Complexity analysis of matrix product
on multicore architectures

Mathias Jacquelin, Loris Marchal and Yves Robert

Ecole Normale Supérieure de Lyon
Mathias.Jacquelin@ens-lyon.fr
http://graal.ens-lyon.fr/~mjacquel

Rocquencourt, February 4, 2009

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

http://graal.ens-lyon.fr/~mjacquel

Introduction
Recent evolution of processors

From simple single core architectures . ..

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Introduction
Recent evolution of processors

From simple single core architectures . ..

Speed used to be obtained through ILP

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Introduction

Recent evolution of processors

... to multi-core and upcoming many-core processors

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Introduction

Recent evolution of processors

... to multi-core and upcoming many-core processors

Now, algorithms need to explicitly exploit TLP,
similar to classical parallel programming

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Introduction

Recent evolution of processors

... to multi-core and upcoming many-core processors

Now, algorithms need to explicitly exploit TLP,

similar to classical parallel programming

More important: must efficiently use memory, especially
caches

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Introduction
New architectures, new problems to tackle

Target algorithms: Dense linear algebra kernels
(key to performance for many scientific applications)

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Introduction
New architectures, new problems to tackle

Target algorithms: Dense linear algebra kernels
(key to performance for many scientific applications)

Calls for revisiting old problems

@ Algorithms based on a 2D grid topology are not well suited for
multicore architectures

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Introduction
New architectures, new problems to tackle

Target algorithms: Dense linear algebra kernels
(key to performance for many scientific applications)

Calls for revisiting old problems

@ Algorithms based on a 2D grid topology are not well suited for
multicore architectures

@ Hierarchy of cache memories

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Introduction
New architectures, new problems to tackle

Target algorithms: Dense linear algebra kernels
(key to performance for many scientific applications)

Calls for revisiting old problems
@ Algorithms based on a 2D grid topology are not well suited for
multicore architectures
@ Hierarchy of cache memories

@ Need to take further advantage of data locality

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Introduction
New architectures, new problems to tackle

Target algorithms: Dense linear algebra kernels
(key to performance for many scientific applications)

Calls for revisiting old problems

@ Algorithms based on a 2D grid topology are not well suited for
multicore architectures
@ Hierarchy of cache memories

@ Need to take further advantage of data locality

Need to adapt algorithms: new objective functions, new models

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Introduction

Outline

@ Problem statement
@ Modeling multicore architectures
@ Studied case and objectives
@ Lower bound on communication

© Maximum re-use algorithm for multicore architectures
@ Minimizing the number of shared-cache misses
@ Minimizing the number of distributed-cache misses
@ Minimizing data access time
o Experimental results

© Conclusion

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement

Outline

@ Problem statement
@ Modeling multicore architectures
@ Studied case and objectives
@ Lower bound on communication

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement
[1e}

Outline

@ Problem statement
@ Modeling multicore architectures

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

|Core1| . |Core,~| . |Corep| Processing cores
[[[
‘ Cp ‘ s ‘ Cp ‘ . ‘ Cp ‘ Distributed caches
too boo too
‘ Cs ‘ Shared cache
tos

! ‘ Main Memory

@ p identical cores, computing speed w

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

C0r91 Core, COI ep Processing cores

S . Distributed caches
ivo iffu iﬂo

‘ Cs ‘ Shared cache

tos

| | Main Memory

@ p identical cores, computing speed w

@ Large main memory

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

‘Curel ‘ Core; ‘Corep Processing cores
[[[
‘ Cp ‘ o ‘ Cp ‘ . ‘ Cp ‘ Distributed caches
oo oo oo
‘ @ ‘ Shared cache
Tos

Main Memory

@ p identical cores, computing speed w
@ Large main memory
@ Two levels of caches:

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

Processing cores
L& | [& | [G |

S . Distributed caches
too foo too

| G | Shared cache

s
| 1

Main Memory

@ p identical cores, computing speed w
@ Large main memory
@ Two levels of caches:

o a first level shared by all cores of size Cs and bandwidth og

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

‘Corel . ‘ Core; . ‘Corep Processing cores
[[[
| Cp | o | Cp | . | Cp | Distributed caches
Too Tos T
‘ @ ‘ Shared cache
bos

Main Memory

@ p identical cores, computing speed w
@ Large main memory
@ Two levels of caches:

o a first level shared by all cores of size Cs and bandwidth og
e a second level of cache distributed, each of size Cp and
bandwidth op

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement

Modeling multicore architectures

Difficulty: Come up with a realistic but still tractable model

‘Curel ‘ Core; ‘Corep Processing cores
[[[
‘ Cp ‘ o ‘ Cp ‘ . ‘ Cp ‘ Distributed caches
oo oo oo
‘ @ ‘ Shared cache
Tos

Main Memory

@ p identical cores, computing speed w
@ Large main memory
@ Two levels of caches:

o a first level shared by all cores of size Cs and bandwidth og
e a second level of cache distributed, each of size Cp and
bandwidth op

e Caches are inclusive and fully associative

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement
[1e}

Outline

@ Problem statement

@ Studied case and objectives

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement
Studied case and objectives

Target: Compute the matrix product C = A x B.
@ Aismxz, Biszxnand C hassize mx n

We use a block-oriented approach, thus, manipulate square blocks
of coefficients.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement
Studied case and objectives

Target: Compute the matrix product C = A x B.
@ Aismxz, Biszxnand C hassize mx n

We use a block-oriented approach, thus, manipulate square blocks
of coefficients.

First objective: Communication volume of shared cache.

@ Ms is the number of cache misses in the shared cache

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement
Studied case and objectives

Target: Compute the matrix product C = A x B.
@ Aismxz, Biszxnand C hassize mx n

We use a block-oriented approach, thus, manipulate square blocks
of coefficients.

First objective: Communication volume of shared cache.

@ Ms is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

@ Mp is the maximum of all distributed caches misses

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement
Studied case and objectives

Target: Compute the matrix product C = A x B.
@ Aismxz, Biszxnand C hassize mx n

We use a block-oriented approach, thus, manipulate square blocks
of coefficients.

First objective: Communication volume of shared cache.

@ Ms is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

@ Mp is the maximum of all distributed caches misses

Third objective: Overall time Ty, required for data movement.

M. M,
° Tdata:755+75

Provides a tradeoff between both cache miss quantities

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement
[1e}

Outline

@ Problem statement

@ Lower bound on communication

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Problem statement
oce

Lower bound on communication

@ lrony, Toledo and Tiskin show that on a system with a

memory of size M, the communication-to-computation ratio

of matrix product is lower-bounded by: 82—,\7/,.

@ In our case, with comp(c) being the amount of computation
done by core ¢, we have:

o CCRs = Ms/(>_. comp(c)) for the shared cache

o CCRp = 3 3°0_,(Mp/comp(c)) for the distributed cache.

@ In all our algorithms, the amount of computation is equally
balanced among cores, so that comp(c) = mnz/p for all
cores. Therefore:

27 27
> — > —.
CCR5_1/8CS and CCRD_1/8CD

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

Outline

© Maximum re-use algorithm for multicore architectures
@ Minimizing the number of shared-cache misses
@ Minimizing the number of distributed-cache misses
@ Minimizing data access time
o Experimental results

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for i...

for j...

for k...

[

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for /.
3
D .
for k...
n

na+ n@

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for i...

8.
L]
for j...

Naata = n

o+

af
for k...

|: = =L |cccccccaaeoo-

@
, == |sccccoooooooad
_ o
Nier = B

na+ n@

Observation Outermost loop is prevalent in order to minimize
loaded data

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for i.
}
D for j..
a+ 3
Naata = P*———
af
= for k...
|: = =L |cccccccaaeoo-

a
I
=

na+ n@

Corollary 1 In outermost loop, load the largest square blocks

’

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for i...
a

[

«
for j...
a+ g
Naata = P°———
af

for k...

R e

Corollary 1 In outermost loop, load the largest square blocks

’

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for i...
a

[

et
for j...

a+ 3

_ 3
Naata = m°——
afl

for k...

R

Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for i...
a

Vot

(1. =
2 o a+pB .
e 2

3
o Naata =n
—

for k...

