
Offline Scheduling of Multi-Threaded Request
Streams on a Caching Server

Veronika Rehn-Sonigo
Franche-Comté University

Besançon, France
Email: veronika.sonigo@lifc.univ-fcomte.fr

Denis Trystram
Institut Universitaire de France

Grenoble University, France
Email: denis.trystram@imag.fr

Frédéric Wagner
Grenoble University

France
Email: frederic.wagner@imag.fr

Haifeng Xu, Guochuan Zhang
Zhejiang University
Hanghzou, China

Email: {xuhaifeng, zgc}@zju.edu.cn

Abstract—In this work, we are interested in the problem of
satisfying multiple concurrent requests submitted to a computing
server. Informally, there are users each sending a sequence of
requests to the server. The requests consist of tasks linked by
precedence constraints. Tasks may occur several times in the
same sequence as well as in a request sequence of another
user. The computing server has to execute tasks with variable
processing times. The server owns a cache of limited size where
intermediate results of the processing may be stored. If an
intermediate result for a task is stored into the cache, no
processing cost has to be paid and the result can directly be
fetched from the cache.

The goal of this work is to determine a schedule of the
tasks such that an optimization function is minimized (the only
objective studied up to now is the makespan). This problem
is a variant of caching which considers only one sequence of
requests. We then extend the study to the minimization of the
mean completion time of the request sequences. Two models
are considered. In the first model, caching is forced whereas
in the second model caching is optional and one can choose
whether an intermediate result is stored in the cache or not.
All combinations turn out to be NP-hard for fixed cache sizes
and we provide a formulation as dynamic program as well
as bounds for inapproximation. We propose polynomial time
approximation algorithms for some variants and analyze their
approximation ratios. Finally, we also devise some heuristics and
present experimental results.

Index Terms—scheduling chains; complexity; inapproxima-
tion;

I. Introduction

A. Presentation of the problem

We consider in this work a scheduling problem of satisfying
multiple concurrent requests on a computing server. Infor-
mally, there are users each sending a sequence of requests
to a server. The requests correspond to tasks linked each other
by precedence relations depending on their positions in the
request chain. Some tasks may occur several times in the same
sequence as well as in a request sequence of another user. Each
task is associated with a processing time and the computing
server treats the tasks in any order compatible with the

precedence relations. The server also owns a cache of bounded
capacity where intermediate results of the processing may be
stored. As far as an intermediate result for the treatment of a
task is currently stored into the cache, no processing time is
incurred in the use of this task since its result can be directly
fetched from the cache. The goal is to determine a schedule of
all the tasks so that a certain objective function is minimized.

This problem is called multi-threaded caching, denoted as
MTC. A typical application of this problem is in geographic
information sciences and has been developed in the frame of
the French Geobench Project. The analysis of the functionali-
ties has been presented to the parliament of the European Com-
munity in 2007 [14]. Today, a lot of statistical information are
available on every European territory at different scales (levels
of refinements, from countries, regions, departments to cities).
Such information is a great potential for computing indicators
that help to take economical and political decisions. Basic
numerical and statistical methods have been implemented on a
server and users (who are usually decision makers in territorial
collectivity or large companies) submit a sequence of requests
to compute some indicators on a given geographic region.
Examples of such computations can be found in [20]. Several
tasks may be the same at various refinement levels in the same
sequence and often, several users are submitting similar tasks
in their requests.

B. Our contribution

The main contribution of this work is to initialize the study
of this interesting problem by exploring the various models
from the complexity to solution methods. We first provide a
complete classification of MTC. There exist many results for
variants of this problem depending on the basic model for
managing the cache and on the values of the problem param-
eters. The literature mainly considers two models (forced and
optional saving of intermediate results into the cache) which
will be detailed in the next section.

Next, for minimizing the final completion time (makespan),

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.111

1167

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.111

1167

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.111

1154

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.111

1167

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.111

1167

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.111

1167

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.111

1167

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.111

1167

we prove for both the forced and optional models that MTC
is NP-hard and that there are no constant-approximation
algorithms unless P = NP , even in the simplest case where
the cache capacity is equal to 1. Then, we derive new dynamic
programming schemes for the two variants of the model. To
our best knowledge, all existing studies concern the makespan
minimization, which is a global objective by regarding all
users as one. However, if we take care of the interest of
each user, it is more reasonable to consider minimizing the
sum of completion times of all the request sequences. Then,
for this objective, we show that the problem is NP-hard as
well for both models by a reduction from the problem with
the makespan objective. We also propose polynomial time
approximation algorithms and analyze their approximation
ratio (which depends on the number of sequences).

Finally, we devise some heuristics for the model minimizing
makespan, and present experimental results based on some
random datas.

II. Related work

If there is only one user submitting the requests, it is reduced
to the classical caching problem that has been well studied.
Basically, the caching problem originates in an online setting,
in which the requests arrive one by one and the server has to
make an immediate decision upon arrival of a request without
knowing the subsequent ones. There are rich results for online
caching. However, it has also attracted much attention on the
offline version where we know all the requests (in an order) in
advance. In the following we review the results on the caching
problem which give us the basic understanding of our problem.

