Task-graph scheduling to minimize memory

Loris Marchal

Joint work with Henri Casanova, Mathias Jacquelin,
Thomas Lambert, Yves Robert, Oliver Sinnen & Frédéric Vivien.

NCST 2012 Fréjus

1/ 26

QOutline

Motivation and previous work

Parallel tree processing

Series-Parallel graphs

Summary and Perspectives

2/ 26

QOutline

Motivation and previous work

3/ 26

Related Work: Register allocation

How to efficiently compute the following arithmetic expression with
the minimum number of registers ?

7T+(1+x)5-2)—((1+x)/(u—t)+22)/v

4/ 26

Related Work: Register allocation

How to efficiently compute the following arithmetic expression with
the minimum number of registers ?

T+(14+x)5—2)—((1+x)/(u—t)+22)/v
O
\@
Y Y o
AA ég
b dbdb

» Inputs can be pebbled anytime

4/ 26

Related Work: Register allocation

How to efficiently compute the following arithmetic expression with
the minimum number of registers ?

T+(14+x)5—2)—((1+x)/(u—t)+22)/v
©,
\@
@/ M AP
AA ég
00 dbob

» Inputs can be pebbled anytime

4/ 26

Related Work: Register allocation

How to efficiently compute the following arithmetic expression with
the minimum number of registers ?

T+(14+x)5—2)—((1+x)/(u—t)+22)/v
0
R
00 b

» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled

4/ 26

Related Work: Register allocation

How to efficiently compute the following arithmetic expression with

the minimum number of registers ?

7T+(1+x)5-2)—((1+x)/(u—t)+22)/v

0
L RAT
ALET

» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled
> A pebble may be removed anytime

Objective: pebble all outputs using minimum number of pebbles

4/ 26

Related Work: Register allocation

How to efficiently compute the following arithmetic expression with

the minimum number of registers ?

7T+(1+x)5-2)—((1+x)/(u—t)+22)/v

0
L RAT
.00

» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled
> A pebble may be removed anytime

Objective: pebble all outputs using minimum number of pebbles

4/ 26

Related Work: Register allocation

How to efficiently compute the following arithmetic expression with

the minimum number of registers ?

7T+(1+x)5-2)—((1+x)/(u—t)+22)/v

0
veN
O ARET

» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled
> A pebble may be removed anytime

Objective: pebble all outputs using minimum number of pebbles

4/ 26

Related Work: Register allocation

How to efficiently compute the following arithmetic expression with

the minimum number of registers ?

7T+(1+x)5-2)—((1+x)/(u—t)+22)/v

0
Ve N
AR

» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled
> A pebble may be removed anytime

Objective: pebble all outputs using minimum number of pebbles

4/ 26

Related Work: Register allocation

How to efficiently compute the following arithmetic expression with

the minimum number of registers ?

7T+(1+x)5-2)—((1+x)/(u—t)+22)/v

/ Q?@m
E/
| _é%éééé

» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled
> A pebble may be removed anytime

Objective: pebble all outputs using minimum number of pebbles

4/ 26

Related Work: Register allocation

How to efficiently compute the following arithmetic expression with
the minimum number of registers ?

7T+(1+x)5-2)—((1+x)/(u—t)+22)/v

Complexity results
General problem on DAGs:
» P-Space complete [Gilbert, Lengauer & Tarjan, 1980]
» Without re-computation: NP-complete [Sethi, 1973]
Problem on trees:
» Polynomial algorithm [Sethi & Ullman, 1970]

Pebble-game rules:
» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled
> A pebble may be removed anytime
Objective: pebble all outputs using minimum number of pebbles 4/ 26

New motivation: scientific computing

(KX
» Workflows with large data files ¥
» Bad evolution of performance for
computation vs. communication: ¢ N2
1/Flops < 1/bandwidth < latency &
@

» Gap between processing power and communication cost
increasing exponentially

annual improvements
Flops rate 59%
mem. bandwidth 26%
mem. lantency 5%

5/ 26

New motivation: scientific computing

(XX
» Workflows with large data files ¥
» Bad evolution of performance for ‘
computation vs. communication: ¢ N oe
1/Flops < 1/bandwidth < latency &
o

» Gap between processing power and communication cost
increasing exponentially

annual improvements
Flops rate 59%
mem. bandwidth 26%
mem. lantency 5%

» Avoid communications

» Restrict to in-core memory (out-of-core is expensive)

5/ 26

Existing algorithms on trees

» Context: multifrontal sparse factorization
> Assembly tree: the DAG of the application is a tree

> Large tree with large input files

Two existing algorithms:
» Best post-order traversal [J. Liu, 1986]
» Best traversal [J. Liu, 1987]

