
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Fault Tolerant Scheduling of Precedence
Task Graphs on Heterogeneous Platforms

Anne Benoit,
Mourad Hakem,
Yves Robert

December 2007

Research Report No 2008-03

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Fault Tolerant Scheduling of Precedence Task Graphs on

Heterogeneous Platforms

Anne Benoit, Mourad Hakem, Yves Robert

December 2007

Abstract
Fault tolerance and latency are important requirements in several ap-
plications which are time critical in nature: such applications require
guaranties in terms of latency, even when processors are subject to fail-
ures. In this paper, we propose a fault tolerant scheduling heuristic for
mapping precedence task graphs on heterogeneous systems. Our ap-
proach is based on an active replication scheme, capable of supporting
ε arbitrary fail-silent (fail-stop) processor failures, hence valid results
will be provided even if ε processors fail. We focus on a bi-criteria ap-
proach, where we aim at minimizing the latency given a fixed number of
failures supported in the system, or the other way round. Major achieve-
ments include a low complexity, and a drastic reduction of the number of
additional communications induced by the replication mechanism. Ex-
perimental results demonstrate that our heuristics, despite their lower
complexity, outperform their direct competitor, the FTBAR scheduling
algorithm [8].

Keywords: Fault tolerance, reliability, multi-criteria scheduling, heterogeneous systems.

Résumé
La tolérance aux pannes et la latence sont deux critères importants pour
plusieurs applications qui sont critiques par nature. Ce type d’applica-
tions exige des garanties en terme de temps de latence, même lorsque les
processeurs sont sujets aux pannes. Dans ce rapport, nous proposons une
heuristique tolérante aux pannes pour l’ordonnancement de graphes de
tâches sur des systèmes hétérogènes. Notre approche est basée sur un mé-
canisme de réplication active, capable de supporter ε pannes arbitraires
de type silence sur défaillance. En d’autres termes, des résultats va-
lides seront fournis même si ε processeurs tombent en panne. Nous nous
concentrons sur une approche bi-critère, où nous avons pour objectif de
minimiser le temps de latence pour un nombre donné (fixé) de pannes to-
lérées dans le système, ou l’inverse. Les principales contributions incluent
une faible complexité en temps d’exécution, et une réduction importante
du nombre de communications induites par le mécanisme de réplication.
Les résultats expérimentaux montrent que notre algorithme, en dépit de
sa faible complexité temporelle, est meilleur que son direct compétiteur,
l’algorithme FTBAR [8].

Mots-clés: Tolérance aux pannes, fiabilité, ordonnancement multi-critère, ressources
hétérogènes.

Fault tolerance and scheduling 1

1 Introduction

Heterogeneous distributed systems are widely deployed for executing computationally inten-
sive parallel applications with diverse computing needs. The efficient execution of applications
in such environments requires effective scheduling strategies that take into account both al-
gorithmic and architectural characteristics. The goal is to achieve a good mapping of tasks to
processors, minimizing the schedule length (latency). In addition, resource failures (proces-
sors/links) may frequently occur in such systems and have an adverse effect on applications.
Consequently, there is an increasing need for developing techniques to achieve fault tolerance,
i.e., to tolerate an arbitrary number of failures during the execution. Both heterogeneous
scheduling and fault tolerance are difficult problems in their own, and aiming at solving
them together makes the problem even harder. For instance, the latency of the application
will increase if we want to tolerate several failures, even if no actual failure happens during
execution.

In this paper, we introduce a Fault Tolerant Scheduling Algorithm (FTSA) which aims at
tolerating multiple processor failures without sacrificing the latency simultaneously. FTSA is
based on an active replication scheme to mask failures, so that there is no need for detecting
and handling such failures. Major achievements include a low complexity, and a drastic reduc-
tion of the number of additional communications induced by the replication mechanism in the
MC-FTSA variant of the algorithm (where MC stands for Minimum Communications). Ex-
perimental results demonstrate that our heuristics, despite their lower complexity, outperform
their direct competitor, the FTBAR scheduling algorithm [8].

Throughout the paper, we will use terms latency, makespan and schedule length indiffer-
ently.

The paper is organized as follows: Section 2 presents basic definitions and assumptions.
We overview related work in Section 3. Section 4 describes FTSA, together with its vari-
ant MC-FTSA designed to minimize communication overhead. We outline the principle of
FTBAR [8] in Section 5, and we compare FTSA to the latter algorithm in Section 6; the
experimental results assess the good behavior of our algorithms. Finally, we conclude in
Section 7.

2 Framework

The execution model for a task graph is represented as a weighted Directed Acyclic Graph
(DAG) G = (V,E), where V is the set of nodes corresponding to the tasks, and E is the set
of edges corresponding to the precedence relations between the tasks. In the following we
use the term node or task indifferently; v = |V | is the number of nodes, and e = |E| is the
number of edges. In a DAG, a node without any predecessor is called an entry node, while a
node without any successor is an exit node. For a task t in G, Γ−(t) is the set of immediate
predecessors and Γ+(t) denotes its immediate successors. We let V be the edge cost function:
V(ti, tj) represents the volume of data that task ti needs to send to task tj .

A heterogeneous system is represented by a finite processor set P = {P1,P2, . . . ,Pm}.
These processors are assumed to be fully connected. The link between processors Pk and
Ph is denoted by `kh. The computational heterogeneity of tasks is modeled by a function
E : V × P → R+, which represents the execution time of each task on each processor in the
system: E(t,Pk) denotes the execution time of t on Pk, 1 ≤ k ≤ m. The heterogeneity in terms

2 A. Benoit, M. Hakem, Y. Robert

of communications is expressed by W (ti, tj) = V(ti, tj).d(Pk,Ph), where task ti is mapped on
processor Pk, task tj is mapped on processor Ph, and d(Pk,Ph) is the time required to send a
unit length data from Pk to Ph. The communication has no cost if the two tasks are mapped
on the same processor: d(Pk,Pk) = 0.