A. Caching

Formally, the setup for the caching problem is as follows:
we have a cache of capacity K and a set of tasks, T = {Ti :
1 ≤ i ≤ N}. Given a list of requests γ = γ1 · γ2 · · · γn,
where each request specifies a task to be processed, we must
serve these requests in the arrival order. In other words, the
precedence is a chain. For each task Ti, a processing time,
denoted by pi, and a size, denoted by si, are associated.

If some requested task Ti is already in the cache, then the
processing time is zero, otherwise a processing time of pi is
incurred. At any time, if a recent task Ti is loaded into the
cache then some older tasks may be evicted from the cache to
satisfy the capacity constraint:

∑
Ti∈cache si ≤ K. The goal

is to decide which tasks are kept in the cache at each step so
as to minimize the total processing time to serve the request
chain γ.

In the caching problem, after serving some request which
is not in the cache, if we are forced to put the corresponding
task into the cache, we say it is “Forced Caching Problem”.
Otherwise, we say it is “Optional Caching Problem”.

Now we are ready to briefly present the variants of caching
starting from the general case.

General Model: pi ∈ Z+ and si ∈ Z+ for each task Ti.

Offline: The problem is strongly NP-hard [11]. Bay-Noy et
al. [6] proposed a 4-approximation algorithm for the forced
caching problem, where the objective is, instead of minimizing
Cmax, to minimize the number of cache misses. Albers et
al. [3] presented a (1+ε)

δ -approximation deterministic algo-
rithm for the forced caching problem by increasing the cache
size by δ × (1 + 1√

1+ε−1)×maxi{si}.

Online: For the forced case, Young [19], Cao and Irani [9]
independently showed K

mini{si} -competitive algorithms, which
are best possible(c.f. [15]). For the optional case, Albers [2]
presented a K

mini{si} + 1-competitive algorithm, which is also
best possible (c.f. [15]).

Next we introduce a special variant in which all tasks are
of the same size in the cache. The problem becomes much
easier and well solved.

Cost Model: pi ∈ Z+ and si = 1 for each task Ti.

Offline: The forced model is a special case of the K-server
problem, and is thus polynomially solvable [10].

The optional model is equivalent to the maximal weight
interval scheduling problem, which is also polynomially solv-
able [8]. The reduction is as follows: Given an instance of the
optional caching problem, we have K identical machines. If
there exist two indices x and y (x < y) such that σx and
σy request the same task, say Ti, and Ti is not requested
between σx and σy , then in the viewpoint of the maximal
weight interval scheduling problem, there is a task with start
time x, end time y and weight pi.

Online: For the forced case, we can get a best possible
K-competitive online algorithm from [19] and [9]. For the
optional case, it admits a best possible online algorithm with
competitive ratio (K + 1) [15].

Finally we present the simplest model.

Uniform Model: pi = 1 and si = 1 for each task Ti.

Clearly this problem can be well solved as a special case
of the cost model. We just want to remark that the forced
model admits a simple optimal policy, called Belady’s rule [7]:
always evict the task whose next request is furthest in the
future.

In addition, there are more variants, say the Bit model and
Fault model in the literature. Interested readers may refer to
[15] and [11].

B. Multi-threaded caching

In the multi-threaded caching problem, there is a set γ of
Q finite request chains, where each chain γi, 1 ≤ i ≤ Q,

11681168115511681168116811681168

consists of ni requests belonging to T , γi = γi1 · γi2 · · · γini
.

An example is illustrated in Fig. 1, in which the task set is
T = {T1, T2, T3, T4} and there are three request chains.

As in the classical caching problem, each request must be
served due to the constraint of chains. However, different from
the classical problem, there are several requests available at a
time and we have to decide which chain should be served next.
It makes the problem much more difficult.

There is very little to know about the model. Feuerstein and
Loma [12] investigated the online problem of multi-threaded
caching for the forced uniform model. They showed a KQ-
competitive online algorithm by employing the best possible
online algorithm for the chains one by one. A lower bound
of K + 1− 1

Q was also derived, which is slightly better than
the bound for one chain. For the very restricted case K = 1
and Q = 2, Alborzi et al. [4] showed a lower bound of 1.8,
for any online algorithm, while the best known upper bound
is still 2.

As already pointed out, to the best of our knowledge,
existing work only considered makespan minimization. But
for multiple chains, minimizing the total completion time of
all chains is of great interest. This observation together with
the little previous work on multi-threaded caching motivates
us to tackle this hard problem from several ways. In the
next sections we will provide a full picture on what we have
achieved along this line.

