
Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Complexity analysis of matrix product
on multicore architectures

Mathias Jacquelin, Loris Marchal and Yves Robert

Ecole Normale Supérieure de Lyon
Mathias.Jacquelin@ens-lyon.fr

http://graal.ens-lyon.fr/~mjacquel

Rocquencourt, February 4, 2009

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 1/ 32

http://graal.ens-lyon.fr/~mjacquel


Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Recent evolution of processors

From simple single core architectures . . .

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 2/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Recent evolution of processors

From simple single core architectures . . .

Speed used to be obtained through ILP

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 2/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Recent evolution of processors

. . . to multi-core and upcoming many-core processors

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 2/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Recent evolution of processors

. . . to multi-core and upcoming many-core processors

Now, algorithms need to explicitly exploit TLP,
similar to classical parallel programming

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 2/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Recent evolution of processors

. . . to multi-core and upcoming many-core processors

Now, algorithms need to explicitly exploit TLP,
similar to classical parallel programming
More important: must efficiently use memory, especially
caches

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 2/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

New architectures, new problems to tackle

Target algorithms: Dense linear algebra kernels
(key to performance for many scientific applications)

Calls for revisiting old problems

Algorithms based on a 2D grid topology are not well suited for
multicore architectures

Hierarchy of cache memories

Need to take further advantage of data locality

Need to adapt algorithms: new objective functions, new models

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 3/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

New architectures, new problems to tackle

Target algorithms: Dense linear algebra kernels
(key to performance for many scientific applications)

Calls for revisiting old problems

Algorithms based on a 2D grid topology are not well suited for
multicore architectures

Hierarchy of cache memories

Need to take further advantage of data locality

Need to adapt algorithms: new objective functions, new models

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 3/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

New architectures, new problems to tackle

Target algorithms: Dense linear algebra kernels
(key to performance for many scientific applications)

Calls for revisiting old problems

Algorithms based on a 2D grid topology are not well suited for
multicore architectures

Hierarchy of cache memories

Need to take further advantage of data locality

Need to adapt algorithms: new objective functions, new models

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 3/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

New architectures, new problems to tackle

Target algorithms: Dense linear algebra kernels
(key to performance for many scientific applications)

Calls for revisiting old problems

Algorithms based on a 2D grid topology are not well suited for
multicore architectures

Hierarchy of cache memories

Need to take further advantage of data locality

Need to adapt algorithms: new objective functions, new models

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 3/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

New architectures, new problems to tackle

Target algorithms: Dense linear algebra kernels
(key to performance for many scientific applications)

Calls for revisiting old problems

Algorithms based on a 2D grid topology are not well suited for
multicore architectures

Hierarchy of cache memories

Need to take further advantage of data locality

Need to adapt algorithms: new objective functions, new models

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 3/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 4/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 5/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 6/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

Processing cores

Shared cache

Distributed caches

CS

σS

Main Memory

σDσDσD

CD . . .

. . .Core1 . . .Corei

CD . . . CD

Corep

p identical cores, computing speed w

Large main memory

Two levels of caches:

a first level shared by all cores of size CS and bandwidth σS

a second level of cache distributed, each of size CD and
bandwidth σD

Caches are inclusive and fully associative

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 7/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

Distributed caches

CS

σS

Main Memory

σDσDσD

CD . . .

. . .Core1 . . .Corei

CD . . . CD

Corep Processing cores

Shared cache

p identical cores, computing speed w

Large main memory

Two levels of caches:

a first level shared by all cores of size CS and bandwidth σS

a second level of cache distributed, each of size CD and
bandwidth σD

Caches are inclusive and fully associative

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 7/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

. . .Corei

CD . . . CD

Corep Processing cores

Shared cache

Distributed caches

CS

σS

Main Memory

σDσDσD

CD . . .

. . .Core1

p identical cores, computing speed w

Large main memory

Two levels of caches:

a first level shared by all cores of size CS and bandwidth σS

a second level of cache distributed, each of size CD and
bandwidth σD

Caches are inclusive and fully associative

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 7/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

Distributed caches

CS

σS

Main Memory

σDσDσD

CD . . .