The mapping matrix X is a v×m binary matrix representing the mapping of the v tasks
in the DAG to the m processors. Element Xik is 1 if task ti has been mapped to processor
Pk and 0 otherwise.

For a given graph G and processor set P, g(G,P) is the granularity, i.e., the ratio of the
sum of slowest computation times of each task, to the sum of slowest communication times
along each edge. If g(G,P) ≥ 1, the task graph is said to be coarse grain, otherwise it is fine
grain. For coarse grain DAGs, each task receives or sends a small amount of communication
compared to the computation of its adjacent tasks. During the scheduling process, the graph
consists of two parts, the already examined (scheduled) tasks S and the unscheduled tasks
U . Initially U = V .

Our goal is to find a task mapping X and a schedule of the DAG G on platform P, which
aims at minimizing the latency L(G,X), while tolerating an arbitrary number ε of processor
failures.

3 Related Work

A large number of algorithms for scheduling and partitioning DAGs have been proposed in
the literature, either with an unbounded number of processors [6, 9, 18, 23] or with a limited
number of processors [3, 15, 24, 27]. All above references assume that processors in the
systems are completely safe.

Reliability has been considered in [16, 17, 26]. Task allocation models which aim at
maximizing the reliability of the system have been developed for heterogeneous systems.
However, these heuristics neither provide fault tolerance nor attempt to minimize the latency
of the application. Some other papers [4, 5, 10, 14, 21] deal with both objectives, performance
(latency) and reliability. These algorithms are developed only for maximizing reliability while
satisfying latency constraints. They do not achieve fault tolerance. Recall that, the reliability
is a probability measure that evaluates by a probabilistic calculation the good behavior of a
system. It is used just to guarantee a minimum service of proper functioning. But the fault
tolerance allows a system to continue to deliver a service even in the presence of failures.

In multiprocessor systems, fault tolerance can be provided by scheduling multiples copies
(replicas) of tasks on different processors. A large number of techniques for supporting fault-
tolerant systems have been proposed [2, 7, 8, 11, 12, 19, 20, 22, 28]. There are two main
approaches, as described below.

(i) Primary/Backup (passive replication).
This is the traditional fault-tolerant approach where both time and space exclusions are used.
The main idea of this technique is that the backup task is activated only if the fault occurs
while executing the primary task [20, 28]. This technique also assumes that there is a fault
detection mechanism that detects a processor crash. The main disadvantage of this scheme is
that only two copies of the task are scheduled on different processors (space exclusion) with
time exclusion. To achieve high schedulability while providing fault-tolerance, the heuristics
presented in [2, 7, 19] apply two techniques while scheduling the primary and backup copies
of the tasks:

Fault tolerance and scheduling 3

- backup overloading: scheduling backups for multiple primary tasks during the same time
slot in order to make efficient utilization of available processor time, and
- de-allocation of resources reserved for backup tasks when the corresponding primaries com-
plete successfully.
Note that this technique can be applied only under the assumption that only one processor
may fail at a time. The overloading technique is quite simple in this context, because if two
backups bti and btj of tasks ti and tj respectively, are scheduled on the same processor, then
these backups can overlap since proc(ti) and proc(tj) will not fail at the same time. All
algorithms belonging to this categorie [2, 7, 19, 20, 28] share three common points: (i) tasks
have deadlines and are independent, (ii) the system architecture is homogeneous, and (iii)
they support only one processor failure.

Recently, Xiao and Hong proposed a scheduling algorithm for precedence constrained
tasks in real-time heterogeneous systems [22]. Once more, the algorithm is devised to handle
only one processor failure. The tasks are assumed to be non-preemptable, and each task has
two copies that are scheduled on different processors and mutually excluded in time. The
quality of the schedule is achieved by allowing a backup copy to overlap with other backup
copies on the same processor since they consider at most one processor failure. This algorithm
takes a reliability measure of the system into account . But the two objectives (reliability
and performance) are not considered simultaneously. First, the algorithm tries to guarantee
the timing constraints (deadlines) of the tasks. Then, among the processors on which the
deadline of a task is guaranteed, the task is mapped to the processor which minimizes the
failure probability of the application. However, deadlines have priority over the reliability
objective.

To summarize, all these techniques assume that only one processor can fail at any time
and that a second processor cannot fail before the system recovers from the first failure.
(ii) Active replication (N-Modular redundancy).
This technique is based on space redundancy, i.e., multiple copies of each task are mapped
on different processors, which are run in parallel to tolerate a fixed number of failures. For
instance, Hashimoto et al. [11, 12] propose an algorithm that tolerates one processor failure on
homogeneous system. This algorithm exploits implicit redundancy (originally introduced by
task duplication in order to minimize the schedule length) and assumes that some processors
are reserved only for realizing fault tolerance, i.e., the reserved processors are not used for
the original scheduling. Girault et al. present FTBAR, a static real-time and fault-tolerant
scheduling algorithm where multiple processor failures are considered [8]. To the best of our
knowledge, FTBAR is the closest work to the one presented in this paper. A brief description
of FTBAR is given in Section 5, and we experimentally compare it to FTSA in Section 6.