γ1 : T1 T3 T1 T2

γ11 γ12 γ13 γ14

γ2 : T3 T2 T1 T3 T4

γ21 γ22 γ23 γ24 γ25

γ3 : T1 T4 T2

γ31 γ32 γ33

Fig. 1. An example of the multi-threaded caching problem

III. Framework and Definitions

A. Objective functions

In this paper we study two objective functions. First, we
aim at minimizing the makespan. Second, we are interested in
minimizing the total completion time of all chains. Formally,
for each request chain γi, its completion time, denoted by
Ci, is the completion time of its last request. Then Cmax =
max1≤i≤Q Ci, and

∑
Ci =

∑Q
i=1 Ci.

B. Notation

For convenience, the problem is described by three fields
in the sequel: the first tells that the model is a forced or
optional multi-threaded caching problem (FMTC or OMTC);
the second describes the model, e.g., uniform, cost, or general
(the default term is general, which would be omitted if it is not
ambiguous); the third represents the objective function (Cmax
or
∑
Ci).

In the following, we will deal with Q request chains and
the cache capacity is K. As an example, FMTC||Cmax is the
case to serve Q request chains for the forced general model
with the objective function Cmax using a cache of capacity
K.

IV. MINIMIZING Cmax

One major goal of this paper is to assess the complexity
analysis of the different versions of the MULTI-THREADED
CACHING PROBLEM as described in Section III.

A. Complexity of FMTC|uniform|Cmax

To prove this case is NP-hard, we use a reduction from the
SHORTEST COMMON SUPERSEQUENCE problem (SCS) [13]
and we first review this problem.

Given a finite alphabetA, and two sequences Ω = ω1 · · ·ωm
and X = x1 · · ·xn with Ω, X ∈ A∗, Ω is a supersequence of
X (and equivalently, X is a subsequence of Ω) if there exist
some indices 1 ≤ f1 < f2 < · · · < fn ≤ m with ωfj = xj
(1 ≤ j ≤ n).

Given a finite set of sequences X = X1, X2, . . . , XQ, a
common supersequence of X is a sequence Ω such that Ω
is a supersequence of every sequence X l (1 ≤ l ≤ Q) in
X. Then, a shortest common supersequence (SCS) of X is a
supersequence that has minimum length. Furthermore, a SCS
problem is perfect, if for each sequence Xi ∈ X, any two
consecutive symbols in Xi are not the same. For instance,
X = {abc, bbca} is not perfect since there are two consecutive
letters: b.

Maier [17] proved that the SCS problem is NP-hard.
Timkovskii [18] treated the special case SCS(2,3), where each
sequence in X contains exactly two symbols and each symbol
of A appears totally in all the sequences of X at most three
times. He proved that this problem is also NP-hard. The proof
also indicates that SCS(2,3) is a MAX SNP-hard problem [16].
Arora et al. [5] proved that there is no PTAS for MAX SNP-
hard problem, unless P = NP . Jiang and Li [16] showed
that a constant approximation algorithm for the PERFECT SCS
problem would result a PTAS for SCS(2,3).

To summarize, there is no constant approximation algorithm
for the PERFECT SCS problem, unless P = NP .

In addition, Jiang and Li [16] also proved that if there
exists an approximation algorithm for SCS with a perfor-

11691169115611691169116911691169

mance ratio of logδ Q, where δ > 0 is some constant, then
DTIME(2poly(logQ)) contains NP .

In the following we prove that the PERFECT SCS problem
is exactly FMTC|uniform|Cmax when the cache capacity is
equal to one.

Lemma 1. A common supersequence of PERFECT X is a
feasible schedule of γ when K = 1, and vice versa.

Proof: To prove this, we just need to check the feasibility
of the solution.

(⇒) Let Ω be a supersequence of X. Because of the
construction, we know that each chain γi (1 ≤ i ≤ Q) is also
a subsequence of Ω, which means the precedence constraint
relation in γi still holds in Ω.

Then, we schedule γ by loading the tasks into the cache
according to Ω. So Ω is also a feasible schedule of γ.

(⇐) Let σ be a feasible schedule of γ. For each chain
γi, which is also perfect, we must serve it respecting the
precedence constraints. Thus we can find some sub-indices
of σ corresponding to γi, from which we can conclude that σ
is a supersequence of γi (1 ≤ i ≤ Q).

Theorem 2. The FMTC|uniform|Cmax problem is NP-hard,
and admits no constant approximation algorithm unless P =
NP .

Proof: Due to Lemma 1, minimizing Cmax is equivalent
to finding a shortest common supersequence when K = 1.
Thus, the problem is NP-hard. Moreover, it does not admit any
constant-approximation algorithm as in the discussion above.

B. Dynamic programming for FMTC|cost|Cmax

We provide a dynamic program for FMTC|cost|Cmax,
which is, in fact, also valid for the forced general model.
Before going further, we introduce some necessary notations.

Definition 3. Assume that each chain γi is of length ni (1 ≤
i ≤ Q). A position is a vector

−→
Y = [y1, y2, · · · , yQ] with

0 ≤ yi ≤ ni.

We say that we are at position
−→
Y , if we have already served

all the requests from γi1 up to and including γiyi for the chain
γi, i.e., γiyi+1 is the first request which is not served in the
chain γi (1 ≤ i ≤ Q).