. . .Core1 . . .Corei

CD . . . CD

Corep Processing cores

Shared cache

p identical cores, computing speed w

Large main memory

Two levels of caches:

a first level shared by all cores of size CS and bandwidth σS

a second level of cache distributed, each of size CD and
bandwidth σD

Caches are inclusive and fully associative

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 7/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

Distributed caches

Processing cores

Shared cacheCS

σS

Main Memory

σDσDσD

CD . . .

. . .Core1 . . .Corei

CD . . . CD

Corep

p identical cores, computing speed w

Large main memory

Two levels of caches:

a first level shared by all cores of size CS and bandwidth σS

a second level of cache distributed, each of size CD and
bandwidth σD

Caches are inclusive and fully associative

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 7/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

. . .Corei

CD . . . CD

Corep Processing cores

Shared cache

Distributed caches

CS

σS

Main Memory

σDσDσD

CD . . .

. . .Core1

p identical cores, computing speed w

Large main memory

Two levels of caches:

a first level shared by all cores of size CS and bandwidth σS

a second level of cache distributed, each of size CD and
bandwidth σD

Caches are inclusive and fully associative

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 7/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 8/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Studied case and objectives

Target: Compute the matrix product C = A× B.

A is m × z , B is z × n and C has size m × n

We use a block-oriented approach, thus, manipulate square blocks
of coefficients.

First objective: Communication volume of shared cache.

MS is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

MD is the maximum of all distributed caches misses

Third objective: Overall time Tdata required for data movement.

Tdata = MS
σS

+ MD
σD

Provides a tradeoff between both cache miss quantities

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 9/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Studied case and objectives

Target: Compute the matrix product C = A× B.

A is m × z , B is z × n and C has size m × n

We use a block-oriented approach, thus, manipulate square blocks
of coefficients.

First objective: Communication volume of shared cache.

MS is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

MD is the maximum of all distributed caches misses

Third objective: Overall time Tdata required for data movement.

Tdata = MS
σS

+ MD
σD

Provides a tradeoff between both cache miss quantities

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 9/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Studied case and objectives

Target: Compute the matrix product C = A× B.

A is m × z , B is z × n and C has size m × n

We use a block-oriented approach, thus, manipulate square blocks
of coefficients.

First objective: Communication volume of shared cache.

MS is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

MD is the maximum of all distributed caches misses

Third objective: Overall time Tdata required for data movement.

Tdata = MS
σS

+ MD
σD

Provides a tradeoff between both cache miss quantities

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 9/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Studied case and objectives

Target: Compute the matrix product C = A× B.

A is m × z , B is z × n and C has size m × n

We use a block-oriented approach, thus, manipulate square blocks
of coefficients.

First objective: Communication volume of shared cache.

MS is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

MD is the maximum of all distributed caches misses

Third objective: Overall time Tdata required for data movement.

Tdata = MS
σS

+ MD
σD

Provides a tradeoff between both cache miss quantities

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 9/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 10/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Lower bound on communication

Irony, Toledo and Tiskin show that on a system with a
memory of size M, the communication-to-computation ratio

of matrix product is lower-bounded by:
√

27
8M .

In our case, with comp(c) being the amount of computation
done by core c , we have:

CCRS = MS/(
∑

c comp(c)) for the shared cache

CCRD = 1
p

∑p
c=1(MD/comp(c)) for the distributed cache.

In all our algorithms, the amount of computation is equally
balanced among cores, so that comp(c) = mnz/p for all
cores. Therefore:

CCRS ≥
√

27

8CS
and CCRD ≥

√
27

8CD
.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 11/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 12/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for j ...

for i ...

for k...

