single
machine. In the 1990s, the approach was for instance used in the papers by Potts
& Van Wassenhove [68], Kovalyov, Potts & Van Wassenhove [52], and Kovalyov
& Kubiak [51]. Woeginger [80] studied the applicability of this approach in
a fairly general setting, and he identified several arithmetical and structural
conditions on some underlying cost and transition functions that automatically
guarantee the existence of an FPTAS. Since the conditions in [80] are very
technical, we will not discuss them in this tutorial.

In the following four sections, we will illustrate the technique of adding
structure to the execution of an algorithm with the help of four examples. Sec-
tion 0.5.1 deals (once again!) with makespan minimization on two identical
machines, Section 0.5.2 deals with the minimization of the total weighted job
completion time on two identical machines, Section 0.5.3 gives an FPTAS for
the knapsack problem, and Section 0.5.4 discusses the weighted number of tardy
jobs on a single machine. Section 0.5.5 contains a number of exercises.

0.5.1 Makespan on two identical machines

The problem. We return once again to the problem P2 | |Cmax that was
already discussed in Sections 0.3.1 and 0.4.1. Recall that in an instance I of
P2 | |Cmax there are n jobs Jj (j = 1, . . . , n) with processing times pj, and the
goal is to find a schedule on two identical machines M1 and M2 that minimizes
the makespan. Denote psum =

∑n
j=1 pj . Observe that the size |I| of the input

I satisfies

|I| ≥ log(psum) = const · ln(psum). (0.12)

Just to write down all the values pj in binary representation we need log(psum)
bits! We note that the exact value of the constant in (0.12) equals log(e) where
e is the base of the natural logarithm. For our purposes it is sufficient to know
that it is some positive number that does not depend on the instance I. In this
section, we will find a third approximation scheme for P2 | |Cmax. This time,
we will find an FPTAS whereas the approximation schemes in Sections 0.3.1
and 0.4.1 only were PTAS’s.



34

We encode a feasible schedule σ with machine loads L1 and L2 by the two-
dimensional vector [L1, L2]. Condition (i) in Definition 0.5.1 is trivially fulfilled,
since the objective value of the encoded schedule σ equals max{L1, L2}. Con-
dition (ii) goes hand in hand with the algorithm A from Definition 0.5.2.

Initialization. Set VS1 = {[p1, 0], [0, p1]}.
Phase k. For every vector [x, y] in VSk−1, put [x + pk, y] and
[x, y + pk] in VSk.

Output. Output the vector [x, y] ∈ VSn that minimizes the value
max{x, y}.

Since the coordinates of all vectors in all sets VSk are integers in the range
from 0 to psum, the cardinality of every vector set VSk is bounded from
above by O(p2

sum). Since the time complexity of the algorithm is propor-
tional to

∑n
k=1 |VSk|, the algorithm has a pseudo-polynomial time complexity

of O(n p2
sum).

How to simplify the vector sets. All considered vectors correspond to
geometric points in the rectangle [0, psum]×[0, psum]. We subdivide this rectangle
with horizontal and vertical cuts into lots of boxes; in both directions these cuts
are made at the coordinates ∆i for i = 1, 2, . . . , L where

∆ = 1 +
ε

2n
. (0.13)

and where

L = ⌈log∆(psum)⌉ = ⌈ln(psum)/ ln(∆)⌉ ≤ ⌈(1 +
2n

ε
) ln(psum)⌉. (0.14)

The last inequality holds since for all z ≥ 1 we have ln z ≥ (z − 1)/z (which can
be seen from the Taylor expansion of ln z). If two vectors [x1, y1] and [x2, y2]
fall into the same box of this subdivision, then their coordinates satisfy

x1/∆ ≤ x2 ≤ x1 ∆ and y1/∆ ≤ y2 ≤ y1 ∆. (0.15)

Since ∆ is very small, vectors in the same box indeed are very close to each
other. Now it is straightforward to simplify the vector set VSk: Out of every
box that has non-empty intersection with VSk we select a single vector and put
it into the so-called trimmed vector set VS#

k . All remaining vectors from the
vector set VSk that have not been selected are lost for the further computations.
And in phase k + 1, the so-called trimmed algorithm generates its new vector
set from the smaller set VS#

k , and not from the set VSk. What can be said

about the resulting time complexity? The trimmed vector set VS#
k contains at

most one vector from each box in the subdivision. Altogether there are O(L2)
boxes, and so by (0.14) and by (0.12) the number of boxes is polynomial in the
input size |I| and also polynomial in 1/ε. And since the time complexity of the

trimmed algorithm is proportional to
∑n

k=1 |VS#
k |, the trimmed algorithm has

a time complexity that is polynomial in the input size and in 1/ε.
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How to analyze the worst case behavior. The original (untrimmed) algo-
rithm works with vector sets VS1, . . . ,VSn where VSk+1 is always computed
from VSk. The trimmed algorithm works with vector sets VS#

1 , . . . ,VS#
n where

VS#
k+1 is always computed from VS#

k . We will prove the following statement

by induction on k that essentially says that the vector set VS#
k is a decent ap-

proximation of the vector set VSk: For every vector [x, y] ∈ VSk there exists a

vector [x#, y#] in VS#
k such that

x# ≤ ∆k x and y# ≤ ∆k y. (0.16)

Indeed, for k = 1 the statement follows from the inequalities in (0.15). Now
assume that the statement holds true up to some index k − 1, and consider
an arbitrary vector [x, y] ∈ VSk. The untrimmed algorithm puts this vector
into VSk when it adds job Jk to some feasible schedule for the first k − 1
jobs. This feasible schedule for the first k − 1 jobs is encoded by a vector
[a, b] ∈ VSk−1, and either [x, y] = [a + pk, b] or [x, y] = [a, b + pk] must hold.
Since both cases are completely symmetric, we assume without loss of generality
that [x, y] = [a + pk, b]. By the inductive assumption, there exists a vector

[a#, b#] in VS#
k−1 with

a# ≤ ∆k−1 a and b# ≤ ∆k−1 b. (0.17)

The trimmed algorithm generates the vector [a# + pk, b#] in the k-th phase.
The trimming step may remove this vector again, but it must leave some vector
[α, β] in VS#

k that is in the same box as [a# + pk, b#]. Now we are done. This
vector [α, β] is an excellent approximation of [x, y] ∈ VSk in the sense of (0.16).
Indeed, its first coordinate α satisfies

α ≤ ∆(a# + pk) ≤ ∆k a + ∆ pk ≤ ∆k(a + pk) = ∆kx.

For the first inequality, we used that [α, β] and [a#+pk, b#] are in the same box,
and for the second inequality, we used (0.17). By analogous arguments, we can
show that β ≤ ∆ky, and this completes the inductive proof. This proof looks
somewhat technical, but its essence is very simple: The untrimmed algorithm
and the trimmed algorithm roughly run in parallel and always perform roughly
parallel actions on perturbed versions of the same data.

At the very end of its execution, the untrimmed algorithm outputs that
vector [x, y] in VSn that minimizes the value max{x, y}. By our inductive
proof there is a vector [x#, y#] in VS#

n whose coordinates are at most a factor
of ∆n above the corresponding coordinates of [x, y]. We conclude that

max{x#, y#} ≤ max{∆n x, ∆n y} = ∆n max{x, y} = ∆nOpt,

and that our algorithm is a ∆n-approximation algorithm for P2 | |Cmax. How
large is ∆n? In (0.13) we defined ∆ = 1+ ε

2n . A well-known inequality says that
(1+z/n)n ≤ 1+2z holds for 0 ≤ z ≤ 1 (The left-hand side of this inequality is a
convex function in z, and its right-hand side is a linear function in z. Moreover,
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the inequality holds true at the two endpoints z = 0 and z = 1). By setting
z = ε/2 in this inequality, we get that ∆n ≤ 1+ε. So we indeed have constructed
an FPTAS!

Discussion. What are the special properties of problem P2 | |Cmax and of the
untrimmed algorithm that make this approach go through? Well, to get the time
complexity down to polynomial we made heavy use of the fact that the lengths
of the sides of the rectangle [0, psum] × [0, psum] grow at most exponentially
with the input size. The variable L defined in (0.14) depends logarithmically
on these sidelengths, and the final time complexity of the trimmed algorithm
depends polynomially on L. So, one necessary property is that the coordinates
of all vectors in the vector sets are exponentially bounded in |I|. The number
of boxes is roughly Ld where d is the dimension of the vectors. Hence, it is
important that this dimension is a fixed constant and does not depend on the
input.

The inductive argument in our analysis of the worst case behavior is based
on fairly general ideas. One way of looking at the algorithm is that it translates
old vectors for the instance Ik−1 into new vectors for the instance Ik. The
two translation functions are F1[x, y] = [x + pk, y] and F2[x, y] = [x, y + pk].
The coordinates of the new vectors are non-negative linear combinations of the
coordinates of the old vectors, and in fact that is the crucial property that makes
the inductive argument go through; see Exercise 0.5.2 in Section 0.5.5.

In the final step, the algorithm extracts the optimal objective value from
the final vector set. This corresponds to another function G[x, y] = max{x, y}
that translates vectors into numbers. Here the crucial property is that the value
G[(1+ε)x, (1+ε)y] is always relatively close to the value G[x, y]. This property
is crucial, but also fairly weak. It is fulfilled by most natural and by many
unnatural objective functions. The reader may want to verify that for instance
the function G[x, y] = x3 + max{4x, y2} also satisfies this property. For a more
general discussion and a better view on this approach we refer to Woeginger
[80].

0.5.2 Total weighted job completion time on two identical

machines

The problem. In the scheduling problem P2 | | ∑
wjCj the input consists of

n jobs Jj (j = 1, . . . , n) with positive integer processing times pj and positive
integer weights wj . All jobs are available for processing at time 0, and the goal
is to schedule them on two identical machines such that the weighted sum of job
completion times is minimized. Denote psum =

∑n
j=1 pj and wsum =

∑n
j=1 wj ,

and observe that the size |I| of the input I is at least log(psum) + log(wsum).
The problem P2 | | ∑

wjCj is NP-hard in the ordinary sense (Bruno, Coffman
& Sethi [16]). In this section we describe an FPTAS for P2 | | ∑

wjCj that uses
the technique of adding structure to the execution of an algorithm. We will
roughly follow the ideas of Sahni [70].
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The solution. We first renumber the jobs such that p1/w1 ≤ p2/w2 ≤ · · · ≤
pn/wn holds. A simple job interchange argument (see for instance [55]) shows
that there always exists an optimal schedule which does not contain any idle
time, and in which both machines process the jobs in increasing order of index.
We encode a feasible schedule σ by a 3-dimensional vector [L1, L2, Z]: The first
coordinate L1 is the total load of σ on the first machine, the second coordinate
L2 is the total load on the second machine, and the third coordinate Z is the
weighted sum of job completion times in σ. Our untrimmed algorithm A now
looks as follows.

Initialization. Set VS1 = {[p1, 0, p1w1], [0, p1, p1w1]}.
Phase k. For every vector [x, y, z] in VSk−1, put the vectors [x +
pk, y, z + wk(x + pk)] and [x, y + pk, z + wk(y + pk)] in VSk.

Output. Output the vector [x, y, z] ∈ VSn that minimizes the z
value.

In the k-th phase, the algorithm schedules job Jk at the end of the first machine
which increases the machine load by pk and the objective value by wk(x +
pk), and it schedules Jk at the end of the second machine which increases the
machine load by pk and the objective value by wk(y + pk). If one compares
this algorithm to the algorithm in Section 0.5.1 then one realizes that there
are many similarities between the two of them. In fact, the definition of the
trimmed algorithm and the analysis of its worst case behavior can be caried
out almost analogously to Section 0.5.1. Therefore, we will only briefly indicate
that all the properties are fulfilled that took shape in the discussion at the end
of Section 0.5.1.

The first two coordinates of all vectors in all sets VSk are integers in the
range from 0 to psum, and the third coordinate is an integer in the range from
0 to psumwsum. The coordinates of all vectors in the vector sets are exponen-
tially bounded in |I|, exactly as we required in the discussion at the end of
Section 0.5.1. There are two translation functions that translate old vectors for
the instance Ik−1 into new vectors for the instance Ik, and in both of them the
coordinates of the new vectors are non-negative linear combinations of the co-
ordinates of the old vectors. That is all we need for an inductive proof that the
vector set VS#

k is a good approximation of the vector set VSk, see Exercise 0.5.2
in Section 0.5.5. Finally, the objective value is extracted from a vector [x, y, z]
by the projection G[x, y, z] = z. If the values x, y, and z are perturbed by at
most a factor of 1 + ε, then the value of the projection is increased by at most
a factor of 1 + ε. Hence, we indeed have all the ingredients that are needed to
make the approach go through. This yields the FPTAS.

0.5.3 The knapsack problem

The problem. In the 0/1-knapsack problem an instance I consists of n items
with profits pj and weights wj (j = 1, . . . , n), together with a weight bound W .
All numbers in the data are non-negative integers. The goal is to select a subset
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of the items whose total weight does not exceed the weight bound W such that
the total profit of the selected items is maximized. Denote psum =

∑n
j=1 pj and

wsum =
∑n

j=1 wj ; the size |I| is at least log(psum)+log(wsum). The 0/1-knapsack
problem is NP-hard in the ordinary sense (Karp [48]). The first FPTAS for 0/1-
knapsack is due to Ibarra & Kim [44]. We present an FPTAS for 0/1-knapsack
that uses the technique of adding structure to the execution of an algorithm.

The solution. We encode a subset of the items by a two-dimensional vector
[ω, π]: The first coordinate ω is the total selected weight, and the second coor-
dinate π is the total selected profit. Consider the following algorithm for the
0/1-knapsack problem in the framework of Definition 0.5.2.

Initialization. If w1 ≤ W then set VS1 = {[w1, p1], [0, 0]}. And if
w1 > W then set VS1 = {[0, 0]}.
Phase k. For every vector [x, y] in VSk−1 do the following. Put
[x, y] into VSk. If x + wk ≤ W then put [x + wk, y + pk] in VSk.

Output. Output the vector [x, y] ∈ VSn that maximizes the y
value.

This algorithm is based on the standard dynamic programming formulation
of the 0/1-knapsack (Bellman & Dreyfus [15]). It looks fairly similar to the
algorithms we discussed in Sections 0.5.1 and 0.5.2. However, there is a fun-
damental difference: If-statements. The algorithms in Sections 0.5.1 and 0.5.2
treated all vectors in all vector sets exactly the same way. They translated the
old vectors unconditionally into new vectors. The above if-statements, however,
treat different vectors in a different way, and that makes the computation of the
vector sets less robust. But let us start with the properties that can be carried
over to our situation without any effort. The first coordinates of all vectors are
integers in the range from 0 to wsum, and the second coordinates are integers in
the range from 0 to psum. Hence, both coordinates are exponentially bounded
in |I|, exactly as is needed. There are two translation functions that translate
old vectors for the instance Ik−1 into new vectors for the instance Ik. In both of
them the coordinates of the new vectors are non-negative linear combinations
of the coordinates of the old vectors, exactly as we need. The objective value is
extracted from a vector [x, y] by the projection G[x, y] = y. If the values x and
y are perturbed by at most a factor of 1 + ε, then the value of the projection
is increased by at most a factor of 1 + ε, exactly as we need. So — it seems
that we have everything exactly as we need to make the approach go through.
Where is the problem?

The problem is that the inductive proof showing that VS#
k is a good ap-

proximation of VSk does not go through. Read the inductive argument in Sec-
tion 0.5.1 again. In a nutshell, this inductive argument finds for any vector ~v in
VSk a ∆k-approximation ~v# ∈ VS#

k in the following way. The vector ~v results
from a vector ~u ∈ VSk by a certain translation τ . By the inductive assumption,
this vector ~u has a ∆k−1-approximation ~u# ∈ VS#

k−1 which can be translated
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by the same translation τ into a vector ~z#. In the end, the vector that is se-
lected from the same box as ~z# for VS#

k yields the desired ∆k-approximation
for ~v. Done. The trouble, however, is that the vector ~z# itself might be in-
feasible. Then the if-statement weeds out ~z# immediately and the argument
breaks down. We stress that this problem is not only a technicality of the proof,
but in fact it may cause disastrous worst case behavior; see Exercise 0.5.9 in
Section 0.5.5. How can we rescue our approach? All the trouble originates from
infeasibilities. So, during the trimming maybe we should not take an arbitrary
vector from every box, but should always select the vector that is furthest from
causing infeasibility? And the vectors that are furthest from causing infeasibil-
ity are of course the vectors with the smallest x-coordinates! This indeed works
out. The new trimming step becomes the following:

From every box that intersects the untrimmed vector set, select a sin-
gle vector with minimum x-coordinate and put it into the trimmed
vector set VS#

k .

And the new inductive statement becomes the following:

For every vector [x, y] in the vector set VSk of the untrimmed algo-

rithm, there exists a vector [x#, y#] in VS#
k such that x# ≤ x and

y# ≤ ∆k y.

Note that the main difference to the old inductive statement in (0.16) is that
now we have the strong inequality x# ≤ x instead of the weaker x# ≤ ∆k x.
The inductive proof is fairly easy and is left to the reader, see Exercise 0.5.10
in Section 0.5.5.

Discussion. What are the special properties of the knapsack problem that
make this modified approach go through? As a rule of thumb, the approach goes
through as long as the region of feasible vectors [x1, . . . , xd] forms a halfspace of

IRd whose bounding hyperplane is of the form
∑d

i=1 aixi ≤ A with non-negative
real numbers ai and A. For instance in the knapsack problem above, the feasible
region is specified by the inequality x ≤ W −wk which clearly satisfies this rule
of thumb. The bounding hyperplane guides us in selecting the vectors that
are furthest from causing infeasibility: From every box we select the vector
that is furthest from the hyperplane. And this often makes the inductive proof
go through (we note also that the non-negativity of the coefficients ai of the
hyperplane is usually needed in the inductive argument). Exercise 0.5.11 in
Section 0.5.5 gives an illustration for this.

On the other hand, as soon as the feasible region is of a more complicated
form, then in general there is no hope of getting the approach to go through.
There is no simple way to identify the most promising feasible solution in a
box. Consider for instance vectors [x, y] in two-dimensional space whose feasible
region is specified by x ≤ 20 and y ≤ 20. If a box contains the two vectors [9, 11]
and [10, 10], which of them shall we put into the trimmed vector set? Either
choice may lead to a catastrophy.
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0.5.4 Weighted number of tardy jobs on a single machine

The problem. In the scheduling problem 1 | | ∑
wjUj the input consists of n

jobs Jj (j = 1, . . . , n) with processing times pj , weights wj , and due dates dj . All
jobs are available for processing at time 0. In some schedule a job is called early
if its processing is completed by its deadline, and otherwise it is called tardy.
The goal is to schedule the jobs on a single machine such that the total weight
of the tardy jobs is minimized. Denote psum =

∑n
j=1 pj and wsum =

∑n
j=1 wj ;

the size |I| is at least log(psum)+log(wsum). Problem 1 | | ∑
wjUj is NP-hard in

the ordinary sense (Karp [48]). The first FPTAS for 1 | | ∑
wjUj is due to Gens

& Levner [25]. We present an FPTAS for 1 | | ∑
wjUj that uses the technique

of adding structure to the execution of an algorithm.

The solution. We renumber the jobs such that d1 ≤ d2 ≤ · · · ≤ dn. Under
this numbering, there always exists an optimal schedule in which all early jobs
are processed before all tardy jobs and in which all early jobs are processed
in increasing order of index. We encode feasible schedules by two-dimensional
vectors [P, W ]: The first coordinate P is the total processing time of the sched-
uled early jobs, and the second coordinate W is the total weight of the tardy
jobs (that all are shifted far to the future). Consider the following algorithm for
1 | | ∑

wjUj in the framework of Definition 0.5.2.

Initialization. If p1 ≤ d1 then set VS1 = {[p1, 0], [0, w1]}. And if
p1 > d1 then set VS1 = {[0, w1]}.
Phase k. For every vector [x, y] in VSk−1 do the following. Put
[x, y + wk] into VSk. If x + pk ≤ dk then put [x + pk, y] in VSk.

Output. Output the vector [x, y] ∈ VSn that minimizes the y
value.

This algorithm is based on the dynamic programming formulation of Lawler &
Moore [56]. In the k-th phase, the algorithm first schedules job Jk tardy which
increases the objective value y by wk. Then it tries to schedule Jk early which
increases the total processing time of the early jobs to x+pk and only is possible
if this value does not exceed the due date dk.

The first coordinates of the vectors are bounded by psum, and their sec-
ond coordinates are bounded by wsum. In the two translation functions that
translate old vectors for the instance Ik−1 into new vectors for the instance Ik,
the coordinates of the new vectors are non-negative linear combinations of the
coordinates of the old vectors. The objective value is extracted from a vector
[x, y] by the same projection G[x, y] = y as in the knapsack algorithm in Sec-
tion 0.5.3. What about if-statements and infeasibilities? Only the x-coordinate
can cause infeasibilities, and so we may always select a vector with minimum
x-coordinate from any box and put it into the trimmed vector set VS#

k . Hence,
the same machinery as in the preceding sections and the same inductive proof
as in Section 0.5.3 will yield the FPTAS.
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0.5.5 Exercises

Exercise 0.5.1. When we discussed the general framework at the beginning
of Section 0.5, we required in Definition 0.5.1 that extracting the corresponding
objective value from a vector only takes constant time. Moreover, in Defini-
tion 0.5.2 we required that the initialization can be done in constant time, and
we required that every fixed vector in VSk−1 only generates a constant number
of vectors in VSk.

Would the approach break down, if we replace the word ‘constant’ by the
word ‘polynomial’? Are these restrictions necessary at all?

Exercise 0.5.2. Let X be an optimization problem X as described in Defini-
tion 0.5.1, and let A be an algorithm for X as described in Definition 0.5.2. The
feasible solutions are encoded by d-dimensional vectors. The algorithm gener-
ates the vector set VSk by applying the functions F1, . . . , Fq to every vector in

VSk−1. Every Fi (1 ≤ i ≤ q) is a linear function from IRd → IRd, and all the co-
ordinates of the images are non-negative linear combinations of the coordinates
of the preimages. The coefficients of these non-negative linear combinations
may depend on the input piece Pk, but they must remain non-negative. We
perform the trimming of the vector sets as in Section 0.5.1.

Prove that under these conditions, for every vector ~v in VSk there exists
a vector ~v# in VS#

k whose coordinates are at most a factor of ∆k above the
corresponding coordinates of ~v. [Hint: Translate the proof from Section 0.5.1
to the more general situation.]

Exercise 0.5.3. Construct an FPTAS for Pm | |Cmax by appropriately modi-
fying the approach described in Section 0.5.1. How do you encode the feasible
schedules as vectors? What is the dimension of these vectors? How does the
worst case guarantee depend on ε and m? How does the time complexity depend
on ε and m? Can you extend this approach to get an approximation scheme for
P | |Cmax?

Exercise 0.5.4. Consider n jobs Jj (j = 1, . . . , n) with positive integer pro-
cessing times pj on three identical machines. The goal is to find a schedule with
machine loads L1, L2, and L3 that minimizes the value L2

1 + L2
2 + L2

3, i.e., the
sum of squared machine loads.

Construct an FPTAS for this problem by following the approach described
in Section 0.5.1. Can you generalize this FPTAS to any fixed number m of
machines?

Exercise 0.5.5. Construct an FPTAS for R2 | |Cmax, i.e., makespan mini-
mization on two unrelated machines (see Section 0.4.2). What are the main
differences between this FPTAS and the FPTAS for makespan minimization on
two identical machines described in Section 0.5.1? Can you extend this approach
to get an FPTAS for Rm | |Cmax?
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Exercise 0.5.6. Generalize the FPTAS in Section 0.5.2 to Pm | | ∑
wjCj with

a fixed number of machines. How does the dimension of the vectors that encode
the schedules depend on m? Can you extend the approach to P | | ∑

wjCj?
Can you extend the approach to R2 | | ∑

wjCj? And to Rm | | ∑
wjCj? What

about R | | ∑
wjCj?

Exercise 0.5.7. Consider n jobs Jj (J = 1, . . . , n) with processing times pj

on two identical machines. The goal is to find a schedule that minimizes the
sum of squared job completion times. Design an FPTAS for this problem by
modifying the arguments from Section 0.5.2. Can you also handle the variant
where the goal is to minimize the sum of cubed job completion times?

Exercise 0.5.8. Section 0.5.2 discussed the problem of minimizing the sum of
weighted job completion times on two identical machines. This exercise asks
you to find an FPTAS for the problem of minimizing the sum of weighted job
starting times on two identical machines. How do you order the jobs in the
beginning?

Exercise 0.5.9. Assume that we apply the technique of adding structure to the
execution of an algorithm to the knapsack problem as discussed in Section 0.5.3.
Assume that in the trimming we select an arbitrary vector from every box and
do not care about critical coordinates.

Construct knapsack instances for which the worst case ratio of this approach
may become arbitrarily close to 2. [Hint: Use three items that all have roughly
the same profit. Choose the weight w1 very close to the weight bound W , and
choose the weight w2 even closer to W . Choose w3 such that the first and
third item together from a feasible solution, whereas the second and third item
together are not feasible. Make the trimming select the ‘wrong’ vector for VS#

2 .]

Exercise 0.5.10. In Section 0.5.3 we designed a new trimming step for
the knapsack problem that from every box selects a vector with minimum
x-coordinate for VS#

k . Prove that the resulting algorithm throughout ful-
fills the following statement: For every vector [x, y] ∈ VSk there is a vector

[x#, y#] ∈ VS#
k with x# ≤ x and y# ≤ ∆k y. [Hint: Follow the inductive

argument in Section 0.5.1.]

Exercise 0.5.11. Consider non-negative integers aj and bj (j = 1, . . . , n), and
a non-negative integer C. For a subset K ⊆ {1, . . . , n} denote AK =

∑
j∈K aj

and BK =
∑

j∈K bj. The goal is to find an index set K with AK + BK ≤ C

such that A2
K + B2

K is maximized.

Design an FPTAS for this problem. Encode a feasible subset K by the vector
[AK , BK ], and use the approach that is implicit in the discussion at the end of
Section 0.5.3.

Exercise 0.5.12. Consider n items with profits pj and weights wj (j =
1, . . . , n), together with a weight bound W . The goal is to fill two knapsacks
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of capacity W with the items such that the total profit of the packed items is
maximized.

Can you get an FPTAS for this problem by modifying the approach in Sec-
tion 0.5.3? What is the main obstacle? Check your thoughts against Exer-
cise 0.6.4 in Section 0.6.5.

Exercise 0.5.13. In Section 0.5.4 we described an FPTAS for minimizing the
total weight of the tardy jobs on a single machine. This exercise deals with
the dual problem of maximizing the total weight of the early jobs on a single
machine. We use the notation from Section 0.5.4.

(a) Suppose that we call the FPTAS from Section 0.5.4 for the minimization
problem, and then use the resulting schedule as an approximation for the
maximization problem. Explain why this will not yield an FPTAS for the
maximization problem.

(b) Design an FPTAS for maximizing the total weight of the early jobs on a
single machine.

Exercise 0.5.14. This exercise asks you to construct an FPTAS for the follow-
ing scheduling problem 1 | |Rej+

∑
Cj with job rejections. An instance consists

of n jobs Jj (j = 1, . . . , n) with a rejection penalty ej and a processing time pj .
The goal is to reject a subset of the jobs and to schedule the remaining jobs on
a single machine, such that the total penalty of all rejected jobs plus the sum
of completion times of the scheduled jobs becomes minimum. This problem is
NP-hard in the ordinary sense (Engels, Karger, Kolliopoulos, Sengupta, Uma
& Wein [19]).

How do you get an FPTAS via the technique of adding structure to the
execution of an algorithm? How do you encode the feasible schedules as vectors?
What is the dimension of these vectors? [Hint: The problem variant without
rejections is solved to optimality by scheduling the jobs in the order of non-
decreasing lengths. This is a special case of Smith’s ratio rule [75]. It is a good
idea to first bring the jobs into this ordering, and then to go through them and
to decide about rejections one by one. Then you only need to know the current
total size of all scheduled jobs and the current objective value.]

0.6 How to get negative results

In the previous sections we have concentrated on positive results, and we have
learnt how to construct approximation schemes. In this section we will focus on
negative results, that is, we discuss in-approximability techniques for showing
that a specific problem does not have a PTAS or an FPTAS unless P=NP. We
remind the reader that throughout this chapter we only consider optimization
problems in which all feasible solutions have non-negative cost.
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Assume that we want to prove that some optimization problem X is hard to
approximate. The first step in proving an in-approximability result always is to
check through the web-compendium of Crescenzi & Kann [17] that contains an
enormous list of references and results on in-approximability. At least, we will
find out whether problem X is already known to be hard to approximate. If we
do not find problem X in the compendium, then we will have to find our own
in-approximability proof. The structure of an in-approximability proof usually
is along the following line of argument:

Suppose that there is a good approximability result for problem X .
Then some intermediate problem Z1 must have a good algorithm.
Then some intermediate problem Z2 must have a good algorithm
. . . . . . . . . Then some intermediate problem Zk−1 must have a good
algorithm. Then the problem Zk that is already known to be hard
must have a good algorithm. Then P=NP.

