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Abstract. Nowadays, datacenters are one of the most energy consuming devices
due to the increase of cloud, web-services and high performance computing de-
mands all over the world. To be clean and to be with no connection to the grid,
datacenters projects tempt to feed electricity with renewable energy sources and
storage elements. Nevertheless, due to the intermittent nature of these power
sources, most of the works still rely on grid as a backup. This paper presents
a model that considers the datacenter workload and the several moments where
renewable energy could be engaged by the power side without grid. We propose
to optimize the IT scheduling to execute tasks within a given power envelope of
only renewable energy as a constraint.
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1 Introduction

Datacenters are now known to be one of the biggest actors when talking about energy
consumption [1]. In 2006, particularly, datacenters were responsible for consuming 61.4
billion kWh in the United States [2]. In another study [3], datacenters are in charge of
consuming about 1.3% of world’s electricity consumption. Datacenters are currently
consuming more energy than the entire United Kingdom, and our needs are increasing.

Supplying datacenters with clean-to-use renewable energy is therefore essential to
help mitigate climate change. The vast majority of cloud provider companies that claim
to use green energy supply on their datacenters consider the classical grid, and deploy
the solar panels/wind turbines somewhere else and sell the energy to electricity compa-
nies [4], which incurs in energy losses when the electricity travels throughout the grid.
Even though several efforts have been conducted at the computing level in datacenters
partially powered by renewable energy sources, the scheduling considering the varia-
tions in the power production without the grid can still be widely explored. In this paper
we consider a datacenter powered only with renewable energy.

Since energy efficiency in datacenters is directly related to the resource consumption
of a computing node [5], performance optimization and an efficient load scheduling is
essential for energy saving. Today, we observe the use of cloud computing as the basis of
datacenters, either in a public or private fashion. The task management is first optimized
by Virtual Machine (VM) management [6], where a task should be placed considering
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an energy consumption model to describe the task’s consumption, depending on the
resource description (processor and memory power characteristics) and task’s demand
(resources usage) while respecting the Quality of Service (i.e. their due dates).

To address the IT load scheduling while considering the renewable energy available
we propose Renewable Energy Constrained Optimization (RECO) a module to sched-
ule batch tasks (characterized by their release time, due date and resource demand) in
a cloud datacenter while respecting a power envelope. This envelope represents an esti-
mation which would be provided by a power decision module and is the expected power
production based on weather forecasts, states of charge of storage elements and other
power production characteristics. We also highlight that this RECO module is intended
to be used as part of the ANR Datazero project3. RECO aims at maximizing the Qual-
ity of Service (QoS) with a constraint on electrical power. There are several possible
power envelopes which could be generated using only renewable energy sources and
the different moments when storage elements can be engaged. This interaction between
datacenter electrical consumption and electrical power sources part is fundamental to
profit as much as possible from the renewable energy sources. We propose and eval-
uate this RECO module with a comparison between classical greedy algorithms and
meta-heuristics constrained by power envelopes.

The remainder of this article will present the classical approaches on scheduling
with and without renewable energy sources in Section 2. In Section 3 the problem for-
mulation is presented in details, followed by the resolution in Section 4 and the eval-
uation methodology as well as the results obtained are presented in Section 5. Finally,
Section 6 presents final remarks, highlights the contributions with quantitative data and
also directions for future works.

2 Related Work

Several techniques exist to save energy [5] and [7]. In this section some of these re-
search initiatives are presented, mainly related to the energy aware task scheduling in
datacenters. In this sense, several authors tackle this problem using heuristics to sched-
ule tasks trying to reduce the energy consumption in a cloud datacenter, some of which
consider also the use of renewable energy. Below we present some initiatives that uti-
lizes green energy to the datacenter in order to maximize the green energy usage.

Goiri et al. proposes GreenSlot [8] which focus on batch jobs and GreenHadoop [9]
focused on MapReduce jobs scheduling for a datacenter powered by photovoltaic pan-
els and the electrical grid. The schedulers are based on a predicted amount of solar
energy that will be available, and aims to maximize the green energy consumption
while meeting the jobs constraints. If grid energy must be used to avoid due date vi-
olations, the scheduler finds the cheapest point. Aksanli et al. [10] proposes an adaptive
datacenter job scheduler which also utilizes short term prediction but in the case of
solar and wind energy production. The aim of the scheduler is to reduce the number
of canceled or violated jobs, and improve the efficiency of the green energy usage.
Liu et al. [11] investigates the feasibility of powering cloud datacenters using renew-
able energy. The study focus on geographical load balancing, and the optimal mix of

3 http://www.datazero.org
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renewable energy using a concept called “follow the renewables” in which the work-
load is migrated among datacenters to improve the renewable energy usage. Finally,
Beldiceanu et al. [4] presents EpoCloud, a prototype aims at optimizing the energy con-
sumption of mono-site cloud datacenters connected to the regular electrical grid and to
renewable energy sources, aiming to find the best trade-off between energy cost and
QoS degradation using application reconfiguