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Recent evolution of processors

. . . to multi-core and upcoming many-core processors

Now, algorithms need to explicitly exploit TLP,
similar to classical parallel programming
More important: must efficiently use memory, especially
caches
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. . .Core1 . . .Corei

CD . . . CD
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p identical cores, computing speed w

Large main memory

Two levels of caches:

a first level shared by all cores of size CS and bandwidth σS

a second level of cache distributed, each of size CD and
bandwidth σD

Caches are inclusive and fully associative
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Studied case and objectives

Target: Compute the matrix product C = A× B.

A is m × z , B is z × n and C has size m × n

We use a block-oriented approach, thus, manipulate square blocks
of coefficients.

First objective: Communication volume of shared cache.

MS is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

MD is the maximum of all distributed caches misses

Third objective: Overall time Tdata required for data movement.

Tdata = MS
σS

+ MD
σD

Provides a tradeoff between both cache miss quantities
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Lower bound on communication

Irony, Toledo and Tiskin show that on a system with a
memory of size M, the communication-to-computation ratio

of matrix product is lower-bounded by:
√

27
8M .

In our case, with comp(c) being the amount of computation
done by core c , we have:

CCRS = MS/(
∑

c comp(c)) for the shared cache

CCRD = 1
p

∑p
c=1(MD/comp(c)) for the distributed cache.

In all our algorithms, the amount of computation is equally
balanced among cores, so that comp(c) = mnz/p for all
cores. Therefore:

CCRS ≥
√

27

8CS
and CCRD ≥

√
27

8CD
.
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α
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n
β

Niter = n2
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β

α

α
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n
α

+
n
β

β

α

α
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Niter = n2

αβ

Ndata = n3α + β

αβ

⇒ α = β

Observation Outermost loop is prevalent in order to minimize
loaded data
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General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

How ?

Split the available memory into 1 + α + α2 blocks

Result

A CCR of 2√
M

for a memory of size M for large matrices

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Adaptation to multicore

Must take into account both cache levels:

Previous data allocation scheme adapted so as to fit caches.

Two parameters depending on cache sizes:

λ is the largest integer with 1 + λ+ λ2 ≤ CS

µ is the largest integer with 1 + µ+ µ2 ≤ CD

These parameters will be used separately
For the sake of simplicity, we assume that λ is a multiple of µ
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Minimizing the number of shared-cache misses

C

B

A

for substep = 1 to n

for i = 1 to λ

for step = 1 to n2

λ2

We load in shared cache:
A square block of size λ2 of C
A row of λ elements of B
One element of A

Then, rows of Cblock and elements of A are distributed and
computed.

Repeat until the block of C had been fully updated.
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Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size λ2, z rows of size λ are
loaded from B as well as z × λ elements of A.

MS =mn + 2mnz/λ
For large matrices, CCR is 2/λ ,

Distributed-cache misses At each step, we:

load z times λ elements of A one by one
load z rows of size λ/p of B
update λ× z times rows of size λ/p of C

MD = mnz
λ × (1 + 1/p + λ/p)

CCR is (p + 1)/λ+ 1 /
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Minimizing the number of distributed-cache misses
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for i = 1 to µ

for step = 1 to n2

pµ2

for substep = 1 to n

µ is the largest integer with 1 + µ+ µ2 ≤ CD

A square block of size (
√

pµ)2 of C is loaded in the shared
cache and, subblocks of size µ2 are distributed to every cores
Then, repeatedly, z times:

a row of
√

pµ elements of B is loaded in the shared cache and
distributed√

p elements of A are sequentially read µ times in shared
cache and distributed in order to contribute to current
sub-blocks of C
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Minimizing the number of distributed-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size (

√
pµ)2 of C , we load:

z rows of size
√

pµ of B
z ×√pµ elements of A.

MS = mn + 2mnz/
√

pµ /
For large matrices, CCR is 2/

√
pµ

Distributed-cache misses

mn/p elements of C are loaded once in each
distributed cache
Then, at each step, we load z times:

A row of µ elements of B
µ sequential elements of A

MD = mn/p + 2mnz/pµ
For large matrices CCR is 2/µ ,
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Minimizing data access time

Why do we need a tradeoff ?

Previous objectives were antagonistic

Bandwidths not taken into account.

New objective: overall time spent in data movement

Tdata =
MS

σS
+

MD

σD
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We load in shared cache:

a square block of size α2 of C
a block column of size α× β of A
a block row of the same size of B

⇒ only z/β iterations

µ2 blocks of C are distributed, with proper rows of B and
element of A
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Depending on β, we cannot load as many elements of C as
before

We need to find the best tradeoff between β and α
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Minimizing data access time

New constraint on shared cache: 2βα + α2 ≤ CS

Our new tradeoff algorithm has an overall data access time:

Tdata =
mn + 2mnz

α

σS
+

mnz
pβ + 2mnz

pµ

σD

The objective function is:

F (α) =
2

σSα
+

2α

pσD(CS − α2)

We can now compute the best numerical values of parameters
α and β
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Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 25/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 25/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 25/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 25/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.
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Hardware platforms & Implementation details

Replacement policy:

Model: Caches use an ideal data replacement policy

On most current hardware platforms: LRU data
replacement policy
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replacement policy

LRU vs. Ideal: In Cache Oblivious Algorithms, the authors stated
that the number of cache misses obtained using an ideal data
replacement policy on a cache of size M could be obtained using a
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Hardware platforms & Implementation details

Benchmarked algorithms:

Outer Product

Multicore Maximum Re-use Algorithm:

3 versions:
Shared Opt.

Distributed Opt.

Tradeoff

3 simulation settings:
IDEAL: explicit loads in every cache, no propagation

LRU-100%: LRU policy, using entire cache

LRU-50%: LRU policy, half-cache for automatic prefetching
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Experimental results obtained on our cache simulator
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Complexity analysis of matrix product

Model for multicore memory layout.

For large matrices, our cache aware algorithms are close to the
lower bounds.

New algorithm realizing a tradeoff between both cache misses
types.

Our three algorithms were implemented, simulated and their
behavior validated.

We now plan to extend our work to more complex
kernels, like LU factorization

, Promising algorithmic research directions to explore !
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