The intermediate steps usually consist of classical polynomial time reductions
between decision problems or by approximation preserving reductions between
optimization problems. The number of intermediate problems Z1, . . . , Zk may
vary, but the goal is to eventually reach the conclusion P=NP. Since P=NP is
very unlikely to be true, it is also very unlikely that the starting assumption on
the good approximability result for problem X is true. Hence, if in this section
we talk about in-approximability and non-existence of some good algorithm,
then we will always mean in-approximability and non-existence of some good
algorithm under the assumption that P6=NP.

In the following four sections, we will illustrate some standard techniques
for proving in-approximability results. Section 0.6.1 deals with disproving the
existence of an FPTAS. Here the intermediate problem Z1 is a strongly NP-hard
problem, and in the first intermediate step we deduce the existence of a pseudo-
polynomial algorithm for Z1. Section 0.6.2 deals with disproving the existence
of a PTAS by applying the gap technique. Here the intermediate problem Z1

is an NP-hard problem, and in the first intermediate step we deduce the exis-
tence of a polynomial algorithm for Z1. Section 0.6.3 deals with disproving the
existence of a PTAS via APX-hardness arguments. Here the intermediate prob-
lems Z1, . . . , Zk are already known to be APX-hard, and the intermediate steps
are approximation-preserving reductions from problem Zi+1 to problem Zi. To
prove the in-approximability of X , one only needs to establish an L-reduction
from Z1 to X ; the remaining intermediate steps are proved in the literature.
Section 0.6.4 discusses an example for an L-reduction. Finally, Section 0.6.5
contains a long list of exercises.

0.6.1 How to show that there is no FPTAS

The main tool for disproving the existence of an FPTAS for some optimization
problem is to establish its strong NP-hardness. Strongly NP-hard problems
(that fulfill some weak and natural supplementary condition) cannot have an
FPTAS unless P=NP, or equivalently, every well-behaved problem that has an
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FPTAS is solvable in pseudo-polynomial time. This is a surprising connection
between seemingly unrelated concepts, and we want to discuss it in some detail.
Let us start by considering the specific example P | |Cmax; we have studied this
problem already in Section 0.3.2 where we designed a PTAS for it.

Example 0.6.1 An instance I of P | |Cmax is specified by the positive integer
processing times pj (j = 1, . . . , n) of n jobs together with the number m of iden-
tical machines. The goal is to find a schedule that minimizes the makespan. This
problem is NP-hard in the strong sense (Garey & Johnson [24]), and therefore
the problem remains NP-hard even if all numbers in the input are encoded in
unary.

One possible way of encoding an instance of P | |Cmax in unary is to first
write the value m in unary followed by the symbol #, followed by the list of job
lengths in unary with the symbol $ as a separation marker. Denote by psum =∑n

j=1 pj the total job processing time. Then the length |I|unary of an instance
I under this unary encoding equals psum + m + n. The instance I that consists
of m = 3 machines together with six jobs with lengths p1 = 1, p2 = 5, p3 = 2,
p4 = 6, p5 = 1, p6 = 8 (these numbers are written in decimal representation) is
then encoded as the string 111#1$11111$11$111111$1$11111111.

Throughout the next few paragraphs we will use the notation |I|unary and
|I|binary so that we can clearly distinguish between unary and binary encod-
ings of an instance. Now consider problem P | |Cmax in the standard binary
encoding where the size of instance I is |I|binary, and suppose that this problem
has an FPTAS. The time complexity of this FPTAS is bounded from above by
an expression |I|sbinary/εt where s and t are fixed positive integers. Consider the
algorithm A for P | |Cmax that results from calling the FPTAS for an instance I
with precision ε = 1/(psum +1). What is the time complexity of this algorithm,
and how close does algorithm A come to the optimal objective value? The time
complexity of algorithm A is bounded from above by |I|sbinary · (psum +1)t which

in turn is bounded by O(|I|s+t
unary). Hence, A is a pseudo-polynomial algorithm

for P | |Cmax. Next we claim that algorithm A always finds an optimal solution
for instance I. Otherwise, we would have

Opt(I) + 1 ≤ A(I) ≤ (1 + ε)Opt(I) = (1 +
1

psum + 1
)Opt(I).

Here the first inequality follows from the fact that all possible objective val-
ues are integers, and the other inequality follows by the chosen precision of
approximation. The displayed inequality implies Opt(I) ≥ psum + 1 which is
blatantly wrong; even the trivial schedule that assigns all the jobs to the same
machine has makespan at most psum. Hence, algorithm A outputs an optimal
solution. To summarize, if there is an FPTAS for P | |Cmax then there is a
pseudo-polynomial algorithm A for P | |Cmax. And since P | |Cmax is strongly
NP-hard, the existence of a pseudo-polynomial algorithm for this problem im-
plies P=NP. In other words, unless P=NP problem P | |Cmax cannot have an
FPTAS.
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The above argument is fairly general. It only exploits the fact that all
possible objective values are integral, and the fact that Opt ≤ psum. The
argument easily generalizes to the following well-known theorem of Garey &
Johnson [23]; see Exercise 0.6.1 in Section 0.6.5 for a sketch of its proof.

Theorem 0.6.2 (Well-behaved and strongly NP-hard =⇒ no FPTAS)
Let X be a strongly NP-hard minimization or maximization problem that satis-
fies the following two conditions:

(i) All feasible solutions of all instances I have integral costs.

(ii) There exists a polynomial p such that Opt(I) ≤ p(|I|unary) holds for all
instances I.

Then the optimization problem X does not have an FPTAS unless P=NP.

Note that the conditions (i) and (ii) in this theorem are not very restrictive, and
are fulfilled by most natural optimization problems (and see Exercise 0.6.2 in
Section 0.6.5 for some optimization problems that are less natural and do not
fulfill these conditions). In other words, every well-behaved problem with an FP-
TAS is pseudo-polynomially solvable! What about the reverse statement? Does
every well-behaved pseudo-polynomially solvable problem have an FPTAS? The
answer to this question is no, and it actually is quite easy to construct (somewhat
artificial) counter-examples that are pseudo-polynomially solvable problems but
do not have an FPTAS; see for example Exercise 0.6.3 in Section 0.6.5. What
we are going to do next is to discuss a quite natural counter-example with these
properties.

Example 0.6.3 (Korte & Schrader [50])
Consider the following two-dimensional variant of the knapsack problem: There
are n items with positive integer weights wj and positive integer volumes vj

(j = 1, . . . , n), and there is a knapsack with a weight capacity W and a volume
capacity V . The goal is to pack the maximum number of items into the knapsack
without exceeding the weight and volume limits.

Although this two-dimensional knapsack problem is easily solved in pseudo-
polynomial time, it does not have an FPTAS unless P=NP.

The proof is done by a reduction from the following partition problem that is
NP-hard in the ordinary sense: The input to the partition problem consists of
2m positive integers a1, . . . , a2m that sum up to 2A and that fulfill A/(m+1) <
ak < A/(m − 1) for k = 1, . . . , 2m. The problem is to decide whether there
exists an index set K such that

∑
k∈K ak = A holds. From an instance of

the partition problem, we now define the following instance of the knapsack
problem with n = 2m items: For k = 1, . . . , 2m, item k has weight wk = ak and
volume vk = A − ak. The weight bound is W = A, and the volume bound is
V = (m − 1)A.

Now suppose that the two-dimensional knapsack problem does possess an
FPTAS. Set ε = 1

2m and call the FPTAS for the constructed two-dimensional
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knapsack instance. Note that the resulting time complexity is polynomially
bounded in the size of the two-dimensional knapsack instance, and that it is also
polynomially bounded in the size of the partition instance. (1) First assume that
the FPTAS returns a solution K with |K| ≥ m items. Denote Z =

∑
k∈K ak.

Then the restriction imposed by the weight capacity becomes Z ≤ A, and the
restriction imposed by the volume capacity becomes |K|A−Z ≤ (m−1)A. Since
|K| ≥ m, this altogether implies A ≥ Z ≥ (|K| − m + 1)A ≥ A. Consequently,
the index set K constitutes a solution to the partition problem. (2) Now assume
that the partition problem possesses a solution K with

∑
k∈K ak = A. Since

A/(m + 1) < ak < A/(m − 1) holds for all k, this yields |K| = m. Then
the index set K constitutes a feasible solution to the knapsack problem with
|K| = m items. By the choice of ε, the approximate objective value that is
computed by the FPTAS must be at least (1 − ε)m > m − 1. And since the
objective function only takes integer values, the approximate objective value
must be at least m. To summarize, the FPTAS would find in polynomial time
a solution with at least m items for the knapsack problem if and only if the
partition problem has a solution. Since the partition problem is NP-hard, this
would imply P=NP.

Also this time our argument is fairly general. It only exploits the integrality
of the objective value and the inequality Opt ≤ 2m. It can be generalized to a
proof for the following theorem; see Exercise 0.6.1 in Section 0.6.5.

Theorem 0.6.4 (Very well-behaved and NP-hard =⇒ no FPTAS)
Let X be an NP-hard minimization or maximization problem that satisfies the
following two conditions:

(i) All feasible solutions of all instances I have integer cost.

(ii) There exists a polynomial p such that Opt(I) ≤ p(|I|) holds for all in-
stances I.

Then the optimization problem X does not have an FPTAS unless P=NP.

0.6.2 How to show that there is no PTAS: The gap tech-

nique

The oldest and simplest tool for disproving the existence of a PTAS under the
assumption that P 6=NP is the so-called gap technique. The gap technique has
first been used in the mid-1970s by Sahni & Gonzalez [71], Garey & Johnson
[22], and Lenstra & Rinnooy Kan [58]. The idea is to do an NP-hardness proof
via a polynomial time reduction that creates a wide gap between the objective
values of NO-instances and the objective values of YES-instances. A more
precise statement of this idea yields the following theorem.

Theorem 0.6.5 (The gap technique)
Let X be an NP-hard decision problem, let Y be a minimization problem, and
let τ be a polynomial time computable transformation from the set of instances
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of X into the set of instances of Y that satisfies the following two conditions for
fixed integers a < b:

(i) Every YES-instance of X is mapped into an instance of Y with optimal
objective value at most a.

(ii) Every NO-instance of X is mapped into an instance of Y with optimal
objective value at least b.

Then problem Y does not have a polynomial time ρ-approximation algorithm
with worst case ratio ρ < b/a unless P=NP. Especially, problem Y does not
have a PTAS unless P=NP.

There is an analogous theorem for maximization problems; see Exercise 0.6.5
in Section 0.6.5. Why is Theorem 0.6.5 true? Well, suppose that there would
exist a polynomial time approximation algorithm whose worst case ratio ρ is
strictly smaller than b/a. Take an arbitrary instance I of problem X , transform
it in polynomial time with the help of τ , and feed the resulting instance τ(I)
into the polynomial time approximation algorithm for problem Y . If I is a
YES-instance, then the optimal objective value of τ(I) is at most a, and the
approximation algorithm yields a solution with value strictly less than (b/a)a =
b. If I is a NO-instance, then the optimal objective value of τ(I) is at least b,
and the approximation algorithm cannot yield a solution with value better than
the optimal value b. Hence, we could distinguish in polynomial time between
YES-instances (the approximate value of τ(I) is < b) and NO-instances (the
approximate value of τ(I) is ≥ b) of the NP-hard problem X . And this of
course would imply P=NP.

Theorem 0.6.6 (Lenstra’s impossibility theorem)
Let Y be a minimization problem for which all feasible solutions of all instances
I have integer cost. Let g be a fixed integer. Assume that the problem of deciding
whether an instance I of Y has a feasible solution with cost at most g is NP-hard.

Then problem Y does not have a polynomial time ρ-approximation algorithm
with worst case ratio ρ < (g + 1)/g unless P=NP. In fact, problem Y does not
have a PTAS unless P=NP.

Lenstra’s impossibility theorem is a special case of Theorem 0.6.5: As decision
problem X , we use the problem of deciding whether there is a feasible solution
with cost at most g. As polynomial time transformation τ from X to Y , we use
the identity transformation. Moreover, we set a = g and b = g + 1.

The two Theorems 0.6.5 and 0.6.6 are surprisingly simple and surprisingly
useful. Let us give a demonstration of their applicability.

Example 0.6.7 (Lenstra, Shmoys & Tardos [60])
In the scheduling problem R | |Cmax the input consists of m unrelated machines
together with n jobs Jj (j = 1, . . . , n). If job Jj is assigned to machine Mi then
its processing time equals pij. The goal is to find a schedule that minimizes the
makespan.
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The problem R | |Cmax does not have a polynomial time ρ-approximation
algorithm with worst case ratio ρ < 4/3 unless P=NP.

This result is established via Lenstra’s impossibility theorem. More precisely, we
will describe a polynomial time reduction from the well-known 3-Dimensional
Matching problem (3DM); see Karp [48]. An instance of 3DM consists of three
sets A = {a1, . . . , aq}, B = {b1, . . . , bq}, and C = {c1, . . . , cq}, together with
a subset T of A × B × C. The question is to decide whether T does contain
a perfect matching T ′, that is, a subset T ′ of cardinality q that covers every
element in A∪B∪C. Given any instance of 3DM, we now construct an instance
of the scheduling problem R | |Cmax. There are m = |T | machines where every
machine corresponds to a triple in T , and the number n of jobs is equal to
|T |+2q. We distinguish two types of jobs: For every aj , bj, and cj (j = 1, . . . , q)
there are corresponding element jobs J(aj), J(bj), and J(cj). Moreover there
are |T | − q so-called dummy jobs. Now let us define the processing times of
the jobs. Consider a machine Mi, and let Ti = (aj , bk, cl) be the triple that
corresponds to Mi. On machine Mi, the processing time of the three element
jobs J(aj), J(bk), and J(cl) equals 1. All the other jobs (i.e., all dummy jobs
and the remaining 3q− 3 element jobs) have processing time 3 on this machine.
This completes the description of the scheduling instance.

(1) If T contains a perfect matching, then we can easily construct a schedule
of length 3: For each triple Ti = (aj , bk, cl) in the perfect matching we schedule
the three element jobs J(aj), J(bk), and J(cl) on machine Mi. We schedule
the dummy jobs on the remaining empty machines. Hence, if we have a YES-
instance of the 3DM problem, then there exists a schedule of length 3. (2) On
the other hand, if there is a schedule of length 3, then there is a perfect matching.
In a schedule of length 3 all element jobs must have length 1. Furthermore,
there are |T |− q machines reserved for the |T |− q dummy jobs; the q remaining
machines each process exactly three element jobs. It is easy to see that the
triples corresponding to these q machines form a perfect matching. Hence, if
we have a NO-instance of the 3DM problem, then (due to the integrality of job
data) every feasible schedule has makespan at least 4.

Finally, we can apply Lenstra’s impossibility theorem with g = 3 and thus get
the 4/3 in-approximability result as claimed in the statement in Example 0.6.7.
We remark that Lenstra, Shmoys & Tardos [60] even prove NP-hardness of
deciding whether the makespan is at most g = 2; this of course leads to a
better in-approximability bound of 3/2. We conclude this section by listing
several in-approximability results in scheduling that have been derived via the
gap technique. All listed results hold under the assumption P 6=NP, and we are
not going to repeat this assumption in every single case.

• Lenstra & Rinnooy Kan [58] prove that the problem P | prec, pj=1Cmax,
i.e., makespan minimization on parallel identical machines with prece-
dence constraints and unit processing times, does not have a polynomial
time approximation algorithm with performance guarantee ρ < 4/3. The
reduction is from the maximum clique problem in graphs and uses Theo-
rem 0.6.6 with parameter g = 3.
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• Hoogeveen, Lenstra & Veltman [39] derive in-approximability results for
minimizing the makespan for jobs with unit processing times under com-
munication delays. The variant with a restricted number of machines does
not allow a performance guarantee ρ < 4/3 (Theorem 0.6.6 with param-
eter g = 3), whereas the variant with an unlimited number of machines
does not allow a performance guarantee ρ < 7/6 (Theorem 0.6.6 with
parameter g = 6).

• Williamson et al. [79] prove that the three shop problems O | |Cmax,
F | |Cmax, and J | |Cmax all do not allow polynomial time approximation
algorithms with performance guarantee ρ < 5/4 (Theorem 0.6.6 with pa-
rameter g = 4).

• Kellerer, Tautenhahn & Woeginger [49] discuss the problem 1 | rj |
∑

Fj ,
i.e., minimizing the total flow time of n jobs on a single machine (where
Fj = Cj − rj). They show that no polynomial time approximation algo-
rithm can have a performance guarantee n1/2−δ. This is done by using a
variation of Theorem 0.6.5 with parameters a ≈ n1/2 and b ≈ n. Leonardi
& Raz [61] derive similar results for P | rj |

∑
Fj , i.e., minimization of the

total flow time on parallel machines.

• Schuurman & Woeginger [73] show that makespan minimization of
pipelined operator graphs does not allow a performance guarantee ρ < 4/3
by applying Theorem 0.6.5 with parameters a = 6 and b = 8. Interest-
ingly, the intermediate integer value 7 between a = 6 and b = 8 can be
excluded by means of a parity argument.

0.6.3 How to show that there is no PTAS: APX-hardness

Classical polynomial time reductions (as defined in Appendix 0.8) are the right
tool for carrying over NP-hardness from one decision problem to another: If
problem X is hard and if problem X polynomially reduces to another prob-
lem Y , then also this other problem Y is hard. Does there exist a similar tool
for carrying over in-approximability from one optimization problem to another?
Yes, approximation preserving reductions are such a tool. Loosely speaking, ap-
proximation preserving reductions are reductions that preserve approximability
within a multiplicative constant. A lot of approximation preserving reductions
have been introduced over the years, like the A-reduction, the F -reduction, the
L-reduction, the P -reduction, the R-reduction, for which we refer the reader
to the Ph.D. thesis of Kann [47]. In this chapter we will only deal with the
L-reduction which is most practical for showing that one problem is as hard to
approximate as another.

Definition 0.6.8 (Papadimitriou & Yannakakis [64])
Let X and Y be optimization problems. An L-reduction from problem X to
problem Y is a pair of functions (R, S) that satisfy the following properties. R
is a function from the set of instances of X to the set of instances of Y . S
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is a function from the set of feasible solutions of the instances of Y to the set
of feasible solutions of the instances of X. Both functions are computable in
polynomial time.

(i) For any instance I of X with optimal cost Opt(I), R(I) is an instance of
Y with optimal cost Opt(R(I)) such that for some fixed positive constant
α

Opt(R(I)) ≤ α · Opt(I).

(ii) For any feasible solution s of R(I), S(s) is a feasible solution of I such
that for some fixed positive constant β

|c(S(s)) − Opt(I)| ≤ β · |c(s) − Opt(R(I))|.