In this dynamic programming, the objective function is
OPT (

−→
Y |F), which represents the minimum processing time

when we are at position
−→
Y with the set F of tasks stored in

the cache.

Definition 4. We say position
−→
Z is a one-step-backward of−→

Y if there exists exactly one index i such that zi = yi − 1,
and zj = yj ∀j 6= i. We denote this by

−→
Z =

−→
Y − 1i.

γ1 : γ11 γ1y1 γ1y1+1 γ1n1

γ2 : γ21 γ2y2 γ2y2+1 γ2n2

γQ : γQ1 γQyQ γQyQ+1 γQnQ

Fig. 2. Position Y = [y1, y2, . . . , yQ]

No doubt, each position
−→
Y has at most Q one-step-

backward positions. For each task set F , after going backward
for one step, we could replace at most one task in the cache,
so there are at most N candidates for task set F .

Given two sets F and F ′, define F\F ′ := {x : x ∈ F, x /∈
F ′}.

In the very beginning, OPT ([0, . . . , 0]|empty cache) = 0.
Thus we can compute OPT (

−→
Y |F) with the dynamic program

shown in Fig. 3.

Note that during the process, some configuration transfor-
mations may be infeasible. More precisely, the result of the
request which is being served has to be stored into the cache,
since it is a forced model. Hence we add a +∞ to indicate
such a case.

Finally, we can compute the optimum solution by checking
all the reasonable cache states when arriving at the end of all
the chains.

Cmax = min
F :

∑
Ti∈F si≤K

{ OPT ([n1, . . . , nQ] | F) }.

Next, we analyze the complexity of the dynamic program.
There are at most

∏Q
i=1(ni + 1)×

∑K
j=1

(
N
j

)
objective func-

tions, since we have
∏Q
i=1(ni + 1) different positions, and

at most
∑K
j=1

(
N
j

)
candidates for a task set F whose size is

not greater than K. In addition, to compute each function, we
need to consider at most Q×N possibilities.

Thus, we can find an optimum solution within the time

O

 Q×N ×
Q∏
i=1

(ni + 1)×
K∑
j=1

(
N

j

) .

Remarks: Notice that if both K and Q are constant, then
this dynamic programming is polynomial. Since(
N
K

)
=
(

N
N−K

)
, it is still polynomial, provided both N −K

and Q are constants.

11701170115711701170117011701170

OPT (
−→
Y |F) = min−→

Z :
−→
Z=
−→
Y −1i (1≤i≤Q)

F ′ : |F\F ′|≤1, |F ′|≤K

OPT (

−→
Z |F ′) if γiyi ∈ F = F ′

OPT (
−→
Z |F ′) + pj if γiyi ∈ F\F

′ and γiyi = Tj

+∞ if γiyi /∈ F

Fig. 3. Dynamic programming for FMTC|cost|Cmax

C. Approximation algorithm for FMTC|cost|Cmax

We will present a straightforward approximation algorithm
with a ratio of Q, based on the result that an optimum solution
for the cost model with only one request chain can be found
in polynomial time [10].

Algorithm 1: Concatenating
Input : A set of request chains
Output: A feasible schedule

1 concatenate all the chains to one chain, say γ1 · · · γQ
2 return an optimal schedule of the new request chain

Proposition 5. Algorithm 1 is a Q-approximation algorithm,
and the bound is tight.

Proof: Denote by OPT the minimum processing time
for all the chains, namely the makespan, and by OPTi the
minimum processing time for the ith chain. No doubt, OPT ≥
OPTi ∀i.

Let CA be the optimum solution for the new concatenated
request chain, then

CA ≤
∑
i

OPTi ≤ Q×OPT .

The following instance shows that the bound is tight.

Example 6. Let σ be an arbitrary request chain whose
optimal processing time, denoted by OPT (σ), is large enough.
Then we generate a number of new chains by inserting
some unique tasks. More precisely, {γi := xi · σ} (c.f.
Fig. 4). Thus, OPTi = 1 + OPT (σ) (1 ≤ i ≤ Q) and
CA = Q × OPT (σ) + Q. While the optimal schedule can
serve these new dummy requests first, then serve all the σ
together, which gives that OPT = Q+OPT (σ).

As a result, we get

CA
OPT

→ Q (as OPT (σ)→ +∞)

D. Complexity of OMTC|uniform|Cmax

Theorem 7. The OMTC|uniform|Cmax problem is NP-hard,
and admits no constant approximation algorithm unless P =
NP .

γ1 : x1 σ

γ2 : x2 σ

γQ : xQ σ

Fig. 4. Each request xi (1 ≤ i ≤ Q) appears only once, and all the request
chains are the same except for the first request.

Proof: We get a reduction from FMTC|uniform|Cmax for
K = 1. For each request chain γi (1 ≤ i ≤ Q), we use three
copies, say γ′i, γ′′i and γ′′′i with γij = γ′ij = γ′′ij = γ′′′ij , ∀j.

Clearly, although the number of request chains in-
creases, the minimum processing time does not increase for
FMTC|uniform|Cmax.