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for j ...

for i ...

for k...

n
α

+
n
β

Niter = n2

αβ

β

α

α
β

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for k...

for i ...

for j ...

n
α

+
n
β

β

α

α
β

Niter = n2

αβ

Ndata = n3α + β

αβ

⇒ α = β

Observation Outermost loop is prevalent in order to minimize
loaded data

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for k...

for i ...

for j ...

n
α

+
n
β

β

α

α
β

Niter = n2

αβ

Ndata = n3α + β

αβ

⇒ α = β

Corollary 1 In outermost loop, load the largest square blocks

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for i ...

for k...

for j ...

Ndata = n3α + β

αβ

⇒ α = β

α

α

α

α

Corollary 1 In outermost loop, load the largest square blocks

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for i ...

for k...

for j ...

Ndata = n3α + β

αβ

⇒ α = β

α

α

α

α

Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for k...

for i ...

for j ...

Ndata = n3α + β

αβ

⇒ α = β

α

α

α

α

α

α

Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for i ...

for j ...

for k...

Ndata = n3α + β

αβ

⇒ α = β

α

α

α

α

α

α

Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

How ?

Split the available memory into 1 + α + α2 blocks

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

How ?

Split the available memory into 1 + α + α2 blocks

Result

A CCR of 2√
M

for a memory of size M for large matrices

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 13/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Adaptation to multicore

Must take into account both cache levels:

Previous data allocation scheme adapted so as to fit caches.

Two parameters depending on cache sizes:

λ is the largest integer with 1 + λ+ λ2 ≤ CS

µ is the largest integer with 1 + µ+ µ2 ≤ CD

These parameters will be used separately
For the sake of simplicity, we assume that λ is a multiple of µ

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 14/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Adaptation to multicore

Must take into account both cache levels:

Previous data allocation scheme adapted so as to fit caches.

Two parameters depending on cache sizes:

λ is the largest integer with 1 + λ+ λ2 ≤ CS

µ is the largest integer with 1 + µ+ µ2 ≤ CD

These parameters will be used separately
For the sake of simplicity, we assume that λ is a multiple of µ

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 14/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Adaptation to multicore

Must take into account both cache levels:

Previous data allocation scheme adapted so as to fit caches.

Two parameters depending on cache sizes:

λ is the largest integer with 1 + λ+ λ2 ≤ CS

µ is the largest integer with 1 + µ+ µ2 ≤ CD

These parameters will be used separately
For the sake of simplicity, we assume that λ is a multiple of µ

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 14/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Adaptation to multicore

Must take into account both cache levels:

Previous data allocation scheme adapted so as to fit caches.

Two parameters depending on cache sizes:

λ is the largest integer with 1 + λ+ λ2 ≤ CS

µ is the largest integer with 1 + µ+ µ2 ≤ CD

These parameters will be used separately
For the sake of simplicity, we assume that λ is a multiple of µ

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 14/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Adaptation to multicore

Must take into account both cache levels:

Previous data allocation scheme adapted so as to fit caches.

Two parameters depending on cache sizes:

λ is the largest integer with 1 + λ+ λ2 ≤ CS

µ is the largest integer with 1 + µ+ µ2 ≤ CD

These parameters will be used separately
For the sake of simplicity, we assume that λ is a multiple of µ

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 14/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Adaptation to multicore

Must take into account both cache levels:

Previous data allocation scheme adapted so as to fit caches.

Two parameters depending on cache sizes:

λ is the largest integer with 1 + λ+ λ2 ≤ CS

µ is the largest integer with 1 + µ+ µ2 ≤ CD

These parameters will be used separately
For the sake of simplicity, we assume that λ is a multiple of µ

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 14/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Adaptation to multicore

Must take into account both cache levels:

Previous data allocation scheme adapted so as to fit caches.

Two parameters depending on cache sizes:

λ is the largest integer with 1 + λ+ λ2 ≤ CS

µ is the largest integer with 1 + µ+ µ2 ≤ CD

These parameters will be used separately
For the sake of simplicity, we assume that λ is a multiple of µ

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 14/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 15/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

C

B

A

for substep = 1 to n

for i = 1 to λ

for step = 1 to n2

λ2

We load in shared cache:
A square block of size λ2 of C
A row of λ elements of B
One element of A

Then, rows of Cblock and elements of A are distributed and
computed.