4 FTSA and MC-FTSA

In this section, we present FTSA (Fault Tolerant Scheduling Algorithm), whose objective is to
minimize the latency L(G,X) while tolerating an arbitrary number ε of fail-silent (fail-stop)
processor failures under task mapping X . FTSA uses an active replication strategy to allocate
ε + 1 copies of each task to different processors.

Allocating many copies of each task will severely increase the total number of commu-
nications required by the algorithm: we move from e communications (one per edge) in a
mapping with no replication, to e(ε + 1)2 in FTSA, a quadratic increase. We show how to

4 A. Benoit, M. Hakem, Y. Robert

reduce this overhead down to a linear number e(ε + 1) of communications in the design of
MC-FTSA (where MC stands for Minimum Communications).

4.1 FTSA

FTSA is a greedy scheduling heuristic based on an attribute priority called task criticalness,
which is defined as the length of the longest path passing through free tasks in the current
partially mapped DAG. Recall that a task is free if it is unscheduled and if all of its prede-
cessors are scheduled. S is the set of scheduled tasks, U the set of unscheduled tasks, and
Uf ⊆ U the set of free tasks. Once a task t ∈ S is scheduled on processor P(t), we know its
start time S(t,P(t)) and its finish time F(t,P(t)).

A critical task is defined as one of the free tasks with the highest priority. The priority of
a free task t is determined by t`(t) + b`(t), where t`(t) and b`(t) are respectively the dynamic
top level and the static bottom level of t. They are computed as follows:

∀ t ∈ Uf ,
if Γ−(t) = ∅ then t`(t)← 0 else
t`(t)← max

t∗∈Γ−(t)

{
F(t∗,P(t∗)) + V(t∗, t). max

1≤j≤m
d(P(t∗),Pj)

}
∀ t ∈ U,
if Γ+(t) = ∅ then b`(t)← E(t)

else b`(t)← max
t∗∈Γ+(t)

{E(t) + W (t, t∗) + b`(t∗)}

The word dynamic implies that the value t` depends upon the tasks which have already
been mapped at each step in the mapping process and the word static implies that the value
b` remains unchanged according to the topological traversal (top-down) of the DAG.

In the computation of top levels, we consider the worst case communication since we do
not know on which processor task t will be assigned. For bottom levels, we use the average

execution time of t, defined as E(t) =

(
m∑

j=1
E(t,Pj)

)
/m, and the average communication cost

of the edge (t, t∗), defined as W (t, t∗) = V(t, t∗).d, where d is the average delay to send a unit
length data between two processors in the system.

Note that the finish time of t on Pj is F(t,Pj) = S(t,Pj) + E(t,Pj). The starting time
S(t,Pj) of t on Pj must be later than the time when all messages from t’s predecessors
arrive on processor Pj , and also later than the ready time of processor Pj , defined as r(Pj) =

max
ti∈S

(
XijF

(
ti,Pj

))
. Thus, S(t,Pj) = max

(
t`∗(t,Pj), r(Pj)

)
, where the top level is updated

now that we know which processor task t is mapped onto:

t`∗(t,Pj) = max
t∗∈Γ−(t)

{
F(t∗,P(t∗)) + W (t∗, t)

}
The definition of criticalness provides a good measure of the task importance: the greater

the criticalness, the more work is to be performed along the path containing that task. FTSA
takes the computational heterogeneity of the system into account and is designed with the
following objectives: (i) tolerate an arbitrary number of permanent failures under latency
constraints; (ii) compute task priorities accurately in order that critical tasks will finish earlier;
(iii) have a low running time compared to other algorithms in the literature.

Fault tolerance and scheduling 5

We maintain a priority list α (that contains free tasks) which is implemented by using a
balanced search tree data structure (AVL). At the beginning, α is empty. The head function
H(α) returns the first task in the sorted list α, which is the task with the highest priority
(ties are broken randomly). The number of tasks that can be simultaneously free at each step
in the scheduling process is bounded by the width ω of the task graph (the maximum number
of tasks that are independent in G). This implies that |α| ≤ ω.

At each step of the mapping process, FTSA selects a critical free task t
(
t← H(α)

)
and

simulates its mapping on all processors using the following equation:

∀ 1 ≤ j ≤ m,

F(t,Pj) = E(t,Pj) + max

(
max

t∗∈Γ−(t)

{ ε+1
min
k=1

{
F(tk∗,P(tk∗)) + W (tk∗, t)

}}
, r(Pj)

)
(1)

The predecessor tasks t∗ ∈ Γ−(t) are already scheduled onto ε+1 distinct processors, and we
denote by tk∗, 1 ≤ k ≤ ε + 1, the replicas of task t∗. The first ε + 1 processors that allow the
minimum finish time of t are kept. This set called P(ε+1) (the superscript ε + 1 indicates the
cardinality) is defined as the ε + 1 processors Pj which realize the lowest value of finish time
F(t,Pj).

Once the set P(ε+1) is determined, the task t is scheduled on ε + 1 distinct processors
(replicas) P ∈ P(ε+1). Let t̂ be an exit task (a task which does not have any successors in G).
The latency of the schedule generated using the above equation, represents a lower bound,
i.e., this latency can be achieved if no processor permanently fails during the execution of the
application. It is defined as follow:

M∗ = max
t̂i∈S

{
min

1≤k≤ε+1

{
F(t̂ki ,P(t̂ki)

}}
(2)

To compute the upper bound of the latencyM, which is achieved in the presence ε permanent
failures (see proposition 4.2), we use the following formula:

∀ 1 ≤ j ≤ m,

F(t,Pj) = E(t,Pj) + max

(
max

t∗∈Γ−(t)

{
ε+1
max
k=1

{
F(tk∗,P(tk∗)) + W (tk∗, t)

}}
, r(Pj)

)
(3)

Thus,
M = max

t̂i∈S

{
max

1≤k≤ε+1

{
F(t̂ki ,P(t̂ki)

}}
(4)

Proposition 4.1 For an active replication scheme, a task ti ∈ G is guaranteed to execute in
the presence of ε permanent faults if and only if P(tki) 6= P(tk+1

i), k = 1 . . . ε.