Then we argue that, after generating three copies for each
chain, both OMTC and FMTC have the same minimum
processing time, if the cache capacity is one. That means each
request has to be load into the cache to save the computation
of the replicated tasks.

Considering a request, say γ′ij , which is the first request in
some chain and is not in the cache at some step. The optimal
solution has to put it into the cache. If so, it would save the
total processing time by two since it has two other copies,
after that we can re-put the result evicted into the cache if
necessary, which incurs a cost of processing time one. As a
result, we will save the total processing time at least by one.
If we do not store γ′ij in the cache, we do not decrease the
total processing time.

E. Dynamic programming for OMTC||Cmax

The dynamic programming is almost the same as the one
for the forced model, except that we don’t need to load every
task into the cache.

Note that if we don’t load the result, which is being
processed, into the cache, then the set F should not be
changed. For more details, c.f. Fig. 5.

Thus we can compute an optimum solution by checking all

11711171115811711171117111711171

OPT (
−→
Y |F) = min−→

Z :
−→
Z=
−→
Y −1i (1≤i≤Q)

F ′ : |F\F ′|≤1, |F ′|≤K

OPT (

−→
Z |F ′) if γiyi ∈ F = F ′

OPT (
−→
Z |F ′) + pj if γiyi ∈ F\F

′ and γiyi = Tj

OPT (
−→
Z |F ′) + pj if γiyi /∈ F , and F = F ′

+∞ otherwise

Fig. 5. Dynamic programming for OMTC|cost|Cmax

the reasonable cache states to the end.

Cmax = min
F :

∑
Ti∈F si≤K

{ OPT ([n1, . . . , nQ] | F) }.

Next, we analysis the complexity of the dynamic program-
ming. It is not hard to see that the arguments for the forced
model are still valid here, so the running time of the dynamic
programming is:

O

 Q×N ×
Q∏
i=1

(ni + 1)×
K∑
j=1

(
N

j

) .

F. Approximation algorithm for OMTC|cost|Cmax

The approximation algorithm is almost the same as the one
for the forced model. We compute the optimum completion
time for each chain using the approach of [8] respectively,
then sum them up.

Proposition 8. Algorithm 1 is a Q-approximation algorithm
for OMTC|cost|Cmax, and the bound is tight.

V. MINIMIZING
∑
i Ci

A. Complexity of FMTC|uniform|
∑
Ci

We will get a reduction from FMTC|uniform|Cmax. Given
an instance of I of FMTC|uniform|Cmax, we transform it to
an instance I ′ of FMTC|uniform|

∑
Ci by appending some

requests to each request chain.

More precisely, let I be γ = {γi : 1 ≤ i ≤ Q} with |γi| =
ni, we will append M = Q ×

∑
i ni new requests to each

chain and get I ′,

γ = { γi = γi · T 1 · · ·TM : 1 ≤ i ≤ Q }.

Note that all the chains share a common “tail”.

Lemma 9. If K = 1, then the optimum solution schedules all
the new requests, T i (1 ≤ i ≤ M), after the original ones,
i.e., each new request needs to be processed exactly once.

Proof: Let OPT be an optimal solution for the instance
I ′. As a contradiction, we assume that there exists a new task
which is processed at least twice. Note that if T 1 is processed
once, then all the new tasks T i (i ≥ 2) could not be processed
twice. Thus we only need to focus on T 1.

Without loss of generality, we assume that γ1 is the first
request chain finished by OPT. Denote by C1 the completion
time of γ1.

In the following we will argue two cases depending on
whether or not all the new tasks T 1 have been finished before
C1.

Case 1: All the new tasks T 1 have already been finished before
C1.

We call a request bad if it incurs cost during the process.
Consider two bad requests, say ri and rj , which ask for
the same task T 1, and there is no request asking for T 1

between them. There must be some “old” tasks between them,
otherwise OPT should serve both of them simultaneously.

Next we will change the schedule of OPT, which would
result a better one.

Instead of serving ri as OPT, we delay it and serve all
the “old” tasks between ri and rj first, then serve ri and rj
together.

Since the cache capacity is one, the schedule after inter-
changing of ri and rj is still feasible, and the completion
time of all the request chains is decreased by one, which is a
contradiction.

Case 2: There is still a request asking for T 1 that needs to be
served after C1.

Let γQ be the last chain finished by OPT. Then its comple-
tion time is at least Cmax+2M , where Cmax is the minimum
processing time for I, since each of the new tasks is processed
at least twice.

In addition, the sum of the completion time of all the other
chains is strictly greater than M × (Q − 1). Thus, OPT ≥
Cmax +M × (Q+ 1).

On the other hand, we are seeking a trivial upper bound of
OPT. Note that the cache capacity is 1, hence we can process
all the original requests one by one without considering the
order, which leads to a cost of at most n =

∑
i ni. After

that we serve all the new requests, which incur a cost of M .
Clearly, the total cost of the trivial approach is an upper bound
of OPT, therefore (n+M)×Q ≥ OPT .

11721172115911721172117211721172

As a result,

OPT ≥ Cmax +M × (Q+ 1)

> M ×Q+M

= (n+M)×Q
≥ OPT ,

a contradiction.

Theorem 10. The problem FMTC|uniform|
∑
Ci is NP-hard.

Proof: Given an instance of I of FMTC|uniform|Cmax,
we transform it to an instance I ′ of FMTC|uniform|

∑
Ci as

above.

Next we show that the optimum solution for I is Cmax if
and only if the one for I ′ is (Cmax +M)×Q.

(⇒) We schedule all the requests due to the optimum
solution for I, then serve all the new requests, from which
we get that

∑
Ci = (Cmax +M)×Q.

(⇐) Due to Lemma 9, all the chains are completed at the
same time, namely

∑
Ci

Q = Cmax +M . There are exactly M
new requests for each chain, so the optimum solution for I is
Cmax.

B. Dynamic programming for FMTC||
∑
Ci

The approach presented here is based on the one for
minimizing Cmax. Denote by SUM(

−→
Y |F) the minimum sum

of the completion time when we are at position
−→
Y and cache

is with the set F of tasks stored in the cache.

Definition 11. For any position
−→
Y , we say some chain is

active if there are still some requests to be served for this
chain, and the active number with respect to this position,
denoted by n−→

Y
, is the number of active chains.

Note that at each step, all the active chains would contribute
to the objective function. C.f. Fig. 6 for more details.

We can compute the optimum solution by checking all the
reasonable cache states until the last request.∑

Ci = min
F :

∑
Ti∈F si≤K

{ SUM([n1, . . . , nQ] | F) }.

Again, the complexity of the dynamic programming is

O

 Q×N ×
Q∏
i=1

(ni + 1)×
K∑
j=1

(
N

j

) .

C. Approximation algorithm for FMTC|cost|
∑
Ci

Before introducing the approximation algorithm, we prove
a lemma first.

Lemma 12. Given a sequence {xi} of positive number such
that x1 ≤ x2 ≤ · · · ≤ xn, we have:

n∑
i=1

(n+ 1− i)× xi ≤
n+ 1

2
×

n∑
i=1

xi ,

where the equality holds if and only if x1 = x2 = · · · = xn.

Proof: Define ym :=
∑m
i=1 xi. Since {xi} is non-

decreasing, we have

ym =
m

m+ 1
ym +

1

m+ 1
ym

≤ m

m+ 1
(x1 + x2 + · · ·+ xm) +

1

m+ 1
(m× xm+1)

=
m

m+ 1
(x1 + x2 + · · ·+ xm + xm+1)

=
m

m+ 1
× ym+1 .

As a result,
y1
1
≤ y2

2
≤ · · · ≤ yn

n
.

And thus,

n∑
i=1

(n+ 1− i)× xi =
n∑
i=1

yi ≤
yn
n

n∑
i=1

i =
n+ 1

2
× yn .

Algorithm 2:
Input : A set of request chains
Output: A feasible schedule

1 for i← 1 to Q do
2 compute the optimal processing time OPTi for γi

3 sort the chains by increasing order of OPTi (w.l.o.g.,
assume that OPTi < OPTj if i < j)

4 concatenate these chains to one chain: γ1 · · · γQ
5 return an optimal schedule of this new request chain

Proposition 13. Algorithm 2 is a Q+1
2 -approximation algo-

rithm for FMTC|cost|
∑
Ci, and the bound is tight.

Proof: Denote by OPT the optimum value minimizing∑
Ci. Clearly, OPT ≥

∑
iOPTi.

On the other hand, let C ′j be the completion time of the
request chain γj in the new concatenated one. Thus C ′j ≤∑j
i=1OPTi.

11731173116011731173117311731173

SUM(
−→
Y |F) = min−→

Z :
−→
Z=
−→
Y −1i (1≤i≤Q)

F ′ : |F\F ′|≤1, |F ′|≤K

SUM(

−→
Z |F ′) if γiyi ∈ F = F ′

SUM(
−→
Z |F ′) + pj × n−→Z if γiyi ∈ F\F

′ and γiyi = Tj

+∞ if γiyi /∈ F

Fig. 6. Dynamic programming for FMTC|cost|
∑

Ci

Due to Lemma 12, we have

Q∑
j=1

C ′i ≤
Q∑
i=1

(Q+ 1− i)×OPTi

≤ Q+ 1

2
×
∑
i

OPTi

≤ Q+ 1

2
OPT.

We show the bound is also tight by Example 6.

All the chains have the same optimal solution OPT (σ)+1,
so the optimum solution for all the chains should be Q ×
(OPT (σ) + 1).

However, Algorithm 2 just serves those chains one by one.
Except the first chain, all the other chains would incur a cost
of OPT (σ) − k at least, since the tasks stored in the cache
may reduce some cost. More precisely, we have

C ′1 = OPT (σ) + 1

C ′j = C ′1 + (j − 1)(OPT (σ)− k) (2 ≤ j ≤ Q).

As a result,∑
j C
′
j

OPT
→ Q+ 1

2
(as OPT (σ)→ +∞).

D. Complexity of OMTC|uniform|
∑
Ci

We will get a reduction from FMTC|uniform|
∑
Ci.

Theorem 14. The problem OMTC|uniform|
∑
Ci is NP-hard.

Proof: Given an instance I of FMTC|uniform|
∑
Ci,

which consists of a set of request chains {γi : 1 ≤ i ≤ Q}.

For each request chain, we generate a new one, where each
request is duplicated twice,

γi := γi1 · γi1 · γi1︸ ︷︷ ︸
3 requests for the same task

· γi2 · γi2 · γi2︸ ︷︷ ︸ · · · γini
· γini

· γini︸ ︷︷ ︸ ,
and thus |γi| = 3× |γi|.

It is not hard to check that
∑
Ci does not increase for the

forced model. We will argue that for the optional model,
∑
Ci

is the same as the forced model if K = 1, which means that
each request should be loaded into the cache.

Consider a request, say γij , which is the first request in
some chain and is not in the cache at some step. The optimal
solution has to put it into the cache. If so, it would save the
total processing time by two since it has two other copies,
after that we can re-put the result evicted into the cache if
necessary, which incurs a processing time of one. As a result,
we will save the total processing time at least by one. If we
do not store γij in the cache, the total processing time cannot
decrease.

E. Dynamic programming for OMTC||
∑
Ci

The approach presented here is based on OMTC||Cmax.
Denote by SUM(

−→
Y |F) the minimum sum of the completion

times when we are at position
−→
Y and the set F of tasks is

currently stored in the cache. We use the same definition for
“active”.

Note that at each step, all the active chains would contribute
to the objective function, c.f. Fig. 7 for more details.

We can compute an optimum solution by checking all the
reasonable cache states when all the processing is done.∑

Ci = min
F :

∑
Ti∈F si≤K

{ SUM([n1, . . . , nQ] | F) }.

Again, the complexity of the dynamic programming is

O

 Q×N ×
Q∏
i=1

(ni + 1)×
K∑
j=1

(
N

j

) .

F. Approximation algorithm for OMTC|cost|
∑
Ci

The approach is the same as the one for FMTC|cost|
∑
Ci,

since the optional cost model for one request chain is also
polynomially solvable.

Proposition 15. Algorithm 2 is a Q+1
2 -approximation algo-

rithm for OMTC|cost|
∑
Ci, and the bound is tight.

VI. Heuristics for FMTC|cost|Cmax

In this section, we propose two heuristics and compare them
with the approximation algorithm considered in Section IV-C.

Note that an optimal schedule for one request chain can be
found in polynomial time [10]. Thus, the main idea of the
two heuristics is to merge the sequences into one to which the
optimal algorithm on a single sequence can be applied.

11741174116111741174117411741174

SUM(
−→
Y |F) = min−→

Z :
−→
Z=
−→
Y −1i (1≤i≤Q)

F ′ : |F\F ′|≤1, |F ′|≤K

SUM(

−→
Z |F ′) if γiyi ∈ F = F ′

SUM(
−→
Z |F ′) + pj × n−→Z if γiyi ∈ F\F

′ and γiyi = Tj

SUM(
−→
Z |F ′) + pj × n−→Z if γiyi /∈ F , and F = F ′

+∞ otherwise

Fig. 7. Dynamic programming for OMTC|cost|
∑

Ci

A. Randomized merging

The first approach is rather simple, just merge all the request
chains into one chain according to the precedence constraints.

More precisely, let RANDOM(γi, γj) be the function that
returns randomly a supersequence of two request chains γi

and γj . The pseudocode is as follows:

Algorithm 3: Randomized merging

Input : A set of request chains, γi, 1 ≤ i ≤ Q.
Output: A feasible schedule

1 Initialization: γ ← ∅
2 for i← 1 to Q do
3 γ ← RANDOM(γ, γi)

4 return an optimal schedule of γ

B. SCS merging

The second approach is a little bit more involved. For any
two request chains, since their shortest common supersequence
(SCS) could be found in polynomial time [16], we devise a
heuristic via SCS.

More precisely, let SCS(γi, γj) be the function that returns
a shortest common supersequence of two request chains γi and
γj . The pseudocode is as follows:

Algorithm 4: SCS merging

Input : A set of request chains, γi, 1 ≤ i ≤ Q.
Output: A feasible schedule

1 Initialization: γ ← ∅
2 for i← 1 to Q do
3 γ ← SCS(γ, γi)

4 return an optimal schedule of γ

C. Experimental results

We have implemented Algorithm 1 (Concatenating), Algo-
rithm 3 (Random merging) and Algorithm 4 (SCS merging)
with C++, based on an open source graph library LEMON [1].