Repeat until the block of C had been fully updated.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 16/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

for step = 1 to n2

λ2

for substep = 1 to n

for i = 1 to λ

λ

λ

λC

λ

We load in shared cache:
A square block of size λ2 of C
A row of λ elements of B
One element of A

Then, rows of Cblock and elements of A are distributed and
computed.

Repeat until the block of C had been fully updated.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 16/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

for step = 1 to n2

λ2

for substep = 1 to n

for i = 1 to λ

C

λ

λ

λ

λ

λ

λ

We load in shared cache:
A square block of size λ2 of C
A row of λ elements of B
One element of A

Then, rows of Cblock and elements of A are distributed and
computed.

Repeat until the block of C had been fully updated.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 16/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

for step = 1 to n2

λ2

for substep = 1 to n

for i = 1 to λ

λ

C λ

λ

λ

λ

λ

We load in shared cache:
A square block of size λ2 of C
A row of λ elements of B
One element of A

Then, rows of Cblock and elements of A are distributed and
computed.

Repeat until the block of C had been fully updated.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 16/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

for step = 1 to n2

λ2

for substep = 1 to n

for i = 1 to λ

λ

λ

λ

λC

λ

λ

We load in shared cache:
A square block of size λ2 of C
A row of λ elements of B
One element of A

Then, rows of Cblock and elements of A are distributed and
computed.

Repeat until the block of C had been fully updated.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 16/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

for step = 1 to n2

λ2

for substep = 1 to n

for i = 1 to λ

λ

λ

λ

λC

λ
p

λ

λ

We load in shared cache:
A square block of size λ2 of C
A row of λ elements of B
One element of A

Then, rows of Cblock and elements of A are distributed and
computed.

Repeat until the block of C had been fully updated.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 16/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

for step = 1 to n2

λ2

for substep = 1 to n

for i = 1 to λ

λ

λ

λ

λ

C

λ

λ

We load in shared cache:
A square block of size λ2 of C
A row of λ elements of B
One element of A

Then, rows of Cblock and elements of A are distributed and
computed.

Repeat until the block of C had been fully updated.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 16/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

A

k

l

Brow

λ

B

λ

C

k

a

Cblock

Crow

in core c

We load in shared cache:
A square block of size λ2 of C
A row of λ elements of B
One element of A

Then, rows of Cblock and elements of A are distributed and
computed.

Repeat until the block of C had been fully updated.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 16/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size λ2, z rows of size λ are
loaded from B as well as z × λ elements of A.

MS =mn + 2mnz/λ
For large matrices, CCR is 2/λ ,

Distributed-cache misses At each step, we:

load z times λ elements of A one by one
load z rows of size λ/p of B
update λ× z times rows of size λ/p of C

MD = mnz
λ × (1 + 1/p + λ/p)

CCR is (p + 1)/λ+ 1 /

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 17/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size λ2, z rows of size λ are
loaded from B as well as z × λ elements of A.

MS =mn + 2mnz/λ
For large matrices, CCR is 2/λ ,

Distributed-cache misses At each step, we:

load z times λ elements of A one by one
load z rows of size λ/p of B
update λ× z times rows of size λ/p of C

MD = mnz
λ × (1 + 1/p + λ/p)

CCR is (p + 1)/λ+ 1 /

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 17/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size λ2, z rows of size λ are
loaded from B as well as z × λ elements of A.

MS =mn + 2mnz/λ
For large matrices, CCR is 2/λ ,

Distributed-cache misses At each step, we:

load z times λ elements of A one by one
load z rows of size λ/p of B
update λ× z times rows of size λ/p of C

MD = mnz
λ × (1 + 1/p + λ/p)

CCR is (p + 1)/λ+ 1 /

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 17/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size λ2, z rows of size λ are
loaded from B as well as z × λ elements of A.

MS =mn + 2mnz/λ
For large matrices, CCR is 2/λ ,

Distributed-cache misses At each step, we:

load z times λ elements of A one by one
load z rows of size λ/p of B
update λ× z times rows of size λ/p of C

MD = mnz
λ × (1 + 1/p + λ/p)

CCR is (p + 1)/λ+ 1 /

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 17/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size λ2, z rows of size λ are
loaded from B as well as z × λ elements of A.

MS =mn + 2mnz/λ
For large matrices, CCR is 2/λ ,

Distributed-cache misses At each step, we:

load z times λ elements of A one by one
load z rows of size λ/p of B
update λ× z times rows of size λ/p of C

MD = mnz
λ × (1 + 1/p + λ/p)

CCR is (p + 1)/λ+ 1 /

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 17/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size λ2, z rows of size λ are
loaded from B as well as z × λ elements of A.

MS =mn + 2mnz/λ
For large matrices, CCR is 2/λ ,

Distributed-cache misses At each step, we:

load z times λ elements of A one by one
load z rows of size λ/p of B
update λ× z times rows of size λ/p of C

MD = mnz
λ × (1 + 1/p + λ/p)

CCR is (p + 1)/λ+ 1 /

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 17/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size λ2, z rows of size λ are
loaded from B as well as z × λ elements of A.

MS =mn + 2mnz/λ
For large matrices, CCR is 2/λ ,

Distributed-cache misses At each step, we:

load z times λ elements of A one by one
load z rows of size λ/p of B
update λ× z times rows of size λ/p of C

MD = mnz
λ × (1 + 1/p + λ/p)

CCR is (p + 1)/λ+ 1 /

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 17/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size λ2, z rows of size λ are
loaded from B as well as z × λ elements of A.

MS =mn + 2mnz/λ
For large matrices, CCR is 2/λ ,

Distributed-cache misses At each step, we:

load z times λ elements of A one by one
load z rows of size λ/p of B
update λ× z times rows of size λ/p of C

MD = mnz
λ × (1 + 1/p + λ/p)

CCR is (p + 1)/λ+ 1 /

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 17/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size λ2, z rows of size λ are
loaded from B as well as z × λ elements of A.

MS =mn + 2mnz/λ
For large matrices, CCR is 2/λ ,

Distributed-cache misses At each step, we:

load z times λ elements of A one by one
load z rows of size λ/p of B
update λ× z times rows of size λ/p of C

MD = mnz
λ × (1 + 1/p + λ/p)

CCR is (p + 1)/λ+ 1 /

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 17/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 18/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of distributed-cache misses

k

k

A C

B

Brow

√
pµ

√
pµ

l

l + µ

a

a Cblock

in core c

for i = 1 to µ

for step = 1 to n2

pµ2

for substep = 1 to n

µ is the largest integer with 1 + µ+ µ2 ≤ CD

A square block of size (
√

pµ)2 of C is loaded in the shared
cache and, subblocks of size µ2 are distributed to every cores
Then, repeatedly, z times:

a row of
√

pµ elements of B is loaded in the shared cache and
distributed√

p elements of A are sequentially read µ times in shared
cache and distributed in order to contribute to current
sub-blocks of C

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 19/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of distributed-cache misses

k

k

A C

B

Brow

√
pµ

√
pµ

l

l + µ

a

a Cblock

in core c

for i = 1 to µ

for step = 1 to n2

pµ2

for substep = 1 to n

√
pµ
√

pµC

µ is the largest integer with 1 + µ+ µ2 ≤ CD

A square block of size (
√

pµ)2 of C is loaded in the shared
cache and, subblocks of size µ2 are distributed to every cores
Then, repeatedly, z times:

a row of
√

pµ elements of B is loaded in the shared cache and
distributed√

p elements of A are sequentially read µ times in shared
cache and distributed in order to contribute to current
sub-blocks of C

