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Abstract

This paper presents a new bi-objective greedy heuristic
for scheduling parallel applications on heterogeneous dis-
tributed computing systems. The proposed algorithm which
is called BSA (Bi-objective Scheduling Algorithm) takes
into account not only the time makespan but also the failure
probability of the application. Since it is not usually possi-
ble to achieve the two conflicting objectives (performance
and reliability) simultaneously, a bi-objective compromise
function is introduced. BSA has a low time complexity of
O(e|P |+ v log ω), wheree andv are respectively the num-
ber of edges and tasks in the task graph of the application.
|P | is the number of machines (processors) in the system
andω is the width of the task graph. Experimental results
show the performance of the proposed algorithm.

Keywords: reliability, scheduling, clustering, distributed
computing, precedence task graphs, directed acyclic graphs
DAGs, multicriteria scheduling, heterogeneous systems.

1. Introduction

Heterogeneous distributed systems are widely deployed
for executing computationally intensive parallel applica-
tions with diverse computing needs. The efficient execu-
tion of applications in such environments requires effective
scheduling strategies that take into account both algorith-
mic and architectural characteristics to achieve a good map-
ping of tasks to processors, i.e., to minimize the schedule
length (Makespan). In addition, failures of resources (pro-
cessor/link) in such systems may occur and can have an ad-
verse effect on applications. Consequently, there is an in-
creasing need for developing techniques to achieve max-
imum reliability of a system, i.e., to minimize the failure
probability of a system during execution of an application.
Both heterogeneous scheduling and reliability are difficult

problems and solve them together makes the problem harder
because the two objectives (Makespan/Reliability) conflict.
However, it may not be possible to minimize both objectives
at the same time: indeed, minimize the failure probability of
the application may increase the schedule length of the ap-
plication. To make scheduling more realistic, we develop
in this paper a Bi-objective Scheduling Algorithm (BSA)
which satisfies both objectives (maximize the system’s re-
liability and minimize the makespan) simultaneously. The
salient feature of our scheme is that:

• it allows the algorithm to be performed on heteroge-
neous computing systems with minimum time com-
plexity;

• it is based on a bi-objective compromise function that
selects best mappings for critical free tasks at each step
of the scheduling process;

• it has a very good behavior in practice.

The remainder of the paper is organized as follows:
section 2 presents the basic definitions and assumptions
adopted in this paper. We recall in section 3 principles of
the best existing scheduling algorithms. Section 4 describes
the bi-objective scheduling problem. After presentation of
our compromise function in section 5, we detail our algo-
rithm in section 6. To experimentally compare our algo-
rithm to [2], we remind its main aspects in section 7. Be-
fore concluding, we report in section 8 some experimental
results that assess the good behavior of our algorithm.

2. Basic Definitions and Notations

The execution model for task graphs is called macro-
dataflow. In the macro-dataflow model, a parallel program
is represented as a weighted Directed Acyclic Graph (DAG)
which is defined byG = (V, E) whereV is the set of task
nodes,v = |V | is the number of nodes,E is the set of edges



corresponding to the precedence relations between the tasks
ande = |E| is the number of edges. LetV be a cost func-
tion on the edges (V(ti, tj) represents the volume of data
that taskti needs to send to tasktj). The length of a path in a
DAG is defined as the sum of its edges weights plus the sum
of its nodes weights. In the following we will use terms node
or task indifferently. In a task graph, a node which does not
have any predecessors is called anentrynode while a node
which does not have any successors is called anexit(sink)
node. Each task first receives all the needed data from its
predecessors, computes without interruption and then sends
the results to its successors.

A Heterogeneous System is represented by a bounded
setP = {P1,P2, . . . ,P|P |} of processors. These proces-
sors are assumed to be fully connected. The link between
processorsPk andPh is denoted byℓkh. Communication
time between two tasks mapped on the same processor is
assumed to be zero time units. Computational heterogene-
ity of a task is modeled by a functionE : V × P → R+,
which represents the execution time of each task on each
processor in the system:E(t,Pk) denotes the execution
time of t on Pk, 1 ≤ k ≤ |P |. On homogeneous sys-
tems will simply denote byE(t) the execution time of a
taskt. The communicational heterogeneity is expressed by
W (ti, tj) = V(ti, tj).d(Pk,Ph), whered(Pk,Ph) is the
delay to send a unit length data fromPk toPh.