R

Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible

Rule 2 In a given loop, required data must be loaded once

for i...
a

«a .
ol a+tp

afl

3
o Niata =n
—

Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible
Rule 2 In a given loop, required data must be loaded once
Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

v

o Split the available memory into 1 4 a 4 a? blocks

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

General principle and Maximum Re-Use Algorithm

Main Objective: Create a data-thrifty algorithm, memory of size M
Rule 1 Loaded data must be re-used as much as possible
Rule 2 In a given loop, required data must be loaded once
Corollary 1 In outermost loop, load the largest square blocks

Corollary 2 In inner loops, load the smallest block allowing to
respect Rules 1 & 2.

v

o Split the available memory into 1 4 a 4 a? blocks

e A CCR of \/LM for a memory of size M for large matrices

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

Adaptation to multicore

@ Must take into account both cache levels:

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

Adaptation to multicore

@ Must take into account both cache levels:
e Previous data allocation scheme adapted so as to fit caches.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

Adaptation to multicore

@ Must take into account both cache levels:
e Previous data allocation scheme adapted so as to fit caches.

@ Two parameters depending on cache sizes:

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

Adaptation to multicore

@ Must take into account both cache levels:
e Previous data allocation scheme adapted so as to fit caches.

@ Two parameters depending on cache sizes:

o) is the largest integer with 1 + X\ 4+ A2 < Cs

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

Adaptation to multicore

@ Must take into account both cache levels:
e Previous data allocation scheme adapted so as to fit caches.

@ Two parameters depending on cache sizes:

o) is the largest integer with 1 + X\ 4+ A2 < Cs

o 1 is the largest integer with 1+ pu + % < Cp

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

Adaptation to multicore

@ Must take into account both cache levels:
e Previous data allocation scheme adapted so as to fit caches.

@ Two parameters depending on cache sizes:
o) is the largest integer with 1 + X\ 4+ A2 < Cs

o 1 is the largest integer with 1+ pu + % < Cp

o These parameters will be used separately

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

Adaptation to multicore

@ Must take into account both cache levels:
e Previous data allocation scheme adapted so as to fit caches.

@ Two parameters depending on cache sizes:
o) is the largest integer with 1 + X\ 4+ A2 < Cs
o 1 is the largest integer with 1+ pu + % < Cp

o These parameters will be used separately
o For the sake of simplicity, we assume that A is a multiple of

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
®00

Outline

© Maximum re-use algorithm for multicore architectures
@ Minimizing the number of shared-cache misses

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
o1 1¢]

Minimizing the number of shared-cache misses

for step =1 to %

for substep =1 to n

for i=1to A

@ We load in shared cache:

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
o1 1¢]

Minimizing the number of shared-cache misses

for step =1 to ;%

)

for substep =1 to n

for i=1to A

I A

@ We load in shared cache:
o A square block of size A2 of C

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
o1 1¢]

Minimizing the number of shared-cache misses

for step =1 to ;% E H
Y E
A —
for substep =1 to n ! H
A : '
— !
for i=1to A
[A
............... 5

@ We load in shared cache:
o A square block of size A2 of C
o A row of X\ elements of B

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
o1 1¢]

Minimizing the number of shared-cache misses

for step =1 to ;% E H
Y E
A I -
for substep =1 to n ! H
A : '
o eep RN H :
for i=1to A
[A
............... 5

@ We load in shared cache:
o A square block of size A2 of C
o A row of X\ elements of B

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
o1 1¢]

Minimizing the number of shared-cache misses

for step =1 to ;% E H
Y E
) e
for substep =1 to n ! H
A : '
— - = H '
for i=1to A
o T LA
A
............... 5

@ We load in shared cache:
o A square block of size A2 of C
e A row of A elements of B
e One element of A

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
o1 1¢]

Minimizing the number of shared-cache misses

for step =1 to ;% E
Y E
A I |
for substep =1 to n ! H
A ' H
— - = H '
for i=1to A \
e 15 el 2
D -
b] A
............... 5

@ We load in shared cache:

o A square block of size A2 of C
o A row of X\ elements of B
o One element of A

@ Then, rows of Cpock and elements of A are distributed and
computed.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures
o1 1¢]

Minimizing the number of shared-cache misses

for step =1 to ;%

)

for substep =1 to n

A
— e T3
for i=1to A

o X4
A CIEEED

@ We load in shared cache:

o A square block of size A2 of C
o A row of X\ elements of B
o One element of A

@ Then, rows of Cpock and elements of A are distributed and
computed.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures
o1 1¢]

Minimizing the number of shared-cache misses

:I%:I Brow
p B

///,Jm mro‘ c
%
ot T
Cow ||A
Chiock
A

@ We load in shared cache:

o A square block of size A\? of C
o A row of X\ elements of B
e One element of A

@ Then, rows of Cyock and elements of A are distributed and
computed.

@ Repeat until the block of C had been fully updated.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures
ocoe

Minimizing the number of shared-cache misses

Shared-cache misses
@ Elements of C are loaded once in shared cache
@ For each block of size A2, z rows of size \ are
loaded from B as well as z x A elements of A.

e Ms =mn + 2mnz/\
o For large matrices, CCR is 2/\ ©

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
ocoe

Minimizing the number of shared-cache misses

Shared-cache misses
@ Elements of C are loaded once in shared cache
@ For each block of size A2, z rows of size \ are
loaded from B as well as z x A elements of A.

e Ms =mn + 2mnz/\
o For large matrices, CCR is 2/\ ©

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
ocoe

Minimizing the number of shared-cache misses

Shared-cache misses
@ Elements of C are loaded once in shared cache
@ For each block of size A2, z rows of size \ are
loaded from B as well as z x A elements of A.

e Ms =mn + 2mnz/\
o For large matrices, CCR is 2/\ ©

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
ocoe

Minimizing the number of shared-cache misses

Shared-cache misses
@ Elements of C are loaded once in shared cache
@ For each block of size A2, z rows of size \ are
loaded from B as well as z x A elements of A.

e Ms =mn + 2mnz/\
o For large matrices, CCR is 2/\ ©

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
ocoe

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size \2, z rows of size \ are
loaded from B as well as z x)\ elements of A.

Ms =mn + 2mnz /)
For large matrices, CCR is 2/\ ©

Distributed-cache misses At each step, we:

load z times A elements of A one by one
load z rows of size A\/p of B
update A x z times rows of size A/p of C

Mp = "% x (1 +1/p + A/p)
CCRis (p+1)/A+1 @

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
ocoe

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size \2, z rows of size \ are
loaded from B as well as z x)\ elements of A.

Ms =mn + 2mnz /)
For large matrices, CCR is 2/\ ©

Distributed-cache misses At each step, we:

load z times A elements of A one by one
load z rows of size A\/p of B
update A x z times rows of size A/p of C

Mp = "% x (1 +1/p + A/p)
CCRis (p+1)/A+1 @

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
ocoe

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size \2, z rows of size \ are
loaded from B as well as z x)\ elements of A.

Ms =mn + 2mnz /)
For large matrices, CCR is 2/\ ©

Distributed-cache misses At each step, we:

load z times A elements of A one by one
load z rows of size A\/p of B
update A x z times rows of size A/p of C

Mp = "% x (1 +1/p + A/p)
CCRis (p+1)/A+1 @

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
ocoe

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size \2, z rows of size \ are
loaded from B as well as z x)\ elements of A.

Ms =mn + 2mnz /)
For large matrices, CCR is 2/\ ©

Distributed-cache misses At each step, we:

load z times A elements of A one by one
load z rows of size A\/p of B
update A x z times rows of size A/p of C

Mp = ™2 x (1 + 1/p + \/p)
CCRis (p+1)/A+1®

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
ocoe

Minimizing the number of shared-cache misses

Shared-cache misses

Elements of C are loaded once in shared cache
For each block of size \2, z rows of size \ are
loaded from B as well as z x)\ elements of A.