Proof: If ε processors fails, then P(tzi), 1 ≤ z ≤ ε + 1, cannot fail and therefore P(tzi) will
execute successfully since there are ε + 1 copies of ti mapped on ε + 1 different processors.
However, if there is a processor P(tui), 1 ≤ u ≤ ε + 1, such that P(tui) = P(tzi) = P∗ and P∗
fails, then neither tui nor tzi can execute successfully. �

Proposition 4.2 The latency achieved by FTSA is L ≤M despite ε permanent failures.

6 A. Benoit, M. Hakem, Y. Robert

Proof: Each task t ∈ G is replicated ε + 1 times. Each of these replicas send their data
results to all replicas of each successors task. Therefore, each task will receive its input data
ε + 1 times. But as soon as it receives the first input data, the task is executed and ignores
later incoming data. So, in some cases the finish time of the replica t(ε+1) will be sooner
than its estimated finish time computed by the formula, even in the presence of ε failures.
Applying this reasoning to all tasks of G shows that L ≤M. �

Theorem 4.1 If at most ε processor failures occur in the system, then the schedule remains
valid.

Proof: FTSA is based on an active replication scheme with space exclusion. Thus, each task
is replicated ε + 1 times onto ε + 1 distinct processors. We have at most ε processor failures
at the same time. So at least one copy of each task is executed on a fault free processor. �

Note that if a replica of task t and a replica tz∗ of its predecessor t∗ are mapped on the same
processor P, then there is no need for other copies of t∗ to send data to processor P. Indeed,
if P is operational, then the copy of t on P will receive the data from tz∗ (intra-processor
communication). Otherwise, P is down and does not need to receive anything.

Algorithm 4.1 The FTSA algorithm
1: ε← maximum number of failures supported in the system
2: Compute b`(t) for each task t in G and set t`(t) = 0 for each entry task t;
3: P = {P1,P2, . . .Pm}; (*Set of processors*)
4: S = ∅ ; U = V ; (*Mark all tasks as unscheduled*)
5: Put entry tasks in α;
6: while U 6= ∅ do
7: t← H(α) ; (*Select free task with highest priority from α *)
8: Compute F(t,Pj) for 1 ≤ j ≤ m using equation (1);
9: Keep first ε + 1 processors that allow for minimum finish time of t, P(ε+1);

10: Schedule t on these ε + 1 processors;
11: Put t in S and update priority values of t’s successors;
12: Put t’s free successors in α;
13: U ← U\{t};
14: end while

We are ready to assess the compexity of FTSA:

Theorem 4.2 The time complexity of FTSA is:

O(em2 + v log ω)

Proof: Computing b`(t) (line 2) takes O(e+v). Insertion or deletion from α costs O(log |α|)
where |α| ≤ ω. Since each task in a DAG is inserted into α once and only once and is
removed once and only once during the entire execution of FTSA, the time complexity for
α management is in O(v log ω). The main computational cost of FTSA is spent in the while
loop (Lines 6 to 14). This loop is executed v times. Line 7 costs O(log ω) for finding the head
of α. Line 8 costs O(|Γ−(t)|(ε + 1)m), since all the replicas of the immediate predecessors
of task t on each processor Pj , j = 1 . . .m, need to be examined. Since ε < m, then for the

Fault tolerance and scheduling 7

whole v loops the cost for this line is at most
∑v

i=1 O(|Γ−(t)|m2) = O(em2). Line 11 costs
O(|Γ+(t)|) to update the priority values of the immediate successors of t, and similarly, the
cost for the v loops of this line is O(e). Thus the total cost of FTSA is O(em2 + v log ω). �

4.2 MC-FTSA

Each task of the task graph G is replicated ε+1 times. Therefore each communication between
two tasks in precedence is replicated at most (ε + 1)2 times. Since there are e edges in G, the
total number of messages in the fault tolerant schedule is at most e(ε+1)2. In some cases, we
may have an intra-processor communication, when two tasks in precedence are mapped on
the same processor, so the latter quantity is in fact an upper bound. Duplicating each task
ε+1 times is an absolute requirement to resist to ε failures. But duplicating each precedence
edge (ε + 1)2 times is not mandatory. We can decrease the total number of communications
from e(ε + 1)2 down to e(ε + 1), as explained below.

Let P = {P1,P2, . . . ,Pm} be the set of processors in the system. Let t be the current task
scheduled by the algorithm FTSA. We use equation (1) to assign a set A(t) of ε+1 processors
to execute t. We need to orchestrate the communications from the processors executing the
predecessors of t. So consider a predecessor t′ of t, that has been scheduled on a set A(t′) of
ε + 1 processors. Now each processor in A(t′) will communicate to exactly one processor in
A(t) instead of communicating to all of them as in the FTSA algorithm. To determine the
set of communications, we use a graph-theoretic approach. We prepare a bipartite graph as
follows:
- left nodes are communication sources: we insert a vertex vt′,Pi

for each Pi ∈ A(t′).
- right nodes are the target processors in A(t): we insert a vertex vt,Pi for each Pi ∈ A(t).
- edges go from left nodes to right nodes. Consider any left node vt′,Pi

. We have two cases:
(i) either Pi ∈ A(t), which means that there is a right node vt,Pi in the graph, then we add
an edge from vt′,Pi

to vt,Pi , and this is the only edge outgoing from vt′,Pi
; (ii) or Pi /∈ A(t),

and we add an edge from vt′,Pi
to each right node vt,Pj .

- an edge from vt′,Pi
to vt,Pj is weighted by the time-step at which the computation of t could

be finished by Pj if t′ was the only predecessor of t. More precisely, this weight is equal to

max
(
F(t′,Pi) + W (t′, t), r(Pj)

)
+ E(t,Pj)

Recall that W (t′, t) = 0 if i = j.

Proposition 4.3 Any subset of ε + 1 edges C such that each left node and each right node
belongs to exactly one edge of C defines a robust set of communications, i.e., a set of commu-
nications capable to resist to ε processor failures.

The intuitive idea is to enforce internal communications whenever a processor executes
both t and one of its predecessor t′, as we prove below. Note that the algorithm would fail
otherwise. For instance assume that ε = 2, A(t′) = {P1,P2,P3, } and A(t) = {P1,P5,P6}.
If we retain the communications P1 → P5, P2 → P6 and P3 → P1, then the algorithm is
blocked by the failure of P1 and P2. But if we enforce that the only edge from P1 is to itself,
then we resist to 2 failures.

Proof: Consider a predecessor t′ of t, let B = A(t′)∩A(t) and k = |B|. If one of the processors
in B does not fail we are done. Otherwise there remains ε+1−k processors in A(t′), as many

8 A. Benoit, M. Hakem, Y. Robert

in A(t) and they are all distinct. We have ε + 1− k edges that realize a one-to-one mapping
between these two processor sets. We can reorder the remaining processors in A(t) so that
each edge go between the i-th remaining processor in A(t′) to the i-th remaining processor
in A(t). There can still be ε− k failures, since we considered that all k processors in B have
failed, and thus we cannot break the ε − k + 1 edges. There remains a communication link
between two working processors. �

We need to decide which edge subset C to extract from the bipartite graph. As long as a
subset satisfies to the condition of proposition 4.3, it is valid, but we aim at finding one that
minimizes the latency. There are several possibilities:

• For any value of T , we can find in polynomial time if there exists a subset whose largest
edge weight does not exceed T . To do so, we suppress all edges of weight larger than T ,
and we run a maximal matching algorithm (which is polynomial since the graph is
bipartite) that will cover all source edges if such a cover exists, hence providing a valid
solution. We perform a binary search on T to determine the smallest value that leads
to a solution, which we return. Note that T is searched in the set of edge weights, hence
the overall complexity of the algorithm remains polynomial.

• We can use a greedy algorithm that gives priority to internal communications and then
greedily select the edges in the order of non-decreasing weights. We retain the current
edge if it satisfies to the condition of proposition 4.3 given already taken decisions, i.e.,
if it saturates a new left node and a new right node in the graph, and otherwise we
proceed to the next edge.

4.3 With different objective functions

In this section we first discuss the approach when the latency is fixed (instead of the number
of tolerated failures as before). When the latency is fixed, we would like to determine the
maximum number of processor failures that can be tolerated in the system while achieving the
prescribed latency. The simplest way is to start by generating a scheduling supporting a single
failure, and if the length of the scheduling is less than the fixed latency, we repeat the process
for 2 failures and so on until the latency requirement cannot be satisfied any longer. The
running time of the scheduling process is increased since we perform several calls to FTSA. A
better solution consists in performing a binary search on ε to determine a maximum number
of failures that will be supported in the system for a given latency L. The overall complexity
of the algorithm remains polynomial, even though the running time is increased.

Next, we discuss the approach when both values of the latency and of the failure number
are given. Our goal is then to detect the infeasibility of the combination before the end of
the scheduling process. This would allow to reduce the latency or the number of supported
failures during the execution of the scheduling algorithm, a nice feature when scheduling very
large task graphs. To this purpose, we assign a deadline d(ti) to each task ti ∈ G. The
computation is done recursively in reverse topological order as follow:

∀ ti ∈ G, if Γ+(ti) = ∅ then d(ti)← L
else d(ti)← min

tj∈Γ+(ti)

{
d(tj)− E(tj)−W (ti, tj)

}

Fault tolerance and scheduling 9

where E(ti) and W (ti, tj) are respectively:
- the average execution time of ti on the ε + 1 fastest processors in the system. It is defined

as E(ti) =

ε+1P
j=1

E(ti,Pj)

ε+1 ,
- the average communication cost of the edge (ti, tj) defined as W (ti, tj) = V(ti, tj).d, where
d is the average delay to send a unit length data on the ε + 1 fastest links in the system.

Deadlines are assigned so that a task deadline is always earlier than that of its successors.
We can easily prove that, if at some step in the scheduling process, P(ε+1) is the set of ε + 1
processors that allow for the minimum finish time of task t, and max

P∈P(ε+1)
F(t,P) > d(t), then

both criteria cannot be satisfied simultaneously.
The scheduling scheme adopted when both criteria are fixed is similar to the FTSA algo-

rithm. The only difference lies in the following test that we can add on line 10 in Algorithm 4.1,
in order to check the feasibility of the criteria at each step of the algorithm:

If max
P∈P(ε+1)

F(t,P) ≤ d(t) then

Schedule t on the ε + 1 corresponding processors;
else

return “Failed to satisfy both criteria simultaneously”;

If at some step of the scheduling process, the algorithm fails to satisfy both criteria at the
same time, the user can relax either ε or L, and launch the algorithm again.