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 19/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of distributed-cache misses

k

k

A C

B

Brow

√
pµ

√
pµ

l

l + µ

a

a Cblock

in core c

for i = 1 to µ

for step = 1 to n2

pµ2

for substep = 1 to n

√
pµ
√

pµC

µ is the largest integer with 1 + µ+ µ2 ≤ CD

A square block of size (
√

pµ)2 of C is loaded in the shared
cache and, subblocks of size µ2 are distributed to every cores
Then, repeatedly, z times:

a row of
√

pµ elements of B is loaded in the shared cache and
distributed√

p elements of A are sequentially read µ times in shared
cache and distributed in order to contribute to current
sub-blocks of C

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 19/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of distributed-cache misses

k

k

A C

B

Brow

√
pµ

√
pµ

l

l + µ

a

a Cblock

in core c

for i = 1 to µ

for step = 1 to n2

pµ2

for substep = 1 to n

√
pµ
√

pµC

µ is the largest integer with 1 + µ+ µ2 ≤ CD

A square block of size (
√

pµ)2 of C is loaded in the shared
cache and, subblocks of size µ2 are distributed to every cores
Then, repeatedly, z times:

a row of
√

pµ elements of B is loaded in the shared cache and
distributed√

p elements of A are sequentially read µ times in shared
cache and distributed in order to contribute to current
sub-blocks of C

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 19/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of distributed-cache misses

k

k

A C

B

Brow

√
pµ

√
pµ

l

l + µ

a

a Cblock

in core c

for i = 1 to µ

for step = 1 to n2

pµ2

for substep = 1 to n

√
pµ
√

pµC

√
pµ

µ is the largest integer with 1 + µ+ µ2 ≤ CD

A square block of size (
√

pµ)2 of C is loaded in the shared
cache and, subblocks of size µ2 are distributed to every cores
Then, repeatedly, z times:

a row of
√

pµ elements of B is loaded in the shared cache and
distributed√

p elements of A are sequentially read µ times in shared
cache and distributed in order to contribute to current
sub-blocks of C

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 19/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of distributed-cache misses

k

k

A C

B

Brow

√
pµ

√
pµ

l

l + µ

a

a Cblock

in core c

for i = 1 to µ

for step = 1 to n2

pµ2

for substep = 1 to n

√
pµC

√
pµ

√
pµ

µ is the largest integer with 1 + µ+ µ2 ≤ CD

A square block of size (
√

pµ)2 of C is loaded in the shared
cache and, subblocks of size µ2 are distributed to every cores
Then, repeatedly, z times:

a row of
√

pµ elements of B is loaded in the shared cache and
distributed√

p elements of A are sequentially read µ times in shared
cache and distributed in order to contribute to current
sub-blocks of C

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 19/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of distributed-cache misses

k

k

A C

B

Brow

√
pµ

√
pµ

l

l + µ

a

a Cblock

in core c

for i = 1 to µ

for step = 1 to n2

pµ2

for substep = 1 to n

√
pµ
√

pµC

...
√

pµ

µ is the largest integer with 1 + µ+ µ2 ≤ CD

A square block of size (
√

pµ)2 of C is loaded in the shared
cache and, subblocks of size µ2 are distributed to every cores
Then, repeatedly, z times:

a row of
√

pµ elements of B is loaded in the shared cache and
distributed√

p elements of A are sequentially read µ times in shared
cache and distributed in order to contribute to current
sub-blocks of C

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 19/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of distributed-cache misses

k

k

A C

B

Brow

√
pµ

√
pµ

l

l + µ

a

a Cblock

in core c

for i = 1 to µ

for substep = 1 to n

for step = 1 to n2

pµ2

√
pµ

√
pµ

C

...
√

pµ

µ is the largest integer with 1 + µ+ µ2 ≤ CD

A square block of size (
√

pµ)2 of C is loaded in the shared
cache and, subblocks of size µ2 are distributed to every cores
Then, repeatedly, z times:

a row of
√

pµ elements of B is loaded in the shared cache and
distributed√

p elements of A are sequentially read µ times in shared
cache and distributed in order to contribute to current
sub-blocks of C

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 19/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing the number of distributed-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size (

√
pµ)2 of C , we load:

z rows of size
√

pµ of B
z ×√pµ elements of A.