Ms =mn + 2mnz /)
For large matrices, CCR is 2/\ ©

Distributed-cache misses At each step, we:

load z times A elements of A one by one
load z rows of size A\/p of B
update A x z times rows of size A/p of C

Mp = "% x (1 +1/p + A/p)
CCRis (p+1)/A+1®

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
®00

Outline

© Maximum re-use algorithm for multicore architectures

@ Minimizing the number of distributed-cache misses

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
(o] ¢}

Minimizing the number of distributed-cache misses

’ Brow for step =1 to 25
B or step =1 to ;5
k
//,_,,in core ¢
for substep =1 to n
a B/ / 7
L
a B Chiod |\/ﬂ for i=1top
Vpn
A C

@ 4 is the largest integer with 1 + p + ;> < Cp

o A square block of size (y/pp)? of C is loaded in the shared
cache and, subblocks of size 2 are distributed to every cores

Complexity

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Maximum re-use algorithm for multicore architectures
(o] ¢}

Minimizing the number of distributed-cache misses

k Brow 2
B for step =1 to Frd
k it
//,_,,in core ¢ \/E/‘,
for substep =1 to n
a B/ / 7
L
a B Chiod |\/ﬂ for i=1top
Vpn
A C

@ 4 is the largest integer with 1 + p + ;> < Cp

o A square block of size (y/pp)? of C is loaded in the shared
cache and, subblocks of size 2 are distributed to every cores

Complexity

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Maximum re-use algorithm for multicore architectures

(o] Je]

Minimizing the number of distributed-cache misses

k Brow 2
B for step =1 to Frd
k it
//,_,,in core ¢ \/E/‘r g
for substep =1 to n
a B/ / 7
L
a B Chiod |\/@ for i=1top
Vpn
A C

@ 4 is the largest integer with 1 + p + ;> < Cp

o A square block of size (y/pp)? of C is loaded in the shared
cache and, subblocks of size 2 are distributed to every cores

Complexity

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Maximum re-use algorithm for multicore architectures

(o] Je]

Minimizing the number of distributed-cache misses

k Brou .
B for step =1 to #
k it
//,_,,in core ¢ \/E/‘r g .
for substep=1to n
3= ol #
L
a B Chioc |\/ﬂ for i=1tou
VPH
A C

@ 4 is the largest integer with 1 + p + ;> < Cp

o A square block of size (y/pp)? of C is loaded in the shared
cache and, subblocks of size 2 are distributed to every cores

@ Then, repeatedly, z times:

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

(o] Je]

Minimizing the number of distributed-cache misses

k Brow .
B for step =1 to #
k i
//,_,,in core ¢ \/E/‘r g .
for substep=1to n
s i oo
L
a Ot i VPl for i=1tou
VPH
A C

@ 4 is the largest integer with 1 + p + ;> < Cp
o A square block of size (y/pp)? of C is loaded in the shared
cache and, subblocks of size 2 are distributed to every cores

@ Then, repeatedly, z times:
e a row of /pu elements of B is loaded in the shared cache and

distributed

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

(o] Je]

Minimizing the number of distributed-cache misses

k Brou .
B for step =1 to #
k i
//,_,,in core ¢ \/E/‘r g .
for substep=1to n
s i oo
D \/E‘[I -m" -
a T i for i=1top
VPH
A C

@ 4 is the largest integer with 1 + p + ;> < Cp
o A square block of size (y/pp)? of C is loaded in the shared
cache and, subblocks of size 2 are distributed to every cores

@ Then, repeatedly, z times:
e a row of /pu elements of B is loaded in the shared cache and

distributed

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

(o] Je]

Minimizing the number of distributed-cache misses

k Brow .
B for step =1 to #
k i
//,_,,in core ¢ \/E/‘r g .
for substep=1to n
s i oo
O N ey [EEE
2 Tt i for i=1tou
—~——— o
P 1
VP o
A C

@ 4 is the largest integer with 1 + p + ;> < Cp
o A square block of size (y/pp)? of C is loaded in the shared
cache and, subblocks of size 2 are distributed to every cores
@ Then, repeatedly, z times:
e a row of /pu elements of B is loaded in the shared cache and
distributed
e ,/p elements of A are sequentially read u times in shared
cache and distributed in order to contribute to current
sub-blocks of C

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

(o] Je]

Minimizing the number of distributed-cache misses

k Brow .
B for step =1 to #
k it
//,_,,in core ¢ \/E/‘r g .
for substep=1to n
s i oo
D \/E‘[I -m" -
2 Tt i for i=1tou
O =% O
P 1
VP O @
A C