Failures of resources (processors/links) in the system
are assumed to be statistically independent and follow a
Poisson process with a constant failure rate. We denote by
λ(Pk) andλ(ℓkh) the failure rate of processorPk and the
failure rate of the linkℓkh respectively. The mapping ma-
trix X is anv × |P | binary matrix representing the map-
ping of thev tasks of the DAG to the|P | processors. Ele-
mentXik is 1 if taskti has been mapped to processorPk

and 0, otherwise.

Γ−(t) andΓ+(t) denote the sets of immediate predeces-
sors and successors oft in G respectively. We callg(G) the
granularity (the ratio of the computation time to communi-
cation time) of the task graph.

If g(G) ≥ 1 a task graphG is saidcoarse grain, other-
wisefine grain. For coarse grainDAGs each task receives
or sends a small amount of communication compared to
the computation of its adjacent tasks. During the schedul-
ing process, the graph consists of two parts, the examined
(scheduled) tasksS and the unscheduled tasksU . Initially
U = V .

The bi-objective function is to minimize both the
Makespan (schedule length) denoted byM(G,X ) and
the failure probability of the application denoted by
F(G,X ) simultaneously with minimum time complex-
ity and without violating the precedence constraints among
the tasks.

3. Related Work
A large number of algorithms for scheduling and parti-

tioning DAGs have been proposed in the literature. There
exists mainly two categories:- Unbounded Number of pro-
cessors [5, 3, 13, 10, 17] and - Bounded Number of Proces-
sors [4, 14, 9, 7, 16]. But all of these assume that the pro-
cessors in the systems are completely safe.

Reliability has been considered in [11, 8, 15]. They
present a task allocation model to maximize the system’s re-
liability in heterogeneous systems. However, none of these
heuristics attempts to minimize the time makespan of the
application.

Only a few papers in the literature [2, 12, 6, 1], deals with
both objectives (performance and reliability). In [12] the
two objectives are not considered simultaneously, this algo-
rithm, first tries to guarantee the timing constraints (dead-
lines) of the tasks. Then, among the processors on which
task’s deadline is guaranteed, the task is mapped to a pro-
cessor which minimizes the failure probability of the appli-
cation. However, the tasks deadline has advantage over the
reliability objective. The proposed algorithm in [1] uses the
active replication of tasks to improve reliability. It is based
on the scheduling algorithm presented in [16]. [6] addresses
the problem of allocating periodic real time tasks. The prob-
ability of meeting task’s deadline is used as the objective
function. To our knowledge, the RDLS algorithm [2] is the
only one to address the bi-objective scheduling problem
presented in this study. It is based on the Dynamic Schedul-
ing Algorithm (DLS) developed by Sih and Lee in [14]. The
objective function used in [2] has an important disadvan-
tage: time makespan requirements may dominates the sec-
ond objective (the failure probability of the application). A
brief description of this algorithm is given in section 7, be-
fore comparing it to our algorithm in section 8.

4. The Bi-objective Scheduling Problem

In this section, we present in details the two objectives.
Our goal in this study is to find a schedule of the

DAG G = (V, E), satisfying two objectives: minimiz-
ing makespanM(G,X ) and minimizing failure probabil-
ity F(G,X ) under task mappingX . Thus, a bi-objective
scheduling problem is formalized as follow:

Minimize

(
M(G,X )

F(G,X )

)

Such That: G = (V, E), v = |V |,
Xik ∈ {0, 1}, 1 ≤ i ≤ v, 1 ≤ k ≤ |P |,
|P |∑
k=1

Xik = 1, ∀ti ∈ V ,

(ti, tj) ∈ E ⇒ ti ≺ tj
Whereti ≺ tj means that taskti has to be executed be-
fore tasktj .



4.1. The First Objective: Minimize Makespan

The HSA (Heterogeneous Scheduling Algorithm) algo-
rithm that we propose in this work is a greedy scheduling
heuristic based on attribute priority calledTask Criticalness
which is essentially defined to be the length of the longest
path passing through free tasks (A task is called free if it is
unscheduled and all of its predecessors are scheduled) in the
current partially mapped DAG. Recall that the length of the
path is the sum of the weights of both nodes and edges from
a source (entry) node to a sink (exit) node. Once a taskt
is scheduled, it is mainly associated with the following val-
ues: a processorP(t), a start timeS(t,P) and a finish time
f(t,P).

A Critical Task is defined as the one with the high-
est priority. Priority of a taskt is computed by the sum
L−(t) + L+(t), whereL−(t) andL+(t) are respectively
the dynamic top leveland thestatic bottom levelof a free
taskt. They are computed as follows:

• if Γ−(t) = φ thenL−(t)← 0.
Otherwise,
∀ t ∈ V, L−(t)← max

t∗∈Γ−(t)
P=P(t∗)

{
f(t∗,P) + W (t∗, t)

}

• if Γ+(t) = ∅ thenL+(t)← E(t).
Otherwise,
∀ t ∈ V, L+(t)← max

t∗∈Γ+(t)
{E(t)+W (t, t∗)+L+(t∗)}

Note that the finish time oft onP is:

f(t,P) = S(t,P) + E(t,P)

S(t,P) satisfies the following conditions: - it is later than
the time when all messages fromt’s predecessors arrive on
processorP and it is later thanr(P) (the ready time ofP).
Thus, the start time oft onP is:

S(t,P) = max
(
L−(t,P), r(P)

)

The Task Criticalness definition adopted in this work
provides a good measure of the task importance, because
the greater thecriticalnessis, the more work is to be per-
formed along the path containing a task. At each step of the
mapping process, HSA selects a critical free task and sched-
ules it to a processor that allows theminimum finish time.
HSA takes into account the computational heterogeneity of
the system and is designed with the following objectives:

• To compute task priorities accurately in order that crit-
ical tasks will finish earlier;

• To have a lower time complexity compared to other al-
gorithms in the literature.

We maintain a priority listα (that contains free tasks)
which is implemented by using a balanced search tree data

structure (AVL). At the beginning,α is empty. The Head
functionH(α) returns the first task in the sorted listα,
which is the task with the highest priority (ties are broken
randomly).

The number of tasks that can be simultaneously free at
each step in the scheduling process is bounded by thewidth
(ω) of the task graph (the maximum number of tasks that
are independent inG). This, implies that|α| ≤ ω.

Algorithm 4.1 The HSA algorithm

1: ComputeL+(t) for each taskt and setL−(t) = 0 for
each entry taskt;

2: P = {P1,P2, . . .P|P |}; (*the set of processors in the
given system*)

3: S = ∅ ; U = V ; (*Mark all tasks as unscheduled*)
4: Put entry tasks inα;
5: while U 6= ∅ do
6: t ← H(α) ; (*Select a free task with the highest

priority from α *)
7: Computef(t,P) on each processor

f(t,P)← S(t,P) + E(t,P);

8: P(t)← P | f(t,P) = min
Pk∈P

{
f(t,Pk)

}
;

9: Schedulet to the corresponding processor;
10: Put t in S and update the priority values oft’s suc-

cessors;
11: Putt’s free successors inα;
12: U ← U\{t};
13: end while

4.2. The Second Objective: Minimize Failure
Probability

4.2.1. Reliability Model: Successful execution of the
task graph (DAG) requires that each resource (proces-
sor/link) be operational during the time that its mapped
tasks are executing or are in communication. We do not con-
sider failures of processors during an idle time because
they only affect the task’s finish time, not the systems’ re-
liability. If a processor fails during an idle time, it will be
replaced by a spare unit, and such a failure is not criti-
cal.

i) Processor reliability:Under a task mappingX , the re-
liability of a processorPk for the executions of the tasks
mapped to it during the mission is:

RPk
(G,X ) = e

−λ(Pk)
v

P

i=1

XikE(ti,pk)

The summation gives the time spent in execut-
ing tasks onPk.



ii) Link reliability: Similarly, for a linkℓkh betweenPk and
Ph, we have

Rℓkh
(G,X ) = e

−λ(ℓkh)
v

P

i=1

v
P

j=1
XikXjhW (ti,tj)

