Complexity analysis of matrix product on multicore architectures

Mathias Jacquelin, Loris Marchal and Yves Robert

Ecole Normale Supérieure de Lyon Mathias.Jacquelin@ens-lyon.fr http://graal.ens-lyon.fr/~mjacquel

Rocquencourt, February 4, 2009

Complexity

From simple single core architectures . . .

Recent evolution of processors

From simple single core architectures . . .

Speed used to be obtained through ILP

... to multi-core and upcoming many-core processors

... to multi-core and upcoming many-core processors

Now, algorithms need to explicitly exploit TLP, similar to classical parallel programming

... to multi-core and upcoming many-core processors

Now, algorithms need to explicitly exploit TLP, similar to classical parallel programming

More important: must efficiently use memory, especially caches

Target algorithms: Dense linear algebra kernels (key to performance for many scientific applications)

Calls for revisiting old problems

- Algorithms based on a 2D grid topology are not well suited for multicore architectures
- Hierarchy of cache memories
- Need to take further advantage of data locality

Target algorithms: Dense linear algebra kernels (key to performance for many scientific applications)

Calls for revisiting old problems

- Algorithms based on a 2D grid topology are not well suited for multicore architectures
- Hierarchy of cache memories
- Need to take further advantage of data locality

Target algorithms: Dense linear algebra kernels (key to performance for many scientific applications)

Calls for revisiting old problems

- Algorithms based on a 2D grid topology are not well suited for multicore architectures
- Hierarchy of cache memories
- Need to take further advantage of data locality

Target algorithms: Dense linear algebra kernels (key to performance for many scientific applications)

Calls for revisiting old problems

- Algorithms based on a 2D grid topology are not well suited for multicore architectures
- Hierarchy of cache memories
- Need to take further advantage of data locality

Target algorithms: Dense linear algebra kernels (key to performance for many scientific applications)

Calls for revisiting old problems

- Algorithms based on a 2D grid topology are not well suited for multicore architectures
- Hierarchy of cache memories
- Need to take further advantage of data locality

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives

Problem statement

- Lower bound on communication
- Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- Conclusion

Complexity

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives
 - Lower bound on communication
- 2 Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- 3 Conclusion

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives
 - Lower bound on communication
- Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- 3 Conclusion

Difficulty: Come up with a realistic but still tractable model

- p identical cores, computing speed w

Complexity

- p identical cores, computing speed w
- Large main memory

- p identical cores, computing speed w
- Large main memory
- Two levels of caches:
 - a first level shared by all cores of size C_S and bandwidth σ_S
 - a second level of cache distributed, each of size C_D and bandwidth σ_D
 - Caches are inclusive and fully associative

- p identical cores, computing speed w
- Large main memory
- Two levels of caches:
 - ullet a first level shared by all cores of size \mathcal{C}_S and bandwidth σ_S
 - a second level of cache distributed, each of size C_D and bandwidth σ_D
 - Caches are inclusive and fully associative

- p identical cores, computing speed w
- Large main memory
- Two levels of caches:
 - a first level shared by all cores of size C_S and bandwidth σ_S
 - a second level of cache distributed, each of size C_D and bandwidth σ_D
 - Caches are inclusive and fully associative

- p identical cores, computing speed w
- Large main memory
- Two levels of caches:
 - ullet a first level shared by all cores of size $\mathcal{C}_{\mathcal{S}}$ and bandwidth $\sigma_{\mathcal{S}}$
 - a second level of cache distributed, each of size C_D and bandwidth σ_D
 - Caches are inclusive and fully associative

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives
 - Lower bound on communication
- Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- Conclusion

Target: Compute the matrix product $C = A \times B$.

• A is $m \times z$, B is $z \times n$ and C has size $m \times n$

We use a block-oriented approach, thus, manipulate square blocks of coefficients.

First objective: Communication volume of shared cache.

 \bullet M_S is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

 \bullet M_D is the maximum of all distributed caches misses

Third objective: Overall time T_{data} required for data movement.

•
$$T_{\text{data}} = \frac{M_S}{\sigma_S} + \frac{M_D}{\sigma_D}$$

Target: Compute the matrix product $C = A \times B$.

• A is $m \times z$, B is $z \times n$ and C has size $m \times n$

We use a block-oriented approach, thus, manipulate square blocks of coefficients.