6/ 26

Introduction: tree-shaped workflows

f f g
>
n n3
fi fs TO
| 2
ny ng

NB: top-down schedule =

In-tree of n nodes
Output file of size f;
Execution file of size n;

Input files of leaf nodes have
null size

Memory required for node i:

D

J€Children(i)

MemReq(i) = =Rl

mirror of bottom-up schedule

7/ 26

Introduction: tree-shaped workflows

» In-tree of n nodes

T » Output file of size f;
p nl@ » Execution file of size n;
» Input files of leaf nodes have
" b null size
fu § TO » Memory required for node i:
TU ny TO ’ MemReq(i) = Z fi+ni+f;

J€Children(i)

NB: top-down schedule = mirror of bottom-up schedule

7/ 26

Introduction: tree-shaped workflows

» In-tree of n nodes

T » Output file of size f;
p nl@ » Execution file of size n;
» Input files of leaf nodes have
" b null size
fu fs TO » Memory required for node i:
n N
To To MemReq(i) = Z fi+ni+f;

J€Children(i)

NB: top-down schedule = mirror of bottom-up schedule

7/ 26

Introduction: tree-shaped workflows

» In-tree of n nodes

T » Output file of size f;
f, nl@ » Execution file of size n;
» Input files of leaf nodes have
M b null size
f i . .
» Memory required for node i:
To To MemReq(i) = Z fi+ni+f;

J€Children(i)

NB: top-down schedule = mirror of bottom-up schedule

7/ 26

Introduction: tree-shaped workflows

» In-tree of n nodes

T » Output file of size f;
f, nlf2 » Execution file of size n;
» Input files of leaf nodes have
" 3 null size
0
g § T » Memory required for node i:
To To MemReq(i) = Z fi+ni+f;

J€Children(i)

NB: top-down schedule = mirror of bottom-up schedule

7/ 26

Liu’s best post-order traversal for trees

> For each subtree T;: peak memory P;, residual memory f;
» For a given processing order 1,...,n, the peak memory is:

max{P1, }

8/ 26

Liu’s best post-order traversal for trees

> For each subtree T;: peak memory P;, residual memory f;
» For a given processing order 1,...,n, the peak memory is:

max{Pl, f1 + Po, }

8/ 26

Liu’s best post-order traversal for trees

> For each subtree T;: peak memory P;, residual memory f;
» For a given processing order 1,...,n, the peak memory is:

max{P1, fi + P2, fi + f> + P, }

8/ 26

Liu’s best post-order traversal for trees

> For each subtree T;: peak memory P;, residual memory f;

» For a given processing order 1,...,n, the peak memory is:
max{Pl, f1+P2, f1—|-f2—|—P3, ...,Zf}-f—Pn, }
i<n

8/ 26

Liu’s best post-order traversal for trees

> For each subtree T;: peak memory P;, residual memory f;

» For a given processing order 1,...,n, the peak memory is:
max{P1, fi+ P, A+f+Ps, ...,y fi+Pn > fitn +f}
i<n

8/ 26

Liu’s best post-order traversal for trees

> For each subtree T;: peak memory P;, residual memory f;

» For a given processing order 1,...,n, the peak memory is:
max{P1, fi+ P, A+f+Ps, ...,y fi+Pn > fitn +f}
i<n

» Optimal order: non-increasing P; — f;

8/ 26

Liu’s best post-order traversal for trees

> For each subtree T;: peak memory P;, residual memory f;
» For a given processing order 1,...,n, the peak memory is:
max{P1, fi+ P, A+f+Ps, ...,y fi+Pn > fitn +f}
i<n
» Optimal order: non-increasing P; — f;

Postorder traversals are dominant when:

Y. fixf;

J€EChildren(i)

v

8/ 26

Post-Order is not optimal...

Postorder traversals are arbitrarily bad in the general case

There is no constant k such that the best postorder traversal is a
k-approximation.

9/ 26

Post-Order is not optimal...

Postorder traversals are arbitrarily bad in the general case

There is no constant k such that the best postorder traversal is a
k-approximation.

» Minimum peak memory:
Mupin =M+ ¢ + (b—1)e

9/ 26

Post-Order is not optimal...

Postorder traversals are arbitrarily bad in the general case

There is no constant k such that the best postorder traversal is a
k-approximation.

» Minimum peak memory:
Mupin =M+ ¢ + (b—1)e
» Minimum postorder peak

memory traversal:
Mpmin = M+ e+ (b—1)M/b

9/ 26

Post-Order is not optimal...

Postorder traversals are arbitrarily bad in the general case

There is no constant k such that the best postorder traversal is a
k-approximation.