5 A Brief Description of FTBAR

In order to compare our algorithm to FTBAR [8], we give here a brief description of this
algorithm, using the original notations of [8]. To the best of our knowledge, FTBAR is the
only algorithm that addresses the same scheduling problem as this paper.

FTBAR (Fault Tolerance Based Active Replication) is based on an existing list scheduling
algorithm presented in [27]. At each step n in the scheduling process, one free task is selected
from the list based on the cost function σ(n)(ti, pj), called schedule pressure, it is computed
as follows: σ(n)(ti, pj) = S(n)(ti, pj) + s(ti) − R(n−1). S(n)(ti, pj) is the earliest start-time
(top-down) of ti on pj , similarly, s(ti) is the latest start-time (bottom-up) of ti and R(n−1) is
the schedule length at step n− 1. The selected task-processor pair is obtained as follows:
i) select for each free task ti, the Npf + 1 processor having the minimum schedule pressure
∪l=Npf+1

l=1 σ
(n)
best(ti, pil)← minNpf+1

pj∈P σ(n)(ti, pj).
ii) select the best pair among the previous set, i.e., the one having the maximum schedule
pressure (the most urgent pair) σ

(n)
urgent(t)← maxti∈freelist ∪l=Npf+1

l=1 σ
(n)
best(ti, pil).

The task t is then scheduled on theNpf+1 processors computed at step 1. Ties are broken
randomly. A recursive Minimize-Start-Time procedure proposed by Ahmad and Kwok [1] is
used in attempting to reduce the start time of the selected task t. The time complexity of the
algorithm is O(PN3), where P is the number of processors in the system and N the number
of tasks in G.

10 A. Benoit, M. Hakem, Y. Robert

6 Experimental results

To evaluate the performance of FTSA, several series of simulations have been conducted.
We use randomly generated graphs, whose parameters are consistent with those used in the
literature [4, 8, 22]. The number of tasks is chosen uniformly from the range [100, 150]. The
granularity of the task graph is varied from 0.2 to 2.0, with increments of 0.2. The number of
processors is set to 20 and we let ε = {1, 2, 5}. To account for communication heterogeneity
in the system, the unit message delay of the links and the message volume between two tasks
are chosen uniformly from the ranges [0.5, 1] and [50, 150] respectively. Each point in the
figures represents the mean of executions on 60 random graphs.

The metrics which characterize the performance of the algorithms are the latency and
the overhead due to the active replication scheme. We compare the performances of FTSA
and FTBAR. For each algorithm, we compare the fault free version (without replication) and
the fault tolerant algorithm. Finally, MC-FTSA (Minimum Communications-FTSA) is the
variant of FTSA which minimizes the amount of communications, using the greedy algorithm
to select edges, as detailed in Section 4.2. Recall that the lower and upper bounds of the
schedules are computed according to equations (2) and (4). The fault free schedule is defined
as the schedule generated by each algorithm without replication, assuming that the system is
completely safe.

Each algorithm is evaluated in terms of achieved latency and fault tolerance overhead.
The latter is given by the following formula:

Overhead =
FTSA`b|FTBAR`b|FTSAc|FTBARc − FTSA∗

FTSA∗

where the superscripts `b, ∗ and c respectively denote the lower bound, the latency achieved
by the fault free schedule, and the latency achieved by the schedule when processors effectively
fail (crash).

Looking at figures plotting bounds (Figures 1(a), 2(a) and 3(a)), we see that FTSA
achieves a really good lower bound, which is very close to the fault free version. As ex-
pected, the lower bound of MC-FTSA is slightly higher than that of FTSA, but its upper
bound is close to the lower bound since we keep only the best communication edges in the
schedule. The upper bound, which is a guaranty of the achieved latency, is even better than
the lower bound of FTBAR for ε = {1, 2} and a granularity greater than 1. FTSA always
outperforms FTBAR in terms of lower bound. The reason of the poorer performance of FT-
BAR can be explained by the inconvenience of the schedule pressure function adopted for the
processor selection. Processors are selected in such a way that the schedule pressure value
is minimized. Doing so, tasks are not really mapped on those processors which would allow
them to finish earlier.

We have also compared the behavior of each algorithm when processors crash down by
computing the real execution time for a given schedule rather than just bounds. Processors
that fail during the schedule process are chosen uniformly from the range [1, 20]. We can
see on Figures 1(b), 2(b) and 3(b)) that FTSAc behaves better than FTBARc. As expected,
MC-FTSA has a bigger latency, since we removed some of the communication links. When
crashes occur, this later algorithm is constrained to the use of some particular communication
links. Even in this case, MC-FTSA achieves a better latency than FTBAR for ε = {1, 2},
which corresponds to a reasonable number of failures for an architecture of 20 processors.