The summation denotes the time required to perform the
communication betweenPk andPh.
iii) System reliability:The system reliability denoted by
R(G,X ) under mappingX is defined to be the probabil-
ity that the system will not fail during the time that it is exe-
cuting the task graphG. Thus, the probability of the system
not to fail is:

R(G,X ) =

|P |∏

k=1

RPk
(G,X ).

|P |∏

k=1

|P |∏

h=1

Rℓkh
(G,X )

= e−C(G,X ) (1)

Where the reliability costC(G,X ) is given by the following
formula:

C(G,X ) =

|P |∑

k=1

v∑

i=1

λ(Pk)XikE(ti,Pk)

+

|P |∑

k=1

|P |∑

h=1

v∑

i=1

v∑

j=1

λ(ℓkh)XikXjhW (ti, tj) (2)

As a result, the failure probability of the system under task
mappingX is:

F(G,X ) = 1− e−C(G,X )

The first term in (2) reflects the unreliability caused by
the execution of the tasks on their corresponding proces-
sors. This tells us that mapping tasks with greater execution
times to more reliable processors might be a good heuris-
tic to increase the reliability. The second term reflects the
unreliability caused by the inter-processor communication.
Thus, mapping larger volumes of data to more reliable links
is a good approach to decrease the system’s overall failure
probability.

The impact of schedulingt, onP on the failure proba-
bility of the application, is given as follow:

ξ(t,P) = λ(P)E(t,P) +
∑

ti∈Γ−(t)

k∈P(ti)

λ(ℓkP(t))XikW (ti, t)

From equation (2), it is clear that in order to increase the
reliabilityR(G,X ), we have to reduceC(G,X ) as much as
possible. We can achieve this goal by employing a greedy
strategy of task selection and processor selection. We pro-
pose the Reliable Scheduling Algorithm (algorithm 4.2)
which takes only reliability into account.

Algorithm 4.2 TheRSAalgorithm

1: ComputeL+(t) for each taskt and setL−(t) = 0 for
each entry task ;

2: P = P1,P2, . . .P|P |; (*the set of processors in the
given system *)

3: S = ∅ ; U = V ; (*Mark all tasks as unscheduled*)
4: Put entry tasks inα;
5: while U 6= ∅ do
6: t ← H(α) ; (*Select a free task with the highest

priority from α *)
7: Calculateξ(t,P) on each processor

ξ(t,P)← λ(P)E(t,P)+
∑

ti∈Γ−(t)

k∈P(ti)

λ(ℓkP(t))XikW (ti, t);

8: P(t)← P | ξ(t,P) = min
Pk∈P

{
ξ(t,Pk)

}
;

9: Schedulet to the corresponding processor;
10: Put t in S and update the priority values oft’s suc-

cessors;
11: Putt’s free successors inα;
12: U ← U\{t};
13: end while

4.2.2. Complexity Analysis of HSA and RSA

Theorem 4.1 The time complexity of HSA and RSA is
O(e|P |+ v log ω).

Proof: ComputingL+(t) (line 1) takesO(e + v). Insertion
or deletion fromα costsO(log |α|) where|α| ≤ ω. Since
each task in a DAG is inserted intoα once and only once
and is removed once and only once during the entire execu-
tion of HSA and RSA, the time complexity forα manage-
ment is inO(v log ω). The main computational cost of HSA
and RSA is spent in the while loop (Lines 5 to 13). This
loop is executedv times. Line 6 costsO(log ω) for find-
ing the head ofα. Line 7 costsO(|Γ−(t)||P |) in examin-
ing the immediate predecessors of taskt on each processor
Pk | k = 1 . . . |P |. For the wholev loops the cost for this
line is at most

∑v

i=1 O(|Γ−(t)||P |) = O(e|P |). Line 10
costsO(|Γ+(t)|) to update the priority values of the imme-
diate successors oft, and similarly the cost for thev loops
of this line isO(e). Thus the total cost of HSA and RSA is
O(e|P |+ v log ω). �

5. The Compromise function
In this section, we present our compromise func-

tion for minimizing the two objectives simultaneously. The
HSA algorithm is modified to take into account reliabil-
ity of the resources in the system. The new modified algo-
rithm that we propose is a greedy heuristic and will be re-
ferred to as the Bi-objective Scheduling Algorithm (BSA).
In a BSA, a bi-objective compromise functionD(t,P) be-
tweenf(t,P) andξ(t,P) (reliability cost oft if scheduled



on P) is used as a cost function to select the best proces-
sor Pbest to which a free critical taskt is scheduled at
each step in the mapping process. The compromise func-
tion is defined to be:

D(t,P) =

√

θ

(
f(t,P)

max
Pk∈P

f(t,Pk)

)2

+ (1 − θ)

(
ξ(t,P)

max
Pk∈P

ξ(t,Pk)

)2

Whereθ ∈ [0, 1] is a weighting parameter that is intro-
duced with the aim of being able to privilege one of the ob-
jectives compared to the other. Consequently:

• If θ = 0, BSA reduces to−−−−−−−−−→ HSA;

• If θ = 1, BSA reduces to−−−−−−−−−→ RSA;

• If θ = 0.5, the two objectives have the same impor-
tance.

Thus, the selected best processorPbest(t) is obtained as fol-
low:

Pbest(t)← P such thatD(t,P) = min
Pk∈P

{
D(t,Pk)

}
(3)

Since the ranges of values thatf(t,P) and ξ(t,P) can
take are different, they are normalized by dividing them by
their respectivemax(values), before combining them in-
side the compromise functionD(t,P). The advantage
of such a normalization is thatf(t,P) cannot domi-
nate ξ(t,P) or vice-versa during the scheduling pro-
cess.

6. Our Scheduling Algorithm BSA

Algorithm 6.1 TheBSAalgorithm

1: ComputeL+(t) for each taskt and setL−(t) = 0 for
each entry task ;

2: P = P1,P2, . . .P|P |; (*the set of processors in the
given system*)

3: S = ∅ ; U = V ; (*Mark all tasks as unscheduled*)
4: Put entry tasks inα;
5: while U 6= ∅ do
6: t ← H(α) ; (*Select a free task with the highest

priority from α *)

7: Calculate
(

max
Pk∈P

f(t,Pk)
)

and
(

max
Pk∈P

ξ(t,Pk)
)

values;
8: CalculateD(t,P) on each processorPk ∈ P ;
9: Pbest(t)← P | D(t,P) = min

Pk∈P

{
D(t,Pk)

}
;

10: Schedulet to the corresponding processor;
11: Put t in S and update the priority values oft’s suc-

cessors;
12: Putt’s free successors inα;
13: U ← U\{t};
14: end while

Theorem 6.1 The time complexity of BSA isO(e|P | +
v log ω).

Proof: ComputingL+(t) (line 1) takesO(e + v). Inser-
tion or deletion fromα costsO(log |α|) where|α| ≤ ω.
Since each task in a DAG is inserted intoα once and only
once and is removed once and only once during the en-
tire execution ofBSA, the time complexity forα manage-
ment is inO(v log ω). The main computational cost ofBSA
is spent in the while loop (Lines 5 to 14). This loop is
executedv times. Line 6 costsO(log ω) for finding the
head ofα. Line 7 and 8 costsO(|Γ−(t)||P |) in examin-
ing the immediate predecessors of taskt on each proces-

sorPk | k = 1 . . . |P |, while computing
(

max
Pk∈P

f(t,Pk)
)

,
(

max
Pk∈P

ξ(t,Pk)
)

andD(t,Pk) values on each processor.

For the wholev loops the cost for these lines is at most∑v

i=1 O(|Γ−(t)||P |) = O(e|P |). Line 11 costsO(|Γ+(t)|)
to update the priority values of the immediate successors of
t, and similarly the cost for thev loops of this line isO(e).
Thus the total cost ofBSAis O(e|P |+ v log ω). �

7. A Brief Description of RDLS Algorithm

In order to compare our algorithm to RDLS algorithm
proposed in [2], which is the only algorithm to our knowl-
edge that addresses the bi-objective scheduling problem dis-
cussed in this study, we give in the following section a
brief description of this algorithm. The RDLS (Reliable Dy-
namic Level Scheduling) algorithm is based on an exist-
ing scheduling algorithm DLS (Dynamic Level Schedul-
ing [14]). The DLS algorithm computes theDynamic Level
(DL) value for all free tasks on all processors. The task-
processor pair which gives the largest value ofDL is se-
lected for scheduling.DL(ti,Pk), is defined to be:

DL(ti,Pk) = SL(ti)

−max{L−(ti,Pk), r(Pk)}+ ∆(ti,Pk) (4)

The first term in (4) is called the static level of the task. It is
defined to be the longest sum of the median execution time
of the tasks along any directed path fromti to an exit task.
The max term defines the time when taskti can begin exe-
cution on processorPk. The third term accounts for the pro-
cessor speed differences and is defined to be:

∆(ti,Pk) = Ê(ti)− E(ti,Pk)

whereÊ(ti) denotes the median execution time of taskti
across all processors in the system andE(ti,Pk) denotes
the execution time ofti onPk.
To take reliability measures into account the authors incor-
porate a new cost function term calledC(ti,Pk) as follows:

DL′(ti,Pk) = DL(ti,Pk)− C(ti,Pk) (5)



The new term promotes resources with high reliability to
maximize the reliability of the application. The idea of the
RDLS algorithm is that it seeks a task-processor pair with
highest dynamic level given by 5.

8. Experimental results

To evaluate the performance of BSA algorithm, se-
ries of simulations have been carried out. Due to the
NP-completeness of this scheduling problem, the pro-
posed algorithm cannot always lead to an optimal solution.
Thus it is necessary to test its performance using ran-
domly generated graphs.

The parameters used in the experimental study are cho-
sen in such a way that they are representative and cover
a wide spectrum of real-life parallel applications. They
are based on those used in the literature (see for exam-
ple [2, 11, 8, 15, 12]). In addition a random DAG gen-
erator (see [5, 4]) used in this study generates DAGs
that are quite close to those occuring in practical appli-
cation. The failures rates of processors and links are as-
sumed to be uniformly distributed from5 × 10−6/h to
15 × 10−6/h and from15 × 10−6/h to 30 × 10−6/h re-
spectively. The worst-case execution time of each task
in the DAG is assumed to be uniformly distributed be-
tween 80 and 120 units of time, where the executions times
of a given task are different on different processors. The
granularity of the task graph is 1.0, the number of proces-
sors is set to 40 andθ = 0.5 (the two objectives have the
same importance). To model the communicational hetero-
geneity of the system, the unit message delay of the links
and the message volume between two tasks are chosen uni-
formly from the ranges[5, 15] and [10, 100] respectively.
Each point in all figures represent the mean of execu-
tions on 30 random graphs. The time makespan and the
reliability cost are the two main metrics to test the per-
formance of BSA algorithm. The simulation studies are
mainly grouped into six sets:

a) Performance comparison between BSA, RSA and
HSA: First, we compare the performance of BSA with our
algorithms HSA and RSA presented previously in section 4.
From Fig. 1, it is clear that we deal with two conflicting ob-
jectives. RSA algorithm minimizes well the reliability cost
of the application but it produces task mappings that in-
crease the time makespan of the application. Conversely,
HSA algorithm produces better schedule lengths, but it suf-
fers in terms of reliability. This experiment demonstrates
that BSA algorithm alleviates this problem by finding bet-
ter compromise solutions between the two objectives. This
is due to the greedy processor selection adopted by our algo-
rithm. It is guided by the compromise function which does
not allow to make one objective dominates the other. The

processors are selected in such a way thatD(t,P) value is
minimized.
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Figure 1. Average normalized makespan and
reliability cost comparison between BSA,
HSA and RSA

b) Effect of granularity: In this simulation, the num-
ber of tasks is chosen uniformly from the range[80, 120].
The granularity of the task graph is varied from0.2 to
2.0, with increments of0.2. Fig. 2 shows that both time
makespan an reliability increase as the granularity in-
creases. This is due to the fact that the increase of the tasks’
execution times leads to an increase of both time makespan
and tasks’ reliability costs.