Here c(S(s)) and c(s) represent the costs of the feasible solutions S(s) and
s respectively.

Intuitively speaking, the two functions R and S draw a close connection between
the approximability behavior of X and the approximability behavior of Y . By
condition (ii), S is guaranteed to return a feasible solution of I which is not much
more suboptimal than the given solution s of R(I). Note also that S transforms
optimal solutions of R(I) into optimal solutions of I. And condition (i) simply
states that the optimal values of I and R(I) should stay relatively close together.

Theorem 0.6.9 (Papadimitriou & Yannakakis [64])
Assume that there exists an L-reduction with parameters α and β from the min-
imization problem X to the minimization problem Y . Assume furthermore that
there exists a polynomial time approximation algorithm for Y with performance
guarantee 1 + ε. Then there exists a polynomial time approximation algorithm
for X with performance guarantee 1 + αβε.

Here is the straightforward proof of this theorem. Consider the following poly-
nomial time approximation algorithm for X . For a given instance I of X , the
algorithm (1) first computes the instance R(I) of Y . (2) Then it applies the
polynomial time approximation algorithm for Y with performance guarantee
1 + ε to instance R(I), and thus gets an approximate solution s. (3) Finally
it computes the feasible solution S(s) of I and outputs it as approximate solu-
tion for I. By Definition 0.6.8 all three steps can be done in polynomial time.
Moreover, the cost c(S(s)) of the found approximate solution for I fulfills the
following inequalities.

|c(S(s)) − Opt(I)|
Opt(I)

≤ β
|c(s) − Opt(R(I))|

Opt(I)

≤ αβ
|c(s) − Opt(R(I))|

Opt(R(I))
≤ αβε.

For the first inequality we used condition (ii) from Definition 0.6.8, and for
the second inequality we used condition (i) from Definition 0.6.8. The final



52

inequality follows since we used a (1+ε)-approximation algorithm in the second
step. This completes the proof.

Theorem 0.6.9 also holds true, if X is a maximization problem, or if Y is a
maximization problem, or if both are maximization problems; see Exercise 0.6.9
in Section 0.6.5. Since 1 + αβε comes arbitrarily close to 1 when 1 + ε comes
arbitrarily close to 1, we get the following immediate consequence.

Theorem 0.6.10 Assume that X and Y are optimization problems, and that
there is an L-reduction from X to Y . If there is a PTAS for Y , then there is a
PTAS for X. Equivalently, if X does not have a PTAS, then Y does not have
a PTAS.

Sloppily speaking, L-reductions maintain the non-existence of PTAS’s in very
much the same way that classical polynomial time reductions maintain the non-
existence of polynomial time algorithms. Next, we introduce the complexity
class APX that plays the same role for L-reductions as NP plays for polynomial
time reductions: The complexity class APX consists of all minimization and
maximization problems that have a polynomial time approximation algorithm
with some finite worst case ratio. An optimization problem is called APX-hard
if every problem in APX can be L-reduced to it.

Many prominent optimization problems have been shown to be APX-hard,
such as the maximum satisfiability problem, the maximum 3-dimensional match-
ing problem, the problem of finding the maximum cut in a graph, the traveling
salesman problem with the triangle-inequality. And for not a single one of these
APX-hard optimization problems, a PTAS has been found! Theorem 0.6.10
yields that if there does exist a PTAS for one APX-hard problem, then all
problems in APX have a PTAS. Moreover, in a breakthrough result from 1992
Arora, Lund, Motwani, Sudan & Szegedy [6] managed to establish a connection
between APX-hardness and the infamous P=NP problem.

Theorem 0.6.11 (Arora, Lund, Motwani, Sudan & Szegedy [6])
If there exists a PTAS for some APX-hard problem, then P=NP.

So finally, here is the tool for proving that an optimization problem X cannot
have a PTAS unless P=NP: Provide an L-reduction from an APX-hard problem
to X . A detailed example of an L-reduction will be presented in Section 0.6.4.
For more examples, we refer the reader to the Ph.D. thesis of Kann [47], or
to the web-compendium of Crescenzi & Kann [17], or to the survey chapter of
Arora & Lund [7]. We conclude this section by listing some in-approximability
results in scheduling that have been derived via APX-hardness proofs.

• Hoogeveen, Schuurman & Woeginger [40] establish APX-hardness of sev-
eral scheduling problems with the objective of minimizing the sum of all
job completion times: The problems R | rj |

∑
Cj and R | | ∑

wjCj on
unrelated machines, and the shop problems O | | ∑

Cj , F | | ∑
Cj , and

J | | ∑
Cj all are APX-hard.

• Hoogeveen, Skutella & Woeginger [41] show that preemptive scheduling
with rejection on unrelated machines is APX-hard.
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• Sviridenko & Woeginger [76] show that makespan minimization in no-wait
job shops (Jm |no-wait |Cmax) is APX-hard.

0.6.4 An example for an L-reduction

In this section we describe and discuss in detail an L-reduction (cf. Defini-
tion 0.6.8) from an APX-hard optimization problem X to an optimization prob-
lem Y . This L-reduction is taken from Azar, Epstein, Richter & Woeginger [13].
The optimization problem Y is the scheduling problem defined below in Exam-
ple 0.6.12. The APX-hard optimization problem X considered is Maximum
Bounded 3-Dimensional Matching (Max-3DM-B).

The problem Max-3DM-B is an optimization version of the 3-Dimensional
Matching problem defined in Section 0.6.2. An instance of Max-3DM-B con-
sists of three sets A = {a1, . . . , aq}, B = {b1, . . . , bq}, and C = {c1, . . . , cq},
together with a subset T of A × B × C. Any element in A, B, C occurs in
one, two, or three triples in T ; note that this implies q ≤ |T | ≤ 3q. The goal is
to find a subset T ′ of T of maximum cardinality such that no two triples of T ′

agree in any coordinate. Such a set of triples is called independent. The measure
of a feasible solution T ′ is the cardinality of T ′. Petrank [66] has shown that
Max-3DM-B is APX-hard even if one only allows instances where the optimal
solution consists of q = |A| = |B| = |C| triples; in the following we will only
consider this additionally restricted version of Max-3DM-B.

Example 0.6.12 An instance I of R | | ∑
L2

i is specified by m unrelated ma-
chines and n jobs. The processing time of job Jj (j = 1, . . . , n) on machine
Mi (i = 1, . . . , m) is pji. In some fixed schedule we denote the total processing
time (or load) assigned to machine Mi by Li. The goal is to find a schedule that
minimizes

∑m
i=1 L2

i , the sum of squared machine loads.
The problem R | | ∑

L2
i is strongly NP-hard. Awerbuch, Azar, Grove, Kao,

Krishnan & Vitter [8] describe a polynomial time approximation algorithm with
worst case ratio 3 +

√
8 for R | | ∑

L2
i . The problem R | | ∑

L2
i is APX-hard,

since there exists an L-reduction from Max-3DM-B to R | | ∑
L2

i . Conse-
quently, R | | ∑

L2
i does not have a PTAS unless P=NP.

For the L-reduction from Max-3DM-B to R | | ∑
L2

i we first need to specify
two functions R and S as required in Definition 0.6.8. Given any instance
I of Max-3DM-B, we construct an instance R(I) of the scheduling problem
R | | ∑

L2
i . The instance R(I) contains 3q machines. For every triple Ti in T ,

there is a corresponding machine M(Ti). Moreover, there are 3q − |T | so-called
dummy machines. The instance R(I) contains 5q jobs. For every aj , bj , and
cj (j = 1, . . . , q) there are corresponding element jobs J(aj), J(bj), and J(cj).
Moreover there are 2q so-called dummy jobs. Now let us define the processing
times of the jobs. Consider a triple Ti = (aj , bk, cl) and its corresponding
machine M(Ti). On machine M(Ti), the processing time of the three element
jobs J(aj), J(bk), and J(cl) equals 1. All other element jobs have infinite
processing time on M(Ti). All dummy jobs have processing time 3 on machine
M(Ti). On a dummy machine, all dummy jobs have processing time 3 and
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all element jobs have infinite processing time. This completes the description
of the scheduling instance R(I). Note that this construction is very similar to
the polynomial time reduction that we used in the proof of Example 0.6.7 in
Section 0.6.2.

Next we specify a function S as required in Definition 0.6.8. Let s be a
feasible schedule for an instance R(I) of R | | ∑

L2
i . A machine M(Ti) in the

schedule s is called good, if it processes three jobs of length 1. Note that these
three jobs can only be the jobs J(aj), J(bk), and J(cl) with Ti = (aj , bk, cl). We
define the feasible solution S(s) for the instance I of Max-3DM-B to consist
of all triples Ti for which the machine M(Ti) is good.

Clearly, the two defined functions R and S both are computable in polyno-
mial time. It remains to verify that they satisfy the conditions (i) and (ii) in
Definition 0.6.8. Let us start by discussing condition (i). Since we only con-
sider instances of Max-3DM-B where the optimal solution consists of q triples,
we have Opt(I) = q. Now consider the following schedule for instance R(I):
For each triple Ti = (aj , bk, cl) in the optimal solution to I, we schedule the
three element jobs J(aj), J(bk), and J(cl) on machine M(Ti). The 2q dummy
jobs are assigned to the remaining 2q empty machines so that each machine
receives exactly one dummy job. In the resulting schedule every machine has
load 3, and hence the objective value of this schedule is 27q. Consequently,
Opt(R(I)) ≤ 27q = 27Opt(I) and condition (i) is fulfilled with α = 27.