MS = mn + 2mnz/
√

pµ /
For large matrices, CCR is 2/

√
pµ

Distributed-cache misses

mn/p elements of C are loaded once in each
distributed cache
Then, at each step, we load z times:

A row of µ elements of B
µ sequential elements of A

MD = mn/p + 2mnz/pµ
For large matrices CCR is 2/µ ,

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 20/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 21/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

Why do we need a tradeoff ?

Previous objectives were antagonistic

Bandwidths not taken into account.

New objective: overall time spent in data movement

Tdata =
MS

σS
+

MD

σD

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 22/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

Why do we need a tradeoff ?

Previous objectives were antagonistic

Bandwidths not taken into account.

New objective: overall time spent in data movement

Tdata =
MS

σS
+

MD

σD

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 22/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

Why do we need a tradeoff ?

Previous objectives were antagonistic

Bandwidths not taken into account.

New objective: overall time spent in data movement

Tdata =
MS

σS
+

MD

σD

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 22/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

β

z

A

zβ

B

α

α

C

We load in shared cache:

a square block of size α2 of C
a block column of size α× β of A
a block row of the same size of B

⇒ only z/β iterations

µ2 blocks of C are distributed, with proper rows of B and
element of A

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 23/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

β

z

A

zβ

B

α

α

C

We load in shared cache:

a square block of size α2 of C
a block column of size α× β of A
a block row of the same size of B

⇒ only z/β iterations

µ2 blocks of C are distributed, with proper rows of B and
element of A

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 23/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

β
A

z

zβ

B

α

α

C

B15B11 B12

A51

A11

B16

Core4Core2

µ
C11

C21 C22

µ

Core3

C12

α√
p

Core1

α√
p

We load in shared cache:

a square block of size α2 of C
a block column of size α× β of A
a block row of the same size of B

⇒ only z/β iterations

µ2 blocks of C are distributed, with proper rows of B and
element of A

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 23/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

β
A

z

zβ

B

α

α

C

B15B11 B12

A51

A11

B16

Core4Core2

µ
C11

C21 C22

µ

Core3

C12

α√
p

Core1

α√
p

Depending on β, we cannot load as many elements of C as
before

We need to find the best tradeoff between β and α

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 23/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

β
A

z

zβ

B

α

α

C

B15B11 B12

A51

A11

B16

Core4Core2

µ
C11

C21 C22

µ

Core3

C12

α√
p

Core1

α√
p

Depending on β, we cannot load as many elements of C as
before

We need to find the best tradeoff between β and α

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 23/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

New constraint on shared cache: 2βα + α2 ≤ CS

Our new tradeoff algorithm has an overall data access time:

Tdata =
mn + 2mnz

α

σS
+

mnz
pβ + 2mnz

pµ

σD

The objective function is:

F (α) =
2

σSα
+

2α

pσD(CS − α2)

We can now compute the best numerical values of parameters
α and β

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 24/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

New constraint on shared cache: 2βα + α2 ≤ CS

Our new tradeoff algorithm has an overall data access time:

Tdata =
mn + 2mnz

α

σS
+

mnz
pβ + 2mnz

pµ

σD

The objective function is:

F (α) =
2

σSα
+

2α

pσD(CS − α2)

We can now compute the best numerical values of parameters
α and β

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 24/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 25/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 25/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 25/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 25/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 25/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Minimizing data access time

α depends on the values of bandwidths σS and σD .

⇒ In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

When σD � σS :

⇒ Shared version.

On the contrary, when σS � σD (not realistic):

⇒ Distributed version.

