
1/ 26

Task-graph scheduling to minimize memory

Loris Marchal

Joint work with Henri Casanova, Mathias Jacquelin,
Thomas Lambert, Yves Robert, Oliver Sinnen & Frédéric Vivien.

NCST 2012 Fréjus
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Related Work: Register allocation

How to efficiently compute the following arithmetic expression with
the minimum number of registers ?

7 + (1 + x)(5− z)− ((1 + x)/(u − t) + 2z)/v
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Pebble-game rules:
I Inputs can be pebbled anytime
I If all ancestors are pebbled, a node can be pebbled
I A pebble may be removed anytime

Objective: pebble all outputs using minimum number of pebbles
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Related Work: Register allocation

How to efficiently compute the following arithmetic expression with
the minimum number of registers ?

7 + (1 + x)(5− z)− ((1 + x)/(u − t) + 2z)/v

Complexity results

General problem on DAGs:

I P-Space complete [Gilbert, Lengauer & Tarjan, 1980]

I Without re-computation: NP-complete [Sethi, 1973]

Problem on trees:

I Polynomial algorithm [Sethi & Ullman, 1970]

Pebble-game rules:
I Inputs can be pebbled anytime
I If all ancestors are pebbled, a node can be pebbled
I A pebble may be removed anytime

Objective: pebble all outputs using minimum number of pebbles
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New motivation: scientific computing

I Workflows with large data files

I Bad evolution of performance for
computation vs. communication:
1/Flops � 1/bandwidth � latency

I Gap between processing power and communication cost
increasing exponentially

annual improvements

Flops rate 59%
mem. bandwidth 26%
mem. lantency 5%

I Avoid communications

I Restrict to in-core memory (out-of-core is expensive)
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Existing algorithms on trees

I Context: multifrontal sparse factorization

I Assembly tree: the DAG of the application is a tree

I Large tree with large input files

Two existing algorithms:

I Best post-order traversal [J. Liu, 1986]

I Best traversal [J. Liu, 1987]
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Introduction: tree-shaped workflows
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I In-tree of n nodes

I Output file of size fi
I Execution file of size ni
I Input files of leaf nodes have

null size

I Memory required for node i :

MemReq(i) =
∑

j∈Children(i)

fj+ni+fi

NB: top-down schedule = mirror of bottom-up schedule
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Introduction: tree-shaped workflows
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Liu’s best post-order traversal for trees

fnf2

r

P1
P2 . . . Pn

f1

I For each subtree Ti : peak memory Pi , residual memory fi
I For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

I Optimal order:

non-increasing Pi − fi

I Postorder traversals are dominant when:∑
j∈Children(i)

fj ≥ fi
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Post-Order is not optimal...

Postorder traversals are arbitrarily bad in the general case

There is no constant k such that the best postorder traversal is a
k-approximation.

ε

M M

. . . . . .. . .

M/b
M/bM/b M/b

ε ε ε

M M

I Minimum peak memory:
Mmin = M + ε +

2

(b − 1)ε

I Minimum postorder peak
memory traversal:
Mmin = M+ ε +

2

(b−1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%
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Post-Order is not optimal...but almost!

Postorder traversals are arbitrarily bad in the general case

There is no constant k such that the best postorder traversal is a
k-approximation.

. . .

M/b
M/b

. . .

εεεε

M/b

. . .

M/b

MMM M

I Minimum peak memory:
Mmin = M + ε +

2

(b − 1)ε

I Minimum postorder peak
memory traversal:
Mmin = M+ ε +

2

(b−1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%



10/ 26

Outline

Motivation and previous work

Parallel tree processing

Series-Parallel graphs

Summary and Perspectives



11/ 26

Parallel tree processing

I p identical processors

I Node i has execution times pi
I Parallel processing of nodes ⇒ larger memory

I Trade-off time vs. memory

f2f2

f5f4

n3n2

n5n4
0 0

0

n1

3

1

2
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NP-completeness in the pebble game model

Background:

I Makespan minimization NP-complete for trees (P|trees|Cmax)

I Polynomial when unit-weight tasks (P|pi = 1, trees|Cmax)

I Pebble game polynomial on trees

Pebble game model:

I unit execution time: pi = 1

I unit memory costs: ni = 0, fi = 1
(pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles
in at most C steps is NP-complete.
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NP-completeness – proof

Reduction from 3-Partition:

root

N1

L11 L12
. . . L13m×a1

N2

L21 L22
. . . L23m×a2

. . . N3m

L3m1 L3m2
. . . L3m3m×a3m

Schedule the tree using:

I p = 3mB processors,

I at most B = 3m × B + 3m pebbles,

I at most C = 2m + 1 steps.
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Joint minimization of both objectives

No zenith approximation:

Theorem

There is no algorithm that is both an α-approximation for
makespan minimization and a β-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

(proof sketch on next slide)
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No zenith approx. – proof

I n identical subtrees, largest in-degree is δ

I Mseq = δ + n; C∗
max ≥ δ + 2 (critical path = height + 1)

root

cp1
1

d1
1

a1,1δa1,1δ−1
...a1,12a1,11 cp1

2

d1
2

a1,2δ−1
...a1,22a1,21 cp1

δ−1

d1
δ−1

a1,δ−1
2a1,δ−1

1

b1
δ

b1
δ+1

... cpn
1

dn
1

an,1δan,1δ−1
...an,12an,11 cp1

2

d1
2

a1,2δ−1
...a1,22a1,21 cpn

δ−1

dn
δ−1

an,δ−1
2an,δ−1

1

bn
δ

bn
δ+1

I To achieve αC∗
max = α(δ + 2) each cpi

k node needs to finish at
α(δ + 2)− 1

I Calculate number of edges in each subtree, each edge present during a
least two steps

I Calculate average memory with α(δ + 2)− 2 steps ⇒ lower bound lb

I By setting δ = n2, we show that lb on memory is greater than 2β for any
β we choose → contradiction
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Approximability overview with fixed p

Inexistence of solutions which are α-approximation for the
makespan and β-approximation for the memory, with fixed
number of processors.

α (Cmax)1

1

p

∞

β (Mem)

p ∞

I A: (α,
√
p+1
2α + 1

α2 )

I B: (1, p − 1)

I C: (α, 1)
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Heuristics for weighted trees – 1/2

List-scheduling heuristics:

I Put ready nodes in a queue (sorted with some criterion)

I Schedule them whenever a processor is ready

Leaf nodes sorted using best sequential postorder

Two list-scheduling heuristics:

I Deepest-First (longest critical path, makespan oriented)

I Inner-First (memory oriented, sort of parallel postorder)

Performance:

I (2− 1/p)-approximation for makespan

I Unbounded ratio for memory
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Heuristics for weighted trees 2/2

Another memory-oriented heuristic:
I Split tree into subtrees
I Process p subtrees in parallel
I Process remaining nodes sequentially

Cmax = max
p largest subtrees Ti

p(Ti ) +
∑

remaining nodes j

pj

Optimal subtree splitting (for makespan):
I Start with a single subtree (the tree)
I Split largest subtree until it is a single leaf node
I Store solution at each step
I Take the solution with minimal makespan

Memory guarantee:
I p-approximation algorithm

Optimization:
I Simple load-balancing of all subtrees to the processors
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Experimental testbed

I 76 assembly trees of a set of sparse matrices from University
of Florida Sparse Collection

I Metis and AMD ordering

I 1, 2, 4, or 16 relaxed amalgamation per node

I 608 trees with:
number of nodes: 2,000 to 1,000,000

depth: 12 to 70,000
maximum degree: 2 to 175,000
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Results

1.2 21.8

R
el
at
iv
e
m
em

or
y
co
m
pa
re
d
to

th
e
lo
w
er

b
ou
nd

100

80

60

40

20

10

8

6

4

2

1

Relative makespan compared to the lower bound
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ParDeepestFirst
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I Memory lower bound: best sequential postorder

I Makespan lower bound: max
{
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p ,Wcritical path

}
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Series-Parallel graphs: Motivation

I Not all scientific workflows are trees

I But most workflows exhibit some regularity

I Large class of workflows: Series-Parallel
graphs

For now: only sequential processing
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First step: fork-join graphs

Select edges with minimal weight on each branch: e1, . . . , eB

Theorem

There exists a schedule with minimal memory which synchronises
at e1, . . . , eB .

Algorithm:

1. Apply optimal algorithm for out-trees on the left part

2. Apply optimal algorithm for in-trees on the right part
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General Series-Parallel graphs: work in progress

Recursive algorithm:

I Apply fork-join algorithm starting with innermost parallel
composition

I Replace parallel composition with sequential schedule

Good candidate for optimal algorithm:

I Always optimal in brute-force simulations

I Sketch of proof, adapted from Liu
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Summary and Perspectives

I Comprehensive study of tree-shaped task graphs
(postorder, optimal sequential, complexity and heuristics for
parallel processing)

I Adaptation to Series-Parallel graphs

Future work:

I Design memory-bounded heuristics for parallel tree processing

I Extend results to other class of regular graphs (2D grids, etc.)

I Minimize I/O volume for out-of-core execution

Thank you !
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