Condition (ii) is more tedious to verify. Consider a feasible schedule s for
an instance R(I) of R | | ∑

L2
i . Without loss of generality we may assume that

in s every job has finite processing time; otherwise, the objective value c(s) is
infinite and condition (ii) is trivially satisfied. For k = 0, 1, 2, 3 let mk denote
the number of machines in schedule s that process exactly k jobs of length 1.
Then the total number of machines equals

m0 + m1 + m2 + m3 = 3q, (0.18)

and the total number of processed element jobs of length 1 equals

m1 + 2m2 + 3m3 = 3q. (0.19)

Note that by our definition of the function S, the objective value c(S(s)) of the
feasible solution S(s) equals m3. Below we will prove that c(s) ≥ 29q − 2m3

holds. Altogether, this then will yield that

|c(S(s))−Opt(I)| = q −m3 =
1

2
(29q− 2m3 − 27q) ≤ 1

2
|c(s)−Opt(R(I))|

and that condition (ii) is fulfilled with β = 1/2. Hence, it remains to prove
c(s) ≥ 29q− 2m3. Let us remove all dummy jobs from schedule s and then add
them again in the cheapest possible way, such that the resulting new schedule s′

has the smallest possible objective value that can be reached by this procedure.
Since c(s) ≥ c(s′), it will be sufficient to establish the inequality c(s′) ≥ 29q −
2m3. So, what is the cheapest way of adding the 2q dummy jobs of length 3
to m0 empty machines, to m1 machines with load 1, to m2 machines with
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load 2, and to m3 machines with load 3? It is quite straightforward to see
that each machine should receive at most one dummy job, and that the dummy
jobs should be added to the machines with the smallest loads. The inequality
(0.19) implies m3 ≤ q, and then (0.18) yields m0 + m1 + m2 ≥ 2q. Hence, the
m3 machines of load 3 will not receive any dummy job. The inequality (0.19)
implies m1 + m2 + m3 ≥ q, and then (0.18) yields m0 ≤ 2q. Hence, the m0

empty machines all will receive a dummy job. For the rest of the argument we
will distinguish two cases.

In the first case we assume that m0 +m1 ≥ 2q. In this case there is sufficient
space to accommodate all dummy jobs on the machines with load at most 1.
Then schedule s′ will have m0 + m3 machines of load 3, m2 machines of load 2,
m0 + m1 − 2q machines of load 1, and 2q − m0 machines of load 4. From
(0.18) and (0.19) we get that m0 = m2 + 2m3 and that m1 = 3q − 2m2 − 3m3.
Moreover, our assumption m0 + m1 ≥ 2q is equivalent to m2 + m3 − q ≤ 0. We
conclude that

c(s′) ≥ 9(m2 + 3m3) + 4m2 + (q − m2 − m3) + 16(2q − m2 − 2m3)

= 33q − 4m2 − 6m3

≥ 33q − 4m2 − 6m3 + 4(m2 + m3 − q) = 29q − 2m3.

This completes the analysis of the first case. In the second case we assume that
m0 + m1 < 2q. In this case there is not sufficient space to accommodate all
dummy jobs on the machines with load at most 1, and some machines with
load 2 must be used. Then schedule s′ will have m0 + m3 machines of load 3,
m1 machines of load 4, 2q−m0−m1 machines of load 5, and m0 +m1 +m2−2q
machines of load 2. As in the first case we use m0 = m2 + 2m3 and m1 =
3q−2m2−3m3. Our assumption m0+m1 < 2q is equivalent to q−m2−m3 < 0.
We conclude that

c(s′) ≥ 9(m2 + 3m3) + 16(3q − 2m2 − 3m3) + 25(m2 + m3 − q) + 4(q − m3)

= 27q + 2m2 > 27q + 2m2 + 2(q − m2 − m3) = 29q − 2m3.

This completes the analysis of the second case. To summarize, we have shown
that also condition (ii) in Definition 0.6.8 is satisfied. We have established all
the necessary properties of an L-reduction from Max-3DM-B to R | | ∑

L2
i .

Hence, problem R | | ∑
L2

i indeed is APX-hard.

0.6.5 Exercises

Exercise 0.6.1. This exercise concerns the two Theorems 0.6.2 and 0.6.4 that
were formulated in Section 0.6.1.

(a) Prove Theorem 0.6.2 by mimicking the arguments that we used in the
discussion of Example 0.6.1. [Hint: Suppose that there is an FPTAS, and
call it with some ε that satisfies 1/ε > p(|I|unary).]
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(b) Prove Theorem 0.6.4 by mimicking the arguments that we used in the
discussion of Example 0.6.3. [Hint: Suppose that there is an FPTAS, and
call it with some ε that satisfies 1/ε > p(|I|).]

(c) Deduce Theorem 0.6.2 from Theorem 0.6.4. [Hint: Read the chapter in
Garey & Johnson [24] on strong NP-hardness. For a problem X and a
polynomial q Garey & Johnson define the subproblem Xq of X that con-
sists of all instances I of X in which the value of the largest occuring
number is bounded by q(|I|). Garey & Johnson say that a problem X is
strongly NP-hard, if there exists a polynomial q such that the subproblem
Xq is NP-hard. Now consider a strongly NP-hard optimization problem X
that satisfies the conditions of Theorem 0.6.2. Argue that for some appro-
priately defined polynomial q, the corresponding subproblem Xq satisfies
the conditions of Theorem 0.6.4.]

Exercise 0.6.2. Decide whether the following strongly NP-hard minimization
problems have an FPTAS. Note that you cannot apply Theorem 0.6.2 to these
problems! As in P | |Cmax, the input consists of n positive integer processing
times pj (j = 1, . . . , n) and of m identical machines. The objective functions
are the following.

(a) For a schedule σ with maximum machine load Cmax and minimum machine
load Cmin, the objective value is f(σ) = Cmax/Cmin. [Hint: Use the
fact that even the following decision version of P | |Cmax is strongly NP-
hard. Given an instance, does there exist a feasible schedule in which all
machines have equal load.]

(b) For a schedule σ with makespan Cmax, the objective value is f(σ) =
1 − 1/Cmax.

(c) For a schedule σ with makespan Cmax, the objective value is f(σ) =
4 − 1/2Cmax. [Hint: If ε is large and satisfies log(1/ε) ≤ psum, then you
may come within a factor of 1 + ε of optimal by using the algorithm that
is described in the paragraph after inequality (0.6) in Section 0.3.2. If ε is
small and satisfies log(1/ε) ≥ psum, then you have a lot of time for solving
the instance by some slower approach.]

Exercise 0.6.3. Consider the following minimization problem X . As in
P2 | |Cmax, the input consists of n positive integer processing times pj (j =
1, . . . , n). The goal is to find a schedule σ on two identical machines that min-
imizes the following objective function f(σ): If the makespan of σ is at most
1
2

∑n
j=1 pj then f(σ) = 8, and otherwise f(σ) = 11.

(a) Show that problem X is solvable in pseudo-polynomial time.

(b) Show that problem X cannot have an FPTAS unless P=NP. Can you get
a PTAS for X? What is the best worst case guarantee that you can reach
for a polynomial time approximation algorithm for X?
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(c) Construct a minimization problem Y that satisfies the following two prop-
erties: Y is pseudo-polynomially solvable. Unless P=NP, there is no poly-
nomial time approximation algorithm with finite worst case guarantee for
Y .

Exercise 0.6.4. Consider two knapsacks of size b and n items, where the jth
item (j = 1, . . . , n) has a positive integer size aj . The goal is to pack the
maximum number of items into the two knapsacks. Prove that the existence of
an FPTAS for this problem would imply P=NP.

Exercise 0.6.5. Reformulate and prove the Theorems 0.6.5 and 0.6.6 for max-
imization problems.

Exercise 0.6.6. Consider n jobs with processing times pj (j = 1, . . . , n) and
a hard deadline d. The goal is to find the minimum number m of machines on
which all jobs can be completed before their deadline d.

Show that for this problem deciding whether Opt ≤ 2 is NP-hard. Use
Lenstra’s impossibility theorem (Theorem 0.6.6) to deduce an in-approxima-
bility result from this.

Exercise 0.6.7. An instance of the problem P | prec, pj=1 |Cmax consists of n
precedence constrained unit-time jobs and of m identical machines. The goal is
to find a schedule that minimizes the makespan while obeying the precedence
constraints (all predecessor jobs must be completed before a successor job can
start). The goal in the closely related problem P | prec, pj=1 | ∑

Cj is to find a
schedule that minimizes the sum of all the job completion times.

Lenstra & Rinnooy Kan [58] proved for P | prec, pj=1 |Cmax that deciding
whether Opt ≤ 3 is NP-hard: They provide a polynomial time transformation
from the NP-hard clique problem in graphs (the only thing you need to know
about the clique problem is that it is NP-hard). Given an instance of clique, this
transformation computes a set of m machines and 3m precedence constrained
jobs with unit processing times. In the case of a YES-instance, the constructed
scheduling instance has a schedule where all 3m jobs are processed during the
time interval [0, 3]. In the case of a NO-instance, in every feasible schedule for
the constructed scheduling instance at least one job completes at time 4 or later.

(a) Argue that unless P=NP, the problem P | prec, pj=1 |Cmax cannot have a
polynomial time approximation algorithm with worst case ratio 4/3 − ε.
[Hint: Apply Theorem 0.6.6.]

(b) Is it difficult to decide whether Opt ≤ 2 holds for an instance of
P | prec, pj=1 |Cmax?

(c) Prove that unless P=NP, the problem P | prec, pj=1 | ∑
Cj cannot have

a polynomial time approximation algorithm with worst case ratio 4/3− ε.
[Hint: Create many copies of the Lenstra & Rinnooy Kan instance and
put them in series.]
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Exercise 0.6.8. Consider an instance of the open shop problem O | |Cmax with
an arbitrary number of machines where all operations have integer lengths.
In an open shop every job Jj must be run on every machine Mi for pij time
units. An operation is just a maximal piece of Jj that is processed on the same
machine. In the non-preemptive version every operation must be processed on
its machine without any interruptions; in the preemptive version operations may
be interrupted and resumed later on. Computing the optimal non-preemptive
makespan is NP-hard, whereas computing the optimal preemptive makespan is
easy. It is known (and easy to show) that the optimal preemptive makespan
equals the maximum of the maximum machine load and the maximum job
length.

Suppose, you are given an instance I of O | |Cmax whose preemptive
makespan is four. Does there always exist a non-preemptive schedule for I
with makespan at most (a) seven, (b) six, (c) five, (d) four? And in case such
a non-preemptive schedule does not always exist, can you at least decide its
existence in polynomial time? [Remark: If you are able to settle question (c)
completely, then please send us your argument.]

Exercise 0.6.9. We only stated Theorem 0.6.9 for the case where X and Y
both are minimization problems. Check the other three cases where X might be
a maximization problem (in this case the new conclusion should be that problem
X has a polynomial time approximation algorithm with worst case ratio 1−αβε)
and where Y might be a maximization problem (in this case the new assumption
should be that Y has a polynomial time approximation algorithm with worst
case ratio 1 − ε).

Exercise 0.6.10. Let p > 1 be a real number. Consider the scheduling problem
R | | ∑

Lp
i , i.e., the problem of minimizing the sum of the p-th powers of the

machine loads on unrelated machines.

(a) Prove that R | | ∑
Lp

i is APX-hard for p = 3. [Hint: Modify the argument
in Section 0.6.4.]

(b) Prove that R | | ∑
Lp

i is APX-hard for all values p > 1.

Exercise 0.6.11. Consider n jobs Jj (j = 1, . . . , n) with positive integer pro-
cessing times pj on two identical machines. The goal is to find a schedule that
minimizes (L1 − L2)

2 where L1 and L2 are the machine loads.
Decide on the existence of (a) a PTAS, (b) an FPTAS, (c) a polynomial time

approximation algorithm with finite worst case ratio for this problem under the
assumption P 6=NP.

Exercise 0.6.12. Consider an NP-hard scheduling problem X . Denote by I
an instance of this problem, by σ a feasible schedule for I, and by f(σ) the
objective value of schedule σ. Assume that it is NP-hard to determine for
instance I a schedule σ that minimizes the value f(σ). Consider the following
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related problem X ′. An instance of X ′ consists of an instance I of X together
with a positive integer T . The goal is to find a schedule σ for I such that
(T − f(σ))

2
is minimized.

Decide on the existence of (a) a PTAS, (b) an FPTAS, (c) a polynomial
time approximation algorithm with finite worst case ratio for the minimization
problem X ′ under the assumption P 6=NP.

Exercise 0.6.13. Paz & Moran [65] call a minimization problem X simple, if
for every fixed positive integer k the problem of deciding whether an instance I
of X has optimal objective value at most k is polynomially solvable.

(a) Prove that the problems P2 | |Cmax and R2 | |Cmax are simple.

(b) Decide which of the problems P | |Cmax, R | |Cmax, and 1 | | ∑
Tj (see

Section 0.3.3) are simple under the assumption P 6=NP.

(c) Prove: If the minimization problem X has a PTAS, then it is simple.

(d) Find a minimization problem Y that is simple, but does not have a PTAS
unless P=NP. Can you establish the in-approximability of Y via the gap
technique?

0.7 Conclusions and further reading

In this chapter we have discussed many approximation schemes together with
several in-approximability proofs. We tried to identify the main mechanisms
and to illuminate the underlying machinery. However, we did not try at all to
present very short or very polished arguments; our main goal was to communi-
cate the ideas and to make them comprehensible to the reader. For instance,
for makespan minimization on two identical machines we described three in-
dependent approximation schemes that illustrate the three main conceptual
approaches to approximation schemes. And our presentation of Lawler’s FP-
TAS for total tardiness on a single machine in Section 0.3.3 takes a lot more
space than the presentation of the same result in the original paper [54]. We
also stress that our illustrative examples describe clean prototypes for the three
main approaches to polynomial time approximation schemes, whereas real life
approximation schemes usually mix and intertwine the three approaches.

Although this chapter has explained quite a few tricks for designing approx-
imation schemes for scheduling problems, there are still more tricks to learn.
Fernandez de la Vega & Lueker [20] introduce a nice data simplification tech-
nique for bin packing. The big numbers are partitioned into lots of groups of
equal cardinality, and then all elements in a group are replaced by the maximum
or minimum element in the group. Sevastianov & Woeginger [74] classify jobs
into big, medium, and small jobs (instead of using only big and small jobs, as
we have been doing all the time). One can get rid of the medium jobs, and
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then the small jobs are clearly separated by a gap from the big jobs. Amoura,
Bampis, Kenyon & Manoussakis [4] use linear programming in a novel way to
get a PTAS for scheduling multiprocessor tasks. The breakthrough paper by
Afrati et al. [2] contains a collection of approximation schemes for all kinds of
scheduling problems with the objective of minimizing the sum of job completion
times. It is instructive to read carefully through this paper, and to understand
every single rounding, classification, or simplification step (these steps are linked
and woven into each other).

Further reading. During the last few years, three excellent books on approx-
imation algorithms have been published: The book edited by Hochbaum [35]
contains thirteen chapters that are written by the experts in the field and that
cover all facets of approximation algorithms. The book by Ausiello, Crescenzi,
Gambiosi, Kann, Marchetti-Spaccamela & Protasi [9] looks at approximability
and in-approximability from the viewpoint of computational complexity the-
ory. The book by Vazirani [78] concentrates on algorithms and discusses all
the pearls in the area. To learn more about in-approximability techniques, we
recommend the Ph.D. thesis of Kann [47], the web-compendium by Crescenzi
& Kann [17], the survey chapter by Arora & Lund [7], and the paper by Lund
& Yannakakis [62].

Now let us turn to specialized literature on scheduling. The survey by Hall
[30] provides a nice introduction into approximation algorithms for scheduling; it
discusses simple greedy algorithms, approximation schemes, linear programming
relaxations, probabilistic arguments, etc etc. The survey by Lenstra & Shmoys
[59] mainly deals with in-approximability results that can be derived via the
gap technique. Schuurman & Woeginger [72] list the top open problems in the
approximation of scheduling; they summarize what is known on these problems,
discuss related results, and provide pointers to the literature.
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Laurence Wolsey for proof-reading preliminary versions of this chapter and
for many helpful comments. Gerhard Woeginger acknowledges support by the
START program Y43-MAT of the Austrian Ministry of Science.

0.8 Computational complexity

Computational complexity theory provides a classification of computational
problems into easy and hard. We briefly sketch some of the main points of
this theory. For more information, the reader is referred to the books by Garey
& Johnson [24] and Papadimitriou [63].

A computational problem consists of a set I of inputs (or instances) together
with a function that assigns to every input I ∈ I a corresponding output (or
solution). The input size (or length) |I| of an input I is the overall number of bits
used for encoding I under some given encoding scheme. The time complexity
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of an algorithm for a computational problem is measured as a function of the
size of the input. We say that a computational problem is easy to solve if there
is a polynomial time algorithm for it, i.e., if there exists a polynomial p such
that the algorithm applied to an input I always finds a solution in time at most
p(|I|). The complexity class P is the set of all easy problems.

The concept of hardness of a computational problem is formalized with re-
spect to the complexity class NP. The class NP only contains decision prob-
lems, i.e., computational problems for which the outputs are restricted to the
set {YES, NO}. Since by means of binary search one can represent every op-
timization problem as a short sequence of decision problems, this restriction is
not really essential; all of the following statements and terms easily carry over
to optimization problems as well (and actually, in the rest of this chapter we are
going to use these terms mainly for optimization problems). Loosely speaking,
the class NP contains all decision problems for which each YES-instance I has
a certificate c(I) such that |c(I)| is bounded by a polynomial in |I| and such
that one can verify in polynomial time that c(I) is a valid certificate for I. For
a precise definition of the class NP we refer the reader to Garey & Johnson [24].
In order to compare the computational complexities of two decision problems
X and Y , the concept of a reduction is used: We say that problem X reduces
to problem Y , if there exists a tranformation that maps any YES-instance of X
into a YES-instance of Y and any NO-instance of X into a NO-instance of Y .
If the reduction can be performed in polynomial time, then a polynomial time
algorithm for problem Y will automatically yield a polynomial time algorithm
for problem X . Intuitively, if X reduces to Y then Y is at least as hard as X . A
decision problem is called NP-hard if every problem in NP can be polynomially
reduced to it. Unless P=NP, which is considered extremely unlikely, an NP-
hard problem does not possess a polynomial algorithm. And if a single NP-hard
problem allowed a polynomial algorithm, then all problems in NP would allow
polynomial algorithms. The gist of this is that NP-hard problems are considered
to be hard and intractable.

There are two basic schemes of encoding the numbers in an input: One
scheme is the standard binary encoding that is used in every standard computer.
Another scheme is the unary encoding where any integer k is encoded by k
bits. Note that the concepts of polynomial solvability and NP-hardness crucially
depend on the encoding scheme used. If one changes the encoding scheme from
binary to unary, the problem may become easier, as the input becomes longer
and hence the restrictions on the time complexity of a polynomial algorithm are
less stringent. A problem that is NP-hard under the unary encoding scheme
is called strongly NP-hard. A problem that can be solved in polynomial time
under the unary encoding scheme is said to be pseudo-polynomially solvable.
The corresponding algorithm is called a pseudo-polynomial algorithm. Pseudo-
polynomially solvable problems that are NP-hard under binary encodings are
sometimes said to be NP-hard in the ordinary sense. If a single strongly NP-
hard problem allowed a pseudo-polynomial algorithm, then all problems in NP
would allow polynomial algorithms and P=NP would hold.
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