c) Effect of computational heterogeneity: Com-
putational heterogeneity is modeled by varying the ex-
ecution times of tasks. Five sets of execution times
with the same average value, are used in the simula-
tion study: [90, 110], [70, 130], [50, 150], [30, 170] and
[10, 190]. These ranges reflect 5 different levels of hetero-
geneity. In this experiment , the number of tasks is cho-
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Figure 2. Impact of the granularity on reliabil-
ity cost and makespan

sen uniformly from the range[80, 120]. As we can see
from Fig. 3, for both time makespan and reliability mea-
sure the BSA algorithm has better performance on systems
with higher computational heterogeneity. This can be ex-
plained by the fact that the tasks’ reliability costs and
finish times decrease accordingly when the heterogene-
ity of the systems increases.

d) Effect of system sizes:To test the impact of the num-
ber of processors on the performance of BSA algorithm,
we chose the number of tasks uniformly from the range
[80, 120] and increased|P | from 10 to 50. In Fig. 4, we
observe that the performance of BSA algorithm in terms
of reliability improves as the system size increases. This
is because for large number of processors, the BSA algo-
rithm has more choices for scheduling tasks. However, sys-
tem sizes does not make a significant effect on the time
makespan, because processors on which tasks are mapped
are not usually fastest.
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Figure 3. Impact of computational hetero-
geneity on reliability cost and makespan

e) Performance comparison between BSA and
RDLS: For the experimental performance comparison be-
tween BSA and RDLS we do not take link failures into
account, because thelink reliability computationof both al-
gorithms is different. However, this do not change perfor-
mances of these algorithms. Thus the overall reliability cost
of the application becomes:

C(G,X ) =

|P |∑

k=1

v∑

i=1

λ(Pk)XikE(ti,Pk)

Comparing the results of our algorithm to the re-
sults of RDLS [2], we can find that the RDLS is very easy
to fail (see Fig. 5). The time makespan produced by RDLS
is close to that produced by HSA algorithm (this is the rea-
son for which we take HSA in this set of study). This
is explained by the fact that the ranges of values of
DL(t,P) and C(t,P) can take are different. As a re-
sult, the value ofDL(t,P) dominates the value ofC(t,P).
To cure this problem, both objective values must be normal-
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Figure 4. Impact of system sizes on reliability
cost and makespan

ized and then combined. Doing so, the algorithm becomes
heavier, due to the scheduling criterion of RDLS. In ad-
dition, normalizing both objective values is a necessary
condition to have the same range of values, but not suffi-
cient to achieve a better compromise solutions between the
two objectives. This is due to the disadvantage of the ob-
jective function given by 5. Unlike RDLS, the BSA algo-
rithm does not have this problem, because the compromise
functionD(t,P) provides better decisions during the map-
ping process.

f ) Running times: the running times of BSA and RDLS
are given in Table 1. The implementation is in C program-
ming language, the computer used is a Pentium 4 (CPU 2.0
GHz). From this table, we can observe that our algorithm is
considerably faster than RDLS. We conclude that for large
task graphs, RDLS algorithm is impractical. The time com-
plexity of BSA makes it practical for very large task graph
which is the case in many practical applications.
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Figure 5. Average normalized makespan and
reliability cost comparison between BSA and
RDLS

Number of tasks BSA RDLS

1000 0.011 2.079
2000 0.023 8.680
3000 0.039 16.675
4000 0.045 34.604
5000 0.067 47.917
6000 0.072 123.844
7000 0.093 159.256
8000 0.108 205.778

Table 1. Running Times of BSA vs RDLS in
seconds



9. Conclusion

The algorithm discussed in this paper for scheduling
parallel applications on heterogeneous computing systems
provides achieve two conflicting objectives: minimum time
Makespan and maximum reliability at the same time. The
algorithm, which is called BSA, is based on a compromise
function that selects processors on which critical free tasks
should be mapped to during the scheduling process. The
main features of our algorithms are:

• It has a low time complexity;

• It can attain both objectives to some degree simultane-
ously;

• It has a very good behavior in practice.

Indeed, simulations studies show that the solution qual-
ity and the time complexity of our algorithm makes it a vi-
able choice for compile-time scheduling large tasks graphs
on systems subject to failures.
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