First objective: Communication volume of shared cache.

ullet M_S is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

 \bullet M_D is the maximum of all distributed caches misses

Third objective: Overall time T_{data} required for data movement.

•
$$T_{\text{data}} = \frac{M_S}{\sigma_S} + \frac{M_D}{\sigma_D}$$

Target: Compute the matrix product $C = A \times B$.

• A is $m \times z$, B is $z \times n$ and C has size $m \times n$

We use a block-oriented approach, thus, manipulate square blocks of coefficients.

First objective: Communication volume of shared cache.

• *M_S* is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

ullet M_D is the maximum of all distributed caches misses

Third objective: Overall time T_{data} required for data movement.

•
$$T_{\text{data}} = \frac{M_S}{\sigma_S} + \frac{M_D}{\sigma_D}$$

Target: Compute the matrix product $C = A \times B$.

• A is $m \times z$, B is $z \times n$ and C has size $m \times n$

We use a block-oriented approach, thus, manipulate square blocks of coefficients.

First objective: Communication volume of shared cache.

 \bullet M_S is the number of cache misses in the shared cache

Second objective: Communication volume of distributed caches.

ullet M_D is the maximum of all distributed caches misses

Third objective: Overall time T_{data} required for data movement.

•
$$T_{\text{data}} = \frac{M_S}{\sigma_S} + \frac{M_D}{\sigma_D}$$

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives
 - Lower bound on communication
- Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- 3 Conclusion

Lower bound on communication

- Irony, Toledo and Tiskin show that on a system with a memory of size M, the communication-to-computation ratio of matrix product is lower-bounded by: $\sqrt{\frac{27}{8M}}$.
- In our case, with comp(c) being the amount of computation done by core c, we have:
 - $CCR_S = M_S/(\sum_c comp(c))$ for the shared cache
 - $CCR_D = \frac{1}{p} \sum_{c=1}^{p} (M_D/comp(c))$ for the distributed cache.
- In all our algorithms, the amount of computation is equally balanced among cores, so that comp(c) = mnz/p for all cores. Therefore:

$$CCR_S \ge \sqrt{\frac{27}{8C_S}}$$
 and $CCR_D \ge \sqrt{\frac{27}{8C_D}}$.

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives
 - Lower bound on communication
- 2 Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- Conclusion

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible Rule 2 In a given loop, required data must be loaded once

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible Rule 2 In a given loop, required data must be loaded once

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible Rule 2 In a given loop, required data must be loaded once

Problem statement

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible Rule 2 In a given loop, required data must be loaded once

Observation Outermost loop is prevalent in order to minimize loaded data

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible Rule 2 In a given loop, required data must be loaded once

Corollary 1 In outermost loop, load the largest square blocks

Problem statement

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible Rule 2 In a given loop, required data must be loaded once

Corollary 1 In outermost loop, load the largest square blocks

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible Rule 2 In a given loop, required data must be loaded once

Corollary 1 In outermost loop, load the largest square blocks Corollary 2 In inner loops, load the smallest block allowing to respect Rules 1 & 2.

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible Rule 2 In a given loop, required data must be loaded once

Corollary 1 In outermost loop, load the largest square blocks Corollary 2 In inner loops, load the smallest block allowing to respect Rules 1 & 2.

Problem statement

Main Objective: Create a data-thrifty algorithm, memory of size M

Rule 1 Loaded data must be re-used as much as possible Rule 2 In a given loop, required data must be loaded once

Corollary 1 In outermost loop, load the largest square blocks Corollary 2 In inner loops, load the smallest block allowing to respect Rules 1 & 2.

Problem statement

Main Objective: Create a data-thrifty algorithm, memory of size M

- Rule 1 Loaded data must be re-used as much as possible
- Rule 2 In a given loop, required data must be loaded once
- Corollary 1 In outermost loop, load the largest square blocks
- Corollary 2 In inner loops, load the smallest block allowing to respect Rules 1 & 2.

How?

• Split the available memory into $1 + \alpha + \alpha^2$ blocks

Main Objective: Create a data-thrifty algorithm, memory of size M

- Rule 1 Loaded data must be re-used as much as possible
- Rule 2 In a given loop, required data must be loaded once
- Corollary 1 In outermost loop, load the largest square blocks
- Corollary 2 In inner loops, load the smallest block allowing to respect Rules 1 & 2.