Fault tolerance and scheduling 11

 0

 5

 10

 15

 20

 25

 30

 35

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA-LowerBound
FTSA-UpperBound

FTBAR-LowerBound
FTBAR-UpperBound

MC-FTSA-LowerBound
MC-FTSA-UpperBound

FaultFree-FTSA
FaultFree-FTBAR

(a)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA with 1 Crash
MC-FTSA with 1 Crash

FTBAR with 1 Crash
FTSA with 0 Crash

Fault Free FTSA

(b)

-20

 0

 20

 40

 60

 80

 100

 120

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

FTSA with 1 Crash
MC-FTSA with 1 Crash

FTBAR with 1 Crash
FTSA with 0 Crash

(c)

Figure 1: Average normalized latency and overhead comparison between FTSA, MC-FTSA
and FTBAR (Bound and Crash cases, ε = 1)

12 A. Benoit, M. Hakem, Y. Robert

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA-LowerBound
FTSA-UpperBound

FTBAR-LowerBound
FTBAR-UpperBound

MC-FTSA-LowerBound
MC-FTSA-UpperBound

FaultFree-FTSA
FaultFree-FTBAR

(a)

 0

 5

 10

 15

 20

 25

 30

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA with 2 Crash
MC-FTSA with 2 Crash

FTBAR with 2 Crash
FTSA with 0 Crash
FTSA with 1 Crash

Fault Free FTSA

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

FTSA with 2 Crash
MC-FTSA with 2 Crash

FTBAR with 2 Crash
FTSA with 0 Crash
FTSA with 1 Crash

(c)

Figure 2: Average normalized latency and overhead comparison between FTSA, MC-FTSA
and FTBAR (Bound and Crash cases, ε = 2)

Fault tolerance and scheduling 13

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA-LowerBound
FTSA-UpperBound

FTBAR-LowerBound
FTBAR-UpperBound

MC-FTSA-LowerBound
MC-FTSA-UpperBound

FaultFree-FTSA
FaultFree-FTBAR

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA with 5 Crash
MC-FTSA with 5 Crash

FTBAR with 5 Crash
FTSA with 0 Crash
FTSA with 2 Crash

Fault Free FTSA

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

FTSA with 5 Crash
MC-FTSA with 5 Crash

FTBAR with 5 Crash
FTSA with 0 Crash
FTSA with 2 Crash

(c)

Figure 3: Average normalized latency and overhead comparison between FTSA, MC-FTSA
and FTBAR (Bound and Crash cases, ε = 5)

14 A. Benoit, M. Hakem, Y. Robert

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA with 2 Crash
FTSA with 0 Crash
FTSA with 1 Crash

Fault Free FTSA

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

FTSA with 2 Crash
FTSA with 0 Crash
FTSA with 1 Crash

(b)

Figure 4: Average normalized latency and overhead comparison for FTSA with 0, 1 and 2
Crash (with 5 processors, ε = 2)

Fault tolerance and scheduling 15

We readily observe from Figures 1, 2 and 3 that we deal with two conflicting objectives.
Indeed, the fault tolerance overhead increases together with the number of supported failures.
We also see that latency increases together with granularity, as expected.

From Figures 1(b,c), 2(b,c) and 3(b,c), it is interesting to note that when the number of
failures increases, there is not really much difference in the increase of the latency, compared
to the schedule length generated with 0 crash (the lower bound). This is explained by the fact
that the increase in the schedule length is already absorbed by the replication done previously,
in order to resist to eventual failures. However on an architecture with fewer processors (for
instance with 5 processors, see Figure 4), we clearly see the difference in terms of latency
increase and therefore in terms of overhead, when the number of failures gets larger.

Finally, we realized some timing experiments to show the efficiency of the new heuristics
in terms of execution time. The running times of FTSA, MC-FTSA and FTBAR are given
in Table 1 for a case with 50 processors and 5 supported failures. The implementation is in
C and experiments are run on a Core 2 Duo processor (CPU 1.66 GHz). From this table, we
observe that our algorithms FTSA and MC-FTSA are considerably faster than FTBAR. We
conclude that for large task graphs, the FTBAR algorithm is not really practical, while FTSA
and MC-FTSA are still capable of scheduling very large task graphs in reasonable time.

Table 1: Running Times in seconds

Number of tasks FTSA MC-FTSA FTBAR
100 0.01 0.02 0.15
500 0.08 0.12 4.19
1000 0.16 0.24 17.10
2000 0.30 0.50 71.22
3000 0.46 0.75 167.57
5000 0.77 1.28 465.75

7 Conclusion

In this paper we have presented FTSA, an efficient fault-tolerant scheduling algorithm for
heterogeneous systems based on an active replication scheme. We have also designed MC-
FTSA, a variant of FTSA in which the communication overhead due to task replication is
dramatically reduced. To assess the performance of FTSA, simulation studies were conducted
to compare it with FTBAR, which seems to be its only direct competitor from the literature.
We have shown that FTSA is superior to FTBAR both in terms of computational complexity
and quality of the resulting schedule. We also point out that MC-FTSA generates better
schedules than FTBAR when there is a small number of failures.

We plan to investigate more realistic communication models such as the bounded multi-
port model [13] or the one-port model [25]. Such models are more realistic because they bound
the volume of data that can be sent by a given processor (due to the limited capacity of its
network card), as well as the volume of data that can share a given communication link (due
to the limited bandwidth of the link). With these models, we expect MC-FTSA to be superior
to other scheduling algorithms, since it already accounts for reduced communications. Also,

16 A. Benoit, M. Hakem, Y. Robert

we want to study a more complex failure model, in which we would also account for the failure
probability of the application.

References

[1] Ishfaq Ahmad and Yu-Kwong Kwok. On exploiting task duplication in parallel program
scheduling. IEEE Transactions on Parallel and Distributed Systems, 1998.

[2] R. Al-Omari, Arun K. Somani, and G. Manimaran. Efficient overloading techniques
for primary-backup scheduling in real-time systems. Journal of Parallel and Distributed
Computing, 64(5):629–648, 2004.

[3] Olivier Beaumont, Vincent Boudet, and Yves Robert. The iso-level scheduling heuristic
for heterogeneous processors. In PDP, pages 335–342, 2002.