We present below a preliminary set of experiments with
small instances. The number of different tasks is five and
our cache capacity is two. The cost for each task is selected

independently and uniformly at random from the interval [1,
1000]. There are three or four chains in each instance, where
each request is chosen independently and uniformly at random
from the task set.1

Part of the results are shown in Table I, from which we can
see that Algorithm 1 (Concatenating) performs worse in most
of time.

Concatenating Randomized SCS OPT
197 167 199 159
234 216 182 182
206 216 206 183
284 238 274 238
338 243 241 241

1235 859 849 849
1316 961 961 961
1486 1340 1330 1193
1348 1347 1685 1253
2125 2125 1642 1570
3183 2923 3183 2200
2381 2381 2235 2235
2985 2361 2405 2361
4343 3525 3394 3108
3573 3479 4437 3479
5433 4039 4989 4039

37267 29744 25764 25097
27402 27412 31939 27402

TABLE I
EXPERIMENTAL RESULTS. BEST HEURISTIC RESULTS ARE PRINTED IN

BOLD.

VII. Concluding remarks

This paper gives the first attempt on the offline multi-
threaded caching problem. There are many open questions left.
It is shown that if the number Q of the chains is not fixed,
even with K = 1, the uniform model cannot be approximated
with a constant ratio assuming that P 6= NP . On the other
hand, if both Q and K are fixed, even the general model
is polynomially solvable. The most interesting question in
complexity is to seek an NP-hardness proof or a polynomial
optimal algorithm for the case where Q (Q ≥ 2) is a constant.
It is also challenging to improve the approximation algorithms
for the general model.

Note that in [12] there is a huge gap between the lower
and upper bounds for online algorithms of the uniform model.
It seems possible to improve the lower bound. However, to

1For more details of the source code, welcome to contact us.

11751175116211751175117511751175

design an online algorithm with a competitive ratio better than
the trivial bound is not a piece of cake!

In addition to the theoretical work, it is worthy implement-
ing the known approximation algorithms with real data instead
of random data.

Acknowledgements. Partial support for Haifeng Xu was
provided by National Nature Science Foundation of China
11071215 and by China Scholarship Council 2007101158.

The authors are grateful to the anonymous referees for
their helpful comments and useful references, which have
contributed to improving the presentation.

REFERENCES

[1] http://lemon.cs.elte.hu/trac/lemon.
[2] S. Albers. New results on web caching with request reordering.

Algorithmica, 58:461–477, 2010.
[3] S. Albers, S. Arora, and S. Khanna. Page replacement for general

caching problems. In Proceedings of the tenth annual ACM-SIAM
symposium on discrete algorithms, pages 31–40. Society for Industrial
and Applied Mathematics, 1999.

[4] H. Alborzi, E. Torng, P. Uthaisombut, and S. Wagner. The k-client
problem. In Proceedings of the eighth annual ACM-SIAM symposium
on discrete algorithms, pages 73–82. Society for Industrial and Applied
Mathematics, 1997.

[5] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof
verification and the hardness of approximation problems. Journal of the
ACM, 45(3):501–555, 1998.

[6] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A
unified approach to approximating resource allocation and scheduling.
Journal of the ACM, 48(5):1069–1090, 2001.

[7] L.A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78–101, 1966.

[8] K.I. Bouzina and H. Emmons. Interval scheduling on identical machines.
Journal of Global Optimization, 9(3):379–393, 1996.

[9] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In
Proceedings of the USENIX symposium on internet technologies and
systems, pages 193–206. Usenix Association, 1997.

[10] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results
on server problems. In Proceedings of the first annual ACM-SIAM
symposium on discrete algorithms, pages 291–300. Society for Industrial
and Applied Mathematics, 1990.

[11] M. Chrobak, G. Woeginger, K. Makino, and H. Xu. Caching is hard -
Even in the fault model. In The 18th Annual European Symposium on
Algorithms, 2010.

[12] E. Feuerstein and AS de Loma. On-line multi-threaded paging. Algo-
rithmica, 32(1):36–60, 2002.

[13] M.R. Garey and D.S. Johnson. Computers and intractability: A guide
to the theory of NP-completeness. W.H. Freeman, 1979.

[14] C. Grasland, N. Lambert, and J. Vincent. Regional disparities and
cohesion: What strategies for the future. Technical report, the European
Parliament’s committee on Regional, 2007.

[15] S. Irani. Page replacement with multi-size pages and applications to
web caching. Algorithmica, 33(3):384–409, 2002.

[16] T. Jiang and M. Li. On the approximation of shortest common
supersequencesand longest common subsequences. SIAM Journal on
Computing, 24(5):1122–1139, 1995.

[17] D. Maier. The complexity of some problems on subsequences and
supersequences. Journal of the ACM, 25(2):322–336, 1978.

[18] V.G. Timkovskii. Complexity of common subsequence and super-
sequence problems and related problems. Cybernetics and Systems
Analysis, 25(5):565–580, 1989.

[19] N.E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.
[20] M. Yuan. Use of a three-domain repesentation to enhance GIS support

for complex spatiotemporal queries. Transactions in GIS, 3(2):137–159,
1999.

11761176116311761176117611761176