How?

• Split the available memory into $1 + \alpha + \alpha^2$ blocks

Result

• A CCR of $\frac{2}{\sqrt{M}}$ for a memory of size M for large matrices

- Must take into account both cache levels:
 - Previous data allocation scheme adapted so as to fit caches.

- Must take into account both cache levels:
 - Previous data allocation scheme adapted so as to fit caches.

- Must take into account both cache levels:
 - Previous data allocation scheme adapted so as to fit caches.
- Two parameters depending on cache sizes:
 - λ is the largest integer with $1 + \lambda + \lambda^2 \leq C_S$
 - μ is the largest integer with $1 + \mu + \mu^2 \leq C_D$
 - These parameters will be used separately
 - ullet For the sake of simplicity, we assume that λ is a multiple of μ

- Must take into account both cache levels:
 - Previous data allocation scheme adapted so as to fit caches.
- Two parameters depending on cache sizes:
 - λ is the largest integer with $1 + \lambda + \lambda^2 \leq C_S$
 - μ is the largest integer with $1 + \mu + \mu^2 \leq C_D$
 - These parameters will be used separately
 - ullet For the sake of simplicity, we assume that λ is a multiple of μ

- Must take into account both cache levels:
 - Previous data allocation scheme adapted so as to fit caches.
- Two parameters depending on cache sizes:
 - λ is the largest integer with $1 + \lambda + \lambda^2 \leq C_S$
 - μ is the largest integer with $1 + \mu + \mu^2 \leq C_D$
 - These parameters will be used separately
 - ullet For the sake of simplicity, we assume that λ is a multiple of μ

- Must take into account both cache levels:
 - Previous data allocation scheme adapted so as to fit caches.
- Two parameters depending on cache sizes:
 - λ is the largest integer with $1 + \lambda + \lambda^2 \leq C_S$
 - μ is the largest integer with $1 + \mu + \mu^2 \leq C_D$
 - These parameters will be used separately
 - ullet For the sake of simplicity, we assume that λ is a multiple of μ

- Must take into account both cache levels:
 - Previous data allocation scheme adapted so as to fit caches.
- Two parameters depending on cache sizes:
 - λ is the largest integer with $1 + \lambda + \lambda^2 \leq C_S$
 - μ is the largest integer with $1 + \mu + \mu^2 \leq C_D$
 - These parameters will be used separately
 - \bullet For the sake of simplicity, we assume that λ is a multiple of μ

Outline

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives
 - Lower bound on communication
- 2 Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- 3 Conclusion

• We load in shared cache:

- A square block of size λ^2 of C
- A row of λ elements of B
- One element of A
- Then, rows of C_{block} and elements of A are distributed and
- Repeat until the block of C had been fully updated.

- We load in shared cache:
 - A square block of size λ^2 of C
 - A row of λ elements of B
 - One element of A
- Then, rows of C_{block} and elements of A are distributed and computed.
- Repeat until the block of C had been fully updated.

- We load in shared cache:
 - A square block of size λ^2 of C
 - A row of λ elements of B
 - One element of A
- Then, rows of C_{block} and elements of A are distributed and

- We load in shared cache:
 - A square block of size λ^2 of C
 - A row of λ elements of B
 - One element of A
- Then, rows of C_{block} and elements of A are distributed and

• We load in shared cache:

Problem statement

- A square block of size λ^2 of C
- A row of λ elements of B
- One element of A
- Then, rows of C_{block} and elements of A are distributed and

- We load in shared cache:
 - A square block of size λ^2 of C
 - A row of λ elements of B
 - One element of A
- \bullet Then, rows of C_{block} and elements of A are distributed and computed.

- We load in shared cache:
 - A square block of size λ^2 of C
 - A row of λ elements of B
 - One element of A
- \bullet Then, rows of C_{block} and elements of A are distributed and computed.

- We load in shared cache:
 - A square block of size λ^2 of C
 - A row of λ elements of B
 - One element of A
- \bullet Then, rows of C_{block} and elements of A are distributed and computed.
- Repeat until the block of C had been fully updated.