» Minimum peak memory:
Mupin =M+ ¢ +2(b—1)e
» Minimum postorder peak

memory traversal:
Mpin = M+ e +2(b—1)M/b

9/ 26

Post-Order is not optimal...but almost!

Postorder traversals are arbitrarily bad in the general case

There is no constant k such that the best postorder traversal is a

k-approximation.

,\/Imin:,\/l'f’6

» Minimum peak memory:

+ (b—1)e
» Minimum postorder peak
memory traversal:

Mpmin = M+ e+ (b—1)M/b

actual assembly trees

random trees

Non optimal traversals
Maximum increase compared to optimal
Average increased compared to optimal

4.2%
18%
1%

61%
22%
12%

9/ 26

QOutline

Parallel tree processing

10/ 26

Parallel tree processing

v

p identical processors

v

Node i has execution times p;

v

Parallel processing of nodes = larger memory

v

Trade-off time vs. memory

11/ 26

NP-completeness in the pebble game model

Background:
» Makespan minimization NP-complete for trees (P|trees|Cinax)
» Polynomial when unit-weight tasks (P|p; = 1, trees|Cmnax)

» Pebble game polynomial on trees

Pebble game model:
> unit execution time: p; =1

» unit memory costs: n; =0,f =1
(pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles
in at most C steps is NP-complete.

12/ 26

NP-completeness — proof

Reduction from 3-Partition:

Schedule the tree using:
» p = 3mB processors,
» at most B = 3m x B + 3m pebbles,
» at most C =2m + 1 steps.

13/ 26

Joint minimization of both objectives

No zenith approximation:

Theorem

There is no algorithm that is both an a-approximation for
makespan minimization and a S-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

(proof sketch on next slide)

14/ 26

No zenith approx. — proof

> n identical subtrees, largest in-degree is §

> Mg =+ n; Chrox > 0 + 2 (critical path = height + 1)

@D ED @ GEDED &
> To achieve aC. = a8 + 2) each cp} node needs to finish at
a(d+2)—1
> Calculate number of edges in each subtree, each edge present during a
least two steps
» Calculate average memory with a(d + 2) — 2 steps = lower bound /b

> By setting § = n?, we show that /b on memory is greater than 28 for any
B we choose — contradiction 15/ 26

Approximability overview with fixed p

Inexistence of solutions which are a-approximation for the
makespan and S-approximation for the memory, with fixed
number of processors.

B (Mem),
00
——

p-

16/ 26

Approximability overview with fixed p

Inexistence of solutions which are a-approximation for the
makespan and S-approximation for the memory, with fixed
number of processors.

§ (Mem),
6o
g
P p+1 1
1 , ¢ —
1 E oo (Cra

16/ 26

Approximability overview with fixed p

Inexistence of solutions which are a-approximation for the
makespan and S-approximation for the memory, with fixed
number of processors.

B (Mem)‘
o0
g
p
VPl
p—1 > A (Oé, gC_Jz'_ +Elz)
B » B: (1,p—1)
» C (o, 1)
1 C
1 E oo (Cra

16/ 26

Heuristics for weighted trees — 1/2

List-scheduling heuristics:
» Put ready nodes in a queue (sorted with some criterion)

» Schedule them whenever a processor is ready

Leaf nodes sorted using best sequential postorder

Two list-scheduling heuristics:
» Deepest-First (longest critical path, makespan oriented)

» Inner-First (memory oriented, sort of parallel postorder)

Performance:
» (2 —1/p)-approximation for makespan

» Unbounded ratio for memory

17/ 26

Heuristics for weighted trees 2/2

Another memory-oriented heuristic:
> Split tree into subtrees
» Process p subtrees in parallel
» Process remaining nodes sequentially

Crnax = max P(Ti) + Z Pj

p largest subtrees T; L .
remaining nodes j

18/ 26

Heuristics for weighted trees 2/2

Another memory-oriented heuristic:
> Split tree into subtrees
» Process p subtrees in parallel
» Process remaining nodes sequentially

Crnax = max P(Ti) + Z Pj

p largest subtrees T; L .
remaining nodes j

Optimal subtree splitting (for makespan):

v

Start with a single subtree (the tree)

Split largest subtree until it is a single leaf node
Store solution at each step

Take the solution with minimal makespan

vV vy

18/ 26

Heuristics for weighted trees 2/2

Another memory-oriented heuristic:
> Split tree into subtrees
» Process p subtrees in parallel
» Process remaining nodes sequentially

Crnax = max P(Ti) + Z Pj

p largest subtrees T; L .
remaining nodes j

Optimal subtree splitting (for makespan):
» Start with a single subtree (the tree)
» Split largest subtree until it is a single leaf node
» Store solution at each step
» Take the solution with minimal makespan
Memory guarantee:
> p-approximation algorithm