[4] Atakan Dogan and Fusun Ozguner. Matching and scheduling algorithms for minimizing
execution time and failure probability of applications in heterogeneous computing. IEEE
Transactions on Parallel and Distributed Systems, 13(03):308–323, 2002.

[5] Jack Dongarra, Emmanuel Jeannot, Erik Saule, and Zhiao Shi. Bi-objective scheduling
algorithms for optimizing makespan and reliability on heterogeneous systems. In Proc.
of the 19th Annual ACM Symposium on Parallel Algorithms and Architectures SPAA’07,
pages 280–288, 2007.

[6] Apostolos Gerasoulis and Tao Yang. DSC: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Systems, 5(9):951–
967, 1994.

[7] Sunondo Ghosh, Rami Melhem, and Daniel Mosse. Fault-tolerance through scheduling of
aperiodic tasks in hard real-time multiprocessor systems. IEEE Transactions on Parallel
and Distributed Systems, 8(3):272–284, 1997.

[8] A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel. An algorithm for automatically
obtaining distributed and fault-tolerant static schedules. In International Conference on
Dependable Systems and Networks, DSN’03, 2003.

[9] Mourad Hakem and Franck Butelle. Critical path scheduling parallel programs on un-
bounded number of processors. International Journal of Foundations of Computer Sci-
ence, 17(2):287–301, 2006.

[10] Mourad Hakem and Franck Butelle. Reliability and scheduling on systems subject to
failures. In Proc. of the 36th IEEE International Conference on Parallel Processing
ICPP’07, page 38, 2007.

[11] K. Hashimito, T. Tsuchiya, and T. Kikuno. A new approach to realizing fault-tolerant
multiprocessor scheduling by exploiting implicit redundancy. In Proc. of the 27th Inter-
national Symposium on Fault-Tolerant Computing (FTCS ’97), page 174, 1997.

[12] K. Hashimito, T. Tsuchiya, and T. Kikuno. Effective scheduling of duplicated tasks
for fault-tolerance in multiprocessor systems. IEICE Transactions on Information and
Systems, E85-D(3):525–534, 2002.

Fault tolerance and scheduling 17

[13] B. Hong and V.K. Prasanna. Distributed adaptive task allocation in heterogeneous com-
puting environments to maximize throughput. In International Parallel and Distributed
Processing Symposium IPDPS’2004. IEEE Computer Society Press, 2004.

[14] Chao-Ju Hou and Kang G. Shin. Allocation of periodic task modules with precedence
and deadline constraints in distributed real-time systems. IEEE Transactions on Parallel
and Distributed Systems, 46(12):1338–1356, 1997.

[15] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee. Scheduling
precedence graphs in systems with interprocessor communication times. SIAM Journal
on Computing, 18(2):244–257, 1989.

[16] Santhanam Srinivasan Niraj K. Jha. Safety and reliability driven task allocation in
distributed systems. IEE Trans. on Parallel and Dist. Syst., 10(03):238–251, 1999.

[17] S. Kartik and C. Siva Ram Murthy. Task allocation algorithms for maximizing reliability
of distributed computing systems. IEEE Trans. on Computers, 41(06):719–724, 1997.

[18] Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors. IEEE Transactions on Parallel
and Distributed Systems, 7(5):506–521, 1996.

[19] G. Manimaran and C. Siva Ram Murthy. A fault-tolerant dynamic scheduling algorithm
for multiprocessor real-time systems and its analysis. IEEE Transactions on Parallel and
Distributed Systems, 9(11):1137–1152, 1998.

[20] Martin Naedele. Fault-tolerant real-time scheduling under execution time constraints.
In Proc. of the Sixth International Conference on Real-Time Computing Systems and
Applications, page 392, 1999.

[21] Xiao Qin and Hong Jiang. A dynamic and reliability driven scheduling algorithm for
parallel real-time jobs executing on heterogeneous clusters. Journal of Parallel and Dis-
tributed Computing, 65(08):885–900, 2005.

[22] Xiao Qin and Hong Jiang. A novel fault-tolerant scheduling algorithm for precedence
constrained tasks in real-time heterogeneous systems. Parallel Computing, 32(5):331–346,
2006.

[23] V. Sarkar. Partitionning and Scheduling Parallel Programs for Execution on Multipro-
cessors. MIT Press, 1989.

[24] G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Trans. on Parallel and Dist.
Systems, 4(2):75–87, 1993.

[25] O. Sinnen and L. Sousa. Scheduling task graphs on arbitrary processor architectures
considering contention. In High Performance Computing and Networking, pages 373–
382. Springer-Verlag LNCS 2110, 2001.

[26] Jia Ping Wang Sol M. Shatz and Masanori Goto. Task allocation for maximizing relia-
bility of distributed computer systems. IEEE Trans. on Computers, 41(09):1156–1168,
1992.

18 A. Benoit, M. Hakem, Y. Robert

[27] Yves Sorel. Massively parallel computing systems with real-time constraints: the ”algo-
rithm architecture adequation”. In Proc. of Massively Parallel Comput. Syst., MPCS,
1994.

[28] Y.Oh and S.H.Son. Scheduling real-time tasks for dependability. Journal of Operational
Research Society, 48(6):629–639, 1997.

	1 Introduction
	2 Framework
	3 Related Work
	4 FTSA and MC-FTSA
	4.1 FTSA
	4.2 MC-FTSA
	4.3 With different objective functions

	5 A Brief Description of FTBAR
	6 Experimental results
	7 Conclusion