Shared-cache misses

- Elements of C are loaded once in shared cache
- For each block of size λ^2 . z rows of size λ are loaded from B as well as $z \times \lambda$ elements of A.
- $M_S = mn + 2mnz/\lambda$
- For large matrices, CCR is $2/\lambda$ \odot

- load z times λ elements of A one by one
- load z rows of size λ/p of B
- update $\lambda \times z$ times rows of size λ/p of C

•
$$M_D = \frac{mnz}{\lambda} \times (1 + 1/p + \lambda/p)$$

• CCR is $(p+1)/\lambda + 1 \odot$

Shared-cache misses

- Elements of C are loaded once in shared cache
- For each block of size λ^2 . z rows of size λ are loaded from B as well as $z \times \lambda$ elements of A.
- $M_S = mn + 2mnz/\lambda$
- For large matrices, CCR is $2/\lambda$ \odot

- load z times λ elements of A one by one
- load z rows of size λ/p of B
- update $\lambda \times z$ times rows of size λ/p of C

•
$$M_D = \frac{mnz}{\lambda} \times (1 + 1/p + \lambda/p)$$

• CCR is $(p+1)/\lambda + 1 \odot$

Shared-cache misses

- Elements of C are loaded once in shared cache
- For each block of size λ^2 . z rows of size λ are loaded from B as well as $z \times \lambda$ elements of A.
- $M_S = mn + \frac{2mnz}{\lambda}$
- For large matrices, CCR is $2/\lambda$ \odot

- load z times λ elements of A one by one
- load z rows of size λ/p of B
- update $\lambda \times z$ times rows of size λ/p of C

•
$$M_D = \frac{mnz}{\lambda} \times (1 + 1/p + \lambda/p)$$

• CCR is $(p+1)/\lambda + 1 \odot$

Shared-cache misses

- Elements of C are loaded once in shared cache
- For each block of size λ^2 . z rows of size λ are loaded from B as well as $z \times \lambda$ elements of A.
- $M_S = mn + 2mnz/\lambda$
- For large matrices, CCR is $2/\lambda$ \odot

- load z times λ elements of A one by one
- load z rows of size λ/p of B
- update $\lambda \times z$ times rows of size λ/p of C

Complexity

•
$$M_D = \frac{mnz}{\lambda} \times (1 + 1/p + \lambda/p)$$

• CCR is $(p+1)/\lambda + 1 \odot$

Shared-cache misses

- Elements of C are loaded once in shared cache
- For each block of size λ^2 . z rows of size λ are loaded from B as well as $z \times \lambda$ elements of A.
- $M_S = mn + 2mnz/\lambda$
- For large matrices, CCR is $2/\lambda$ \odot

Distributed-cache misses At each step, we:

- load z times λ elements of A one by one
- load z rows of size λ/p of B
- update $\lambda \times z$ times rows of size λ/p of C

•
$$M_D = \frac{mnz}{\lambda} \times (1 + 1/p + \lambda/p)$$

• CCR is $(p+1)/\lambda + 1$

Shared-cache misses

- Elements of C are loaded once in shared cache
- For each block of size λ^2 . z rows of size λ are loaded from B as well as $z \times \lambda$ elements of A.
- $M_S = mn + 2mnz/\lambda$
- For large matrices, CCR is $2/\lambda$ \odot

Distributed-cache misses At each step, we:

- load z times λ elements of A one by one
- load z rows of size λ/p of B
- update $\lambda \times z$ times rows of size λ/p of C

•
$$M_D = \frac{mnz}{\lambda} \times (1 + 1/p + \lambda/p)$$

• CCR is $(p+1)/\lambda + 1$

Shared-cache misses

- Elements of C are loaded once in shared cache
- For each block of size λ^2 . z rows of size λ are loaded from B as well as $z \times \lambda$ elements of A.
- $M_S = mn + 2mnz/\lambda$
- For large matrices, CCR is $2/\lambda$ \odot

Distributed-cache misses At each step, we:

- load z times λ elements of A one by one
- load z rows of size λ/p of B
- update $\lambda \times z$ times rows of size λ/p of C