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 25/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 26/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Hardware platforms & Implementation details

Replacement policy:

Model: Caches use an ideal data replacement policy

On most current hardware platforms: LRU data
replacement policy

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 27/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Hardware platforms & Implementation details

Replacement policy:

Model: Caches use an ideal data replacement policy

On most current hardware platforms: LRU data
replacement policy

LRU vs. Ideal: In Cache Oblivious Algorithms, the authors stated
that the number of cache misses obtained using an ideal data
replacement policy on a cache of size M could be obtained using a
LRU policy on a cache of size 2M

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 27/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Hardware platforms & Implementation details

LRU vs. Ideal: In Cache Oblivious Algorithms, the authors stated
that the number of cache misses obtained using an ideal data
replacement policy on a cache of size M could be obtained using a
LRU policy on a cache of size 2M

4.E+02 

4.E+03 

4.E+04 

4.E+05 

4.E+06 

4.E+07 

4.E+08 

4.E+09 

0  200  400  600  800  1000 

Sh
ar
ed

 C
ac
he

 M
is
se
s 

(lo
g 
sc
al
e)
 

Matrix Dimension (in blocks) 

Expected 

Shared Opt. LRU‐200% 

Shared Opt. LRU‐100% 

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 27/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Hardware platforms & Implementation details

Benchmarked algorithms:

Outer Product

Multicore Maximum Re-use Algorithm:

3 versions:
Shared Opt.

Distributed Opt.

Tradeoff

3 simulation settings:
IDEAL: explicit loads in every cache, no propagation

LRU-100%: LRU policy, using entire cache

LRU-50%: LRU policy, half-cache for automatic prefetching

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 27/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Experimental results obtained on our cache simulator

0.E+00 

2.E+08 

4.E+08 

6.E+08 

8.E+08 

1.E+09 

1.E+09 

1.E+09 

0  200  400  600  800  1000  1200 

Sh
ar
ed

 c
ac
he

 m
is
se
s 

Matrix dimension (in blocks) 

Shared Opt. Ideal 

Outer product LRU 

Lower Bound 

Shared Opt. LRU‐100% 

Shared Opt. LRU‐50% 

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 28/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Experimental results obtained on our cache simulator

0.E+00 

1.E+08 

2.E+08 

3.E+08 

4.E+08 

5.E+08 

6.E+08 

0  200  400  600  800  1000  1200 

D
is
tr
ib
ut
ed

 c
ac
he

 m
is
se
s 

Matrix dimension (in blocks) 

Outer product LRU 

Lower Bound 

Distributed Opt. LRU‐100% 

Distributed Opt. LRU‐50% 

Distributed Opt. Ideal 

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 29/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Experimental results obtained on our cache simulator

0.E+00 

1.E+08 

2.E+08 

3.E+08 

4.E+08 

5.E+08 

6.E+08 

7.E+08 

8.E+08 

9.E+08 

1.E+09 

0  200  400  600  800  1000  1200 

Td
at
a 

Matrix dimension (in blocks) 

Outer Product LRU 

Lower Bound 

Tradeoff LRU‐50% 

Shared Opt. LRU‐50% 

Distributed Opt. LRU‐50% 

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 30/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Outline

1 Problem statement
Modeling multicore architectures
Studied case and objectives
Lower bound on communication

2 Maximum re-use algorithm for multicore architectures
Minimizing the number of shared-cache misses
Minimizing the number of distributed-cache misses
Minimizing data access time
Experimental results

3 Conclusion

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 31/ 32



Introduction Problem statement Maximum re-use algorithm for multicore architectures Conclusion

Complexity analysis of matrix product

Model for multicore memory layout.

For large matrices, our cache aware algorithms are close to the
lower bounds.

New algorithm realizing a tradeoff between both cache misses
types.

Our three algorithms were implemented, simulated and their
behavior validated.

We now plan to extend our work to more complex
kernels, like LU factorization

, Promising algorithmic research directions to explore !

{Mathias.Jacquelin,Loris.Marchal,Yves.Robert}@ens-lyon.fr February 4, 2009Complexity 32/ 32


	Introduction
	Problem statement
	Modeling multicore architectures
	Studied case and objectives
	Lower bound on communication

	Maximum re-use algorithm for multicore architectures
	Minimizing the number of shared-cache misses
	Minimizing the number of distributed-cache misses
	Minimizing data access time
	Experimental results

	Conclusion