@ 4 is the largest integer with 1 + p + ;> < Cp
o A square block of size (y/pp)? of C is loaded in the shared
cache and, subblocks of size 2 are distributed to every cores
@ Then, repeatedly, z times:
e a row of /pu elements of B is loaded in the shared cache and
distributed
e ,/p elements of A are sequentially read u times in shared
cache and distributed in order to contribute to current
sub-blocks of C

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
ocoe

Minimizing the number of distributed-cache misses

Shared-cache misses

@ Elements of C are loaded once in shared cache
e For each block of size (,/pu)? of C, we load:
o z rows of size \/pu of B
o z X ,/pu elements of A.

o Ms = mn+2mnz/,/pp @

o For large matrices, CCR is 2/,/pp
Distributed-cache misses

e mn/p elements of C are loaded once in each

distributed cache
@ Then, at each step, we load z times:
o A row of u elements of B
e 1 sequential elements of A

e Mp = mn/p+2mnz/pp
o For large matrices CCR is 2/u ©

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
©0000

Outline

© Maximum re-use algorithm for multicore architectures

@ Minimizing data access time

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0®000

Minimizing data access time

Why do we need a tradeoff ?

@ Previous objectives were antagonistic

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0®000

Minimizing data access time

Why do we need a tradeoff ?
@ Previous objectives were antagonistic

@ Bandwidths not taken into account.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0®000

Minimizing data access time

Why do we need a tradeoff ?
@ Previous objectives were antagonistic

@ Bandwidths not taken into account.

New objective: overall time spent in data movement

Ms Mp
Tdata =—+ —
gs oD

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
00®00

Minimizing data access time

z

@ We load in shared cache:

e a square block of size & of C
e a block column of size a x 3 of A
e a block row of the same size of B

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures
00®00

Minimizing data access time

z C
@ We load in shared cache:
e a square block of size & of C
e a block column of size a x 3 of A
e a block row of the same size of B
= only z/(iterations

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures

(e]e] lele]

Minimizing data access time

@ We load in shared cache:

e a square block of size & of C

e a block column of size a x 3 of A

e a block row of the same size of B
= only z/(iterations

o ;12 blocks of C are distributed, with proper rows of B and
element of A

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures

(e]e] lele]

Minimizing data access time

B
3 z
B | B Bis|Bis
A 3

Au
Ao !
z @ ¢

@ Depending on 3, we cannot load as many elements of C as

before

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures
00®00

Minimizing data access time

z C

@ Depending on 3, we cannot load as many elements of C as
before

o We need to find the best tradeoff between § and a

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Complexity

Maximum re-use algorithm for multicore architectures
000®0

Minimizing data access time

@ New constraint on shared cache: 23a + a? < Cs

@ Our new tradeoff algorithm has an overall data access time:

2mnz mnz 2mnz
mn + <002 +
Tuata = a4 ps pL
gs oD
@ The objective function is:
2 2

Fla) =
() osa + pop(Cs — a?)

@ We can now compute the best numerical values of parameters
o and 3

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
000®0

Minimizing data access time

@ New constraint on shared cache: 28a + a? < Cs

@ Our new tradeoff algorithm has an overall data access time:

2mnz mnz 2mnz
mn + <002 +
Tuata = a4 ps pL
gs oD
@ The objective function is:
2 2

Fla) =
() osa + pop(Cs — a?)

@ We can now compute the best numerical values of parameters
o and

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0000e

Minimizing data access time

@ « depends on the values of bandwidths os and op.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0000e

Minimizing data access time

@ « depends on the values of bandwidths os and op.

= In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0000e

Minimizing data access time

@ « depends on the values of bandwidths os and op.

= In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

o When op > os:

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0000e

Minimizing data access time

@ « depends on the values of bandwidths os and op.
= In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

o When op > os:

= Shared version.

Complexity

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Maximum re-use algorithm for multicore architectures
0000e

Minimizing data access time

@ « depends on the values of bandwidths os and op.

= In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

o When op > os:
= Shared version.

o On the contrary, when os >> op (not realistic):

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0000e

Minimizing data access time

@ « depends on the values of bandwidths os and op.

= In both extreme cases, the algorithm will follow the sketch of
either shared or distributed cache optimized version:

o When op > os:
= Shared version.
o On the contrary, when os >> op (not realistic):

= Distributed version.