•
$$M_D = \frac{mnz}{\lambda} \times (1 + 1/p + \lambda/p)$$

• CCR is $(p+1)/\lambda + 1$

Shared-cache misses

- Elements of C are loaded once in shared cache
- For each block of size λ^2 , z rows of size λ are loaded from B as well as $z \times \lambda$ elements of A.
- $M_S = mn + 2mnz/\lambda$
- For large matrices, CCR is $2/\lambda$ \odot

Distributed-cache misses At each step, we:

- load z times λ elements of A one by one
- load z rows of size λ/p of B
- update $\lambda \times z$ times rows of size λ/p of C

•
$$M_D = \frac{mnz}{\lambda} \times (1 + 1/p + \frac{\lambda/p}{p})$$

• CCR is $(p+1)/\lambda + 1 \odot$

Shared-cache misses

- Elements of C are loaded once in shared cache
- For each block of size λ^2 . z rows of size λ are loaded from B as well as $z \times \lambda$ elements of A.
- $M_S = mn + 2mnz/\lambda$
- For large matrices, CCR is $2/\lambda$ \odot

Distributed-cache misses At each step, we:

- load z times λ elements of A one by one
- load z rows of size λ/p of B
- update $\lambda \times z$ times rows of size λ/p of C

•
$$M_D = \frac{mnz}{\lambda} \times (1 + 1/p + \lambda/p)$$

• CCR is $(p+1)/\lambda + 1 \odot$

Outline

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives
 - Lower bound on communication
- 2 Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- 3 Conclusion

for
$$step = 1$$
 to $\frac{n^2}{p\mu^2}$

for $substep = 1$ to n

for $i = 1$ to μ

- μ is the largest integer with $1 + \mu + \mu^2 \leq C_D$
- A square block of size $(\sqrt{p}\mu)^2$ of C is loaded in the shared cache and, subblocks of size μ^2 are distributed to every cores
- Then, repeatedly, z times:
 - ullet a row of $\sqrt{
 ho\mu}$ elements of B is loaded in the shared cache and distributed
 - \sqrt{p} elements of A are sequentially read μ times in shared cache and distributed in order to contribute to current

- μ is the largest integer with $1 + \mu + \mu^2 < C_D$
- A square block of size $(\sqrt{p}\mu)^2$ of C is loaded in the shared cache and, subblocks of size μ^2 are distributed to every cores
- Then, repeatedly, z times:

19/32

- μ is the largest integer with $1 + \mu + \mu^2 < C_D$
- A square block of size $(\sqrt{p}\mu)^2$ of C is loaded in the shared cache and, subblocks of size μ^2 are distributed to every cores
- Then, repeatedly, z times:

Introduction

- μ is the largest integer with $1 + \mu + \mu^2 \leq C_D$
- A square block of size $(\sqrt{p}\mu)^2$ of C is loaded in the shared cache and, subblocks of size μ^2 are distributed to every cores
- Then, repeatedly, z times:
 - a row of $\sqrt{p}\mu$ elements of B is loaded in the shared cache and distributed
 - \sqrt{p} elements of A are sequentially read μ times in shared cache and distributed in order to contribute to current sub-blocks of C

- μ is the largest integer with $1 + \mu + \mu^2 < C_D$
- A square block of size $(\sqrt{p}\mu)^2$ of C is loaded in the shared cache and, subblocks of size μ^2 are distributed to every cores
- Then, repeatedly, z times:
 - a row of $\sqrt{p}\mu$ elements of B is loaded in the shared cache and distributed
 - \sqrt{p} elements of A are sequentially read μ times in shared

- μ is the largest integer with $1 + \mu + \mu^2 < C_D$
- A square block of size $(\sqrt{p}\mu)^2$ of C is loaded in the shared cache and, subblocks of size μ^2 are distributed to every cores
- Then, repeatedly, z times:
 - a row of $\sqrt{p}\mu$ elements of B is loaded in the shared cache and distributed
 - \sqrt{p} elements of A are sequentially read μ times in shared

Minimizing the number of distributed-cache misses

- μ is the largest integer with $1 + \mu + \mu^2 < C_D$
- A square block of size $(\sqrt{p}\mu)^2$ of C is loaded in the shared cache and, subblocks of size μ^2 are distributed to every cores
- Then, repeatedly, z times:
 - a row of $\sqrt{p}\mu$ elements of B is loaded in the shared cache and distributed
 - \sqrt{p} elements of A are sequentially read μ times in shared cache and distributed in order to contribute to current sub-blocks of C

