
Steady-State Scheduling, part 2

Loris Marchal

1 Principle of steady-state scheduling

Summary of last lecture : article from Bertsimas & Gamarnik
– packet routing with fixed path

– fluidified version of the problem (rational numbers instead of integers)
– optimal fluid solution is easy (formulas for throughputs and buffer sizes)
– rounding of the fluid solution : periodic schedule, rounding rational numbers to

integers
– length of the period : square root of the (fluid) optimal makespan, best trade-off

between
– long and efficient period (not too much idle time)
– large number of period, to minimize latency

– packet routing without fixed path
– fluidified problem : no more simple solution, but easily written as a (rational)

linear program
– rounding of the solution : similar, but much more tricky to bound the number of

remaining packets
– (remaining packets : routed separately !)
– periodic schedule, same discussion on period length

Principles
– focus on steady-state, forget transient phase
– optimize throughput during central steady-state
– in this article : trade-off between the loss in steady-state, and the loss in initialization

and clean-up phases (period length = square root of optimal makespan)
– other solution : get optimal steady-state schedules
– as soon as the number of packets is large, the solution is asymptotically optimal :

Cmax

Copt
max

−−−→
n→∞

1

2 Steady-state scheduling for a similar problem

– Let’s get a more realistic network model :
– Given topology (graph)
– Sending a unit-size message from Pi to Pj takes a time ci,j (edge weight). For a

message of size S, it will take S × ci,j. Note that we might have ci,j 6= cj,i.

1



– Each processor can send (and receive) a single message at a time (bidirectional
one-port model).

– During a communication of size S from Pi to Pj starting at time t (i.e., during
[t, t+ Sci,j] :
– Pi cannot start another sending operation
– Pj cannot start another reception
– Pj cannot forward the message, or start a computation depending of this mes-

sage

We consider here a new problem : Scatter
– scatter : one source processor sends a distinct message to a set of target processors
– series of scatter : similar to scatter big messages using pipelining

Notations for average (fractional) numbers
– n(Pi → Pj, k) : average number of messages of type k (that is, targeting Pk) send

through edge (i, j) during one time unit
– s(Pi → Pj) : average occupation time of edge (i, j) during one time unit

Constraints
– one-port : outgoing messages, incoming message
– relation between n and s
– conservation law
– throughput definition

We get a linear program. Note that all valid solution can be described as n and s,
and must follow the linear program. Hence the throughput of an optimal solution of the
linear program is a lower bound on the achievable throughput.

From a solution of the linear program to a real solution :
– Rational numbers : compute the lowest common multiple (lcm) of all numbers of

messages, and multiply all quantities by this number
– lcm polynomial in the input parameters of the linear program
– potentially large period, may be shorten using approximate solution

– One-port model : from local constraint to a valid global schedule (example from the
JPDC article)
– graphs of communication (split a node in receiver/sender)
– one-port model : a valid pattern is a matching in this graph
– algorithm to decompose the graph in a weighted sum of matching, such that the

sum of the weight is no more than the weight of a node in the graph
– extract matchings to organize communications (if needed, avoid splitting mes-

sages by multiplying by lcm again)
– Initialization and clean-up phases :

– Initialization : the source processors first sends all needed messages to everybody,
OR compute the first activation of communications using a graph traversal...

– Clean-up : similar.

2



Asymptotic optimality
– Every valid schedule has a throughput lower than ρ∗, throughput of an optimal

solution of the linear program
– Let Ti be the time needed for initialization and clean-up (Ti constant in the number

of messages send).
– Throughput for a time T : T+Ti

T
ρ∗

– Asymptotically optimal

Conclusion
– Benefits :

– Simplicity (description : one period)
– Efficiency (asymptotic optimality)
– Adaptability ? (measure bandwidth during one period, change the schedule for

the next one
– Drawbacks :

– Complexity (statically allocate specific path to each packet)
– Bad performance for small batches
– Need for large buffers

3 Adding computations : bags of tasks

What if we add some computations :
– independent tasks to be distributed, computed, and results gathered
– a.k.a. master/slave tasking
– similar to divisible load without the divisible assumption (tasks are less numerous)

New notations
– ndata(i, j) : average number of data files send through an edge (i, j) during one time

unit
– ndata(i, j) : average number of result files send through an edge (i, j) during one

time unit
– nproc(i) : average number of files processed by node i during one time unit

Constraints
– Similar constraints for one-port model, and to define s
– New conservation laws : ∑

j

ndata(j, i) =
∑
j

ndata(i, j) + nproc(i)∑
j

nresult(j, i) + nproc(i) =
∑
j

nresult(i, j)

Schedule reconstruction and asymptotic optimality
– Building a schedule : same for communications, nothing to do for computations
– Same proofs for performance

3



4 Task graphs

Let’s consider an even more general problem : task with dependencies (task graphs,
DAG). Maybe, we can do the same : add a variable for each task type, and (complex)
conservation laws.

Counter-exemple :

T4

T2 T3

T1

T2 T3 T2 T3

T1T1

T4 T4

P3 P4 P5 P6

P2P1

P7 P8

Application graph Platform graph : each processor is able
to process only one task type

– We need to precisely reconstruct the data paths for each instance in the flow
– Allocation : set of operations needed to process one instance of the series (compu-

tations and communications)
– For the DAG, an allocation is the DAG mapped on the platform graph
– Need to extract the solution as a weighted sum of allocations from a solution of the

linear program : not always feasible
– scatter : an allocation is a set of path from the source to each destination, which

is easy to extract
– DAG : we need to tag each parent task, to know on node it was processed, in

order to reconstruct the allocations
– broadcast : a broadcast tree (feasible, but complex)

A more general formulation :
– communication pattern may be more complex than matchings in a bipartite graph

(think of the unidirectional one-port model : matchings in a general graph)
– a solution is a combination of allocations (user point of view)
– a solution is a combination of matchings (resource point of view)
– linear program with one variable per matching and per allocation
– exponential number of variables/polynomial number of constraints
– can be solved using the ellipsoid method, or (maybe) column generation

4


	1 Principle of steady-state scheduling
	2 Steady-state scheduling for a similar problem
	3 Adding computations: bags of tasks
	4 Task graphs