18/ 26

Heuristics for weighted trees 2/2

Another memory-oriented heuristic:
> Split tree into subtrees
» Process p subtrees in parallel
» Process remaining nodes sequentially

Crnax = max P(Ti) + Z Pj

p largest subtrees T; L .
remaining nodes j

Optimal subtree splitting (for makespan):
» Start with a single subtree (the tree)
» Split largest subtree until it is a single leaf node
» Store solution at each step
» Take the solution with minimal makespan
Memory guarantee:
> p-approximation algorithm
Optimization:
» Simple load-balancing of all subtrees to the processors 18/ 26

Experimental testbed

v

76 assembly trees of a set of sparse matrices from University
of Florida Sparse Collection

Metis and AMD ordering
1, 2, 4, or 16 relaxed amalgamation per node

608 trees with:
number of nodes: 2,000 to 1,000,000
depth: 12 to 70,000
maximum degree: 2 to 175,000

v

v

v

19/ 26

Relative memory compared to the lower bound

PARSUBTREES

PARDbhl’bbTFleT

1 1.2 1.4 1.6 18 2 25

Relative makespan compared to the lower bound

» Memory lower bound: best sequential postorder

» Makespan lower bound: max {%, Weritical path}

20/ 26

QOutline

Series-Parallel graphs

21/ 26

Series-Parallel graphs: Motivation

» Not all scientific workflows are trees .’ 2

> But most workflows exhibit some regularity T \

» Large class of workflows: Series-Parallel ¢« 1_,‘. ® _3{(
graphs :

22/ 26

Series-Parallel graphs: Motivation

o Q0o
» Not all scientific workflows are trees) T

» But most workflows exhibit some regularity

VZ
AN

> Large class of workflows: Series-Parallel ¢ » e

graphs : o

—>O—>

22/ 26

Series-Parallel graphs: Motivation

(XY
» Not all scientific workflows are trees b 2
» But most workflows exhibit some regularity : T e
> Large class of workflows: Series-Parallel @ : » _}L,
graphs : -

—O—

22/ 26

Series-Parallel graphs: Motivation

(XX)
» Not all scientific workflows are trees '
» But most workflows exhibit some regularity 7 /N
> Large class of workflows: Series-Parallel ~ ®° A)Qf
graphs : -

—O—

AN

22/ 26

Series-Parallel graphs: Motivation

(XX)
» Not all scientific workflows are trees '
» But most workflows exhibit some regularity 7 /N
> Large class of workflows: Series-Parallel ~ ®° A)Qf
graphs :

—O—

AN

For now: only sequential processing

22/ 26

First step: fork-join graphs

O*O*O*O*Q*O\
WW

23/ 26

First step: fork-join graphs

O*O»O*O*Q*O\

@,

WW

Select edges with minimal weight on each branch: ey,...,eg

23/ 26

First step: fork-join graphs

@,

Select edges with minimal weight on each branch: ey,...,eg

Theorem

There exists a schedule with minimal memory which synchronises
at e1,...,¢6€B.

23/ 26

First step: fork-join graphs

02020
000,020
O>O>0O=>0

Select edges with minimal weight on each branch: e;,...,eg
Theorem

There exists a schedule with minimal memory which synchronises
at e,...,eB.

Algorithm:

1. Apply optimal algorithm for out-trees on the left part
2. Apply optimal algorithm for in-trees on the right part

23/ 26

General Series-Parallel graphs: work in progress

Recursive algorithm:

» Apply fork-join algorithm starting with innermost parallel
composition

» Replace parallel composition with sequential schedule

Good candidate for optimal algorithm:
» Always optimal in brute-force simulations
» Sketch of proof, adapted from Liu

24/ 26

QOutline

Summary and Perspectives

25/ 26

Summary and Perspectives

» Comprehensive study of tree-shaped task graphs
(postorder, optimal sequential, complexity and heuristics for
parallel processing)

» Adaptation to Series-Parallel graphs

Future work:
» Design memory-bounded heuristics for parallel tree processing
» Extend results to other class of regular graphs (2D grids, etc.)

» Minimize 1/O volume for out-of-core execution

26/ 26

Summary and Perspectives

» Comprehensive study of tree-shaped task graphs
(postorder, optimal sequential, complexity and heuristics for
parallel processing)

» Adaptation to Series-Parallel graphs

Future work:
» Design memory-bounded heuristics for parallel tree processing
» Extend results to other class of regular graphs (2D grids, etc.)

» Minimize 1/O volume for out-of-core execution

Thank you !

26/ 26

	Motivation and previous work
	Parallel tree processing
	Series-Parallel graphs
	Summary and Perspectives