Minimizing the number of distributed-cache misses

- μ is the largest integer with $1 + \mu + \mu^2 < C_D$
- A square block of size $(\sqrt{p}\mu)^2$ of C is loaded in the shared cache and, subblocks of size μ^2 are distributed to every cores
- Then, repeatedly, z times:
 - a row of $\sqrt{p}\mu$ elements of B is loaded in the shared cache and distributed
 - \sqrt{p} elements of A are sequentially read μ times in shared cache and distributed in order to contribute to current sub-blocks of C

Minimizing the number of distributed-cache misses

Shared-cache misses

- Elements of C are loaded once in shared cache
- For each block of size $(\sqrt{p}\mu)^2$ of C, we load:
 - z rows of size $\sqrt{p}\mu$ of B
 - $z \times \sqrt{p}\mu$ elements of A.
- $M_S = mn + 2mnz/\sqrt{p}\mu$
- For large matrices, CCR is $2/\sqrt{p}\mu$

Distributed-cache misses

- mn/p elements of C are loaded once in each distributed cache
- Then, at each step, we load z times:
 - A row of μ elements of B
 - μ sequential elements of A
- \bullet $M_D = mn/p + 2mnz/p\mu$
- For large matrices CCR is $2/\mu$ \odot

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives
 - Lower bound on communication
- 2 Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- 3 Conclusion

Why do we need a tradeoff?

- Previous objectives were antagonistic
- Bandwidths not taken into account.

$$T_{\text{data}} = \frac{M_S}{\sigma_S} + \frac{M_D}{\sigma_D}$$

Why do we need a tradeoff?

- Previous objectives were antagonistic
- Bandwidths not taken into account.

New objective: overall time spent in data movement

$$T_{\rm data} = \frac{M_S}{\sigma_S} + \frac{M_D}{\sigma_D}$$

Why do we need a tradeoff?

- Previous objectives were antagonistic
- Bandwidths not taken into account.

New objective: overall time spent in data movement

$$T_{\mathsf{data}} = \frac{M_S}{\sigma_S} + \frac{M_D}{\sigma_D}$$

- We load in shared cache:
 - a square block of size α^2 of C
 - a block column of size $\alpha \times \beta$ of A
 - a block row of the same size of B
- μ^2 blocks of C are distributed, with proper rows of B and

23/32

Complexity

- We load in shared cache:
 - a square block of size α^2 of C
 - a block column of size $\alpha \times \beta$ of A
 - a block row of the same size of B
 - \Rightarrow only z/β iterations
- μ^2 blocks of C are distributed, with proper rows of B and element of A

Complexity

- We load in shared cache:
 - a square block of size α^2 of C
 - a block column of size $\alpha \times \beta$ of A
 - a block row of the same size of B
 - \Rightarrow only z/β iterations
- μ^2 blocks of C are distributed, with proper rows of B and element of A

- Depending on β , we cannot load as many elements of C as before
 - ullet We need to find the best tradeoff between eta and lpha

Problem statement

- Depending on β , we cannot load as many elements of C as before
 - ullet We need to find the best tradeoff between eta and lpha

- New constraint on shared cache: $2\beta\alpha + \alpha^2 \le C_S$
- Our new tradeoff algorithm has an overall data access time:

$$T_{\mathsf{data}} = \frac{mn + \frac{2mnz}{\alpha}}{\sigma_{\mathcal{S}}} + \frac{\frac{mnz}{p\beta} + \frac{2mnz}{p\mu}}{\sigma_{\mathcal{D}}}$$

The objective function is:

$$F(\alpha) = \frac{2}{\sigma_S \alpha} + \frac{2\alpha}{p\sigma_D(C_S - \alpha^2)}$$

 We can now compute the best numerical values of parameters α and β

- New constraint on shared cache: $2\beta\alpha + \alpha^2 \leq C_S$
- Our new tradeoff algorithm has an overall data access time:

$$T_{\mathsf{data}} = \frac{mn + \frac{2mnz}{\alpha}}{\sigma_{\mathcal{S}}} + \frac{\frac{mnz}{p\beta} + \frac{2mnz}{p\mu}}{\sigma_{\mathcal{D}}}$$

The objective function is:

$$F(\alpha) = \frac{2}{\sigma_S \alpha} + \frac{2\alpha}{p\sigma_D(C_S - \alpha^2)}$$

 We can now compute the best numerical values of parameters α and β

• α depends on the values of bandwidths σ_S and σ_D .