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
©0000

Outline

© Maximum re-use algorithm for multicore architectures

o Experimental results

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0®000

Hardware platforms & Implementation details

Replacement policy:

@ Model: Caches use an ideal data replacement policy

@ On most current hardware platforms: LRU data
replacement policy

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0®000

Hardware platforms & Implementation details

Replacement policy:

@ Model: Caches use an ideal data replacement policy

@ On most current hardware platforms: LRU data
replacement policy

LRU vs. Ideal: In Cache Oblivious Algorithms, the authors stated
that the number of cache misses obtained using an ideal data
replacement policy on a cache of size M could be obtained using a
LRU policy on a cache of size 2M

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
0®000

Hardware platforms & Implementation details

LRU vs. Ideal: In Cache Oblivious Algorithms, the authors stated
that the number of cache misses obtained using an ideal data
replacement policy on a cache of size M could be obtained using a

LRU policy on a cache of size 2M

4.E+09

3§ 4408
E 0 =
§ wr = —
w T e
= L
= 46006 = =
@ P
£
(S 4.E+05 ==
_‘; o 4 Expected
E 4.6404 of « M -Shared Opt. LRU-200%
] /
< 4 ‘Shared Opt. LRU-100%
7 /
46403 -
[]
46402
4 200 400 600 800 1000

Matrix Dimension (in blocks)

Complexity

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr

Maximum re-use algorithm for multicore architectures
0®000

Hardware platforms & Implementation details

Benchmarked algorithms:
e Outer Product

@ Multicore Maximum Re-use Algorithm:
e 3 versions:

Shared Opt.
Distributed Opt.
Tradeoff

e 3 simulation settings:

IDEAL: explicit loads in every cache, no propagation
LRU-100%: LRU policy, using entire cache
LRU-50%: LRU policy, half-cache for automatic prefetching

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures
00®00

Experimental results obtained on our cache simulator

1.E+09

1.E+09

1.E+09

8.E+08

6.E+08

4.E+08

Shared cache misses

2.E+08

0.E+00

=#=Shared Opt. Ideal

=#-Outer product LRU
Lower Bound

==Shared Opt. LRU-100%
Shared Opt. LRU-50%

200 400 600 800 1000 1200

Matrix dimension (in blocks)

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Maximum re-use algorithm for multicore architectures

(elefe] lo]

Experimental results obtained on our cache simulator

6.E408
o SES
3 ~#-Outer product LRU
2 Lower Bound
E 4.E+08 Distributed Opt. LRU-100%
g ~+=Distributed Opt. LRU-50%
g =<Distributed Opt. Ideal
Q 36408
T
[0
-
=]
LD 2408
‘=
=1
2
[a]
1.E+08
0.£+00

0 200 400 600 800 1000 1200

Matrix dimension (in blocks)

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } Complexity

Maximum re-use algorithm for multicore architectures
0000®

Experimental results obtained on our cache simulator

1.E+09
9.E+08

=#-Outer Product LRU
8.E+08 Lower Bound

~*Tradeoff LRU-50%
7.E408 Shared Opt. LRU-50%
Distributed Opt. LRU-50%

6.E+08

5.E+08

Tdata

4.E+08

3.E+08

2.E+08

1.E+08

0 200 400 600 800 1000 1200

Matrix dimension (in blocks)

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Conclusion

Outline

© Conclusion

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

Conclusion
Complexity analysis of matrix product

@ Model for multicore memory layout.

@ For large matrices, our cache aware algorithms are close to the
lower bounds.

@ New algorithm realizing a tradeoff between both cache misses
types.

@ Our three algorithms were implemented, simulated and their
behavior validated.

We now plan to extend our work to more complex
kernels, like LU factorization

© Promising algorithmic research directions to explore !

{Mathias.Jacquelin,Loris.Marchal, Yves.Robert } @ens-lyon.fr Complexity

	Introduction
	Problem statement
	Modeling multicore architectures
	Studied case and objectives
	Lower bound on communication

	Maximum re-use algorithm for multicore architectures
	Minimizing the number of shared-cache misses
	Minimizing the number of distributed-cache misses
	Minimizing data access time
	Experimental results

	Conclusion