- - When $\sigma_D \gg \sigma_S$:
- - On the contrary, when $\sigma_S \gg \sigma_D$ (not realistic):

- α depends on the values of bandwidths σ_S and σ_D .
 - ⇒ In both extreme cases, the algorithm will follow the sketch of either shared or distributed cache optimized version:
 - When $\sigma_D \gg \sigma_S$:
 - ⇒ Shared version
 - On the contrary, when $\sigma_S \gg \sigma_D$ (not realistic):
 - ⇒ Distributed version

- α depends on the values of bandwidths σ_S and σ_D .
 - ⇒ In both extreme cases, the algorithm will follow the sketch of either shared or distributed cache optimized version:
 - When $\sigma_D \gg \sigma_S$:
 - - On the contrary, when $\sigma_S \gg \sigma_D$ (not realistic):

- α depends on the values of bandwidths σ_S and σ_D .
 - ⇒ In both extreme cases, the algorithm will follow the sketch of either shared or distributed cache optimized version:
 - When $\sigma_D \gg \sigma_S$:
 - ⇒ Shared version.
 - On the contrary, when $\sigma_S \gg \sigma_D$ (not realistic):
 - ⇒ Distributed version

Problem statement

- α depends on the values of bandwidths σ_S and σ_D .
 - ⇒ In both extreme cases, the algorithm will follow the sketch of either shared or distributed cache optimized version:
 - When $\sigma_D \gg \sigma_S$:
 - ⇒ Shared version.
 - On the contrary, when $\sigma_S \gg \sigma_D$ (not realistic):

- α depends on the values of bandwidths σ_S and σ_D .
 - ⇒ In both extreme cases, the algorithm will follow the sketch of either shared or distributed cache optimized version:
 - When $\sigma_D \gg \sigma_S$:
 - ⇒ Shared version.
 - On the contrary, when $\sigma_S \gg \sigma_D$ (not realistic):
 - Distributed version.

Outline

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives
 - Lower bound on communication
- 2 Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- 3 Conclusion

Replacement policy:

- Model: Caches use an ideal data replacement policy
- On most current hardware platforms: **LRU data** replacement policy

Replacement policy:

- Model: Caches use an ideal data replacement policy
- On most current hardware platforms: LRU data replacement policy

LRU vs. Ideal: In Cache Oblivious Algorithms, the authors stated that the number of cache misses obtained using an ideal data replacement policy on a cache of size M could be obtained using a LRU policy on a cache of size 2M

Problem statement

LRU vs. Ideal: In Cache Oblivious Algorithms, the authors stated that the number of cache misses obtained using an ideal data replacement policy on a cache of size M could be obtained using a LRU policy on a cache of size 2M

Benchmarked algorithms:

- Outer Product
- Multicore Maximum Re-use Algorithm:
 - 3 versions:

```
Shared Opt.
Distributed Opt.
Tradeoff
```

3 simulation settings:

```
IDEAL: explicit loads in every cache, no propagation LRU-100%: LRU policy, using entire cache LRU-50%: LRU policy, half-cache for automatic prefetching
```

Experimental results obtained on our cache simulator

Experimental results obtained on our cache simulator

Experimental results obtained on our cache simulator

Outline

- Problem statement
 - Modeling multicore architectures
 - Studied case and objectives
 - Lower bound on communication
- Maximum re-use algorithm for multicore architectures
 - Minimizing the number of shared-cache misses
 - Minimizing the number of distributed-cache misses
 - Minimizing data access time
 - Experimental results
- 3 Conclusion

Complexity

Complexity analysis of matrix product

- Model for multicore memory layout.
- For large matrices, our cache aware algorithms are close to the lower bounds.
- New algorithm realizing a tradeoff between both cache misses types.
- Our three algorithms were implemented, simulated and their behavior validated.

We now plan to extend our work to more complex kernels, like LU factorization

© Promising algorithmic research directions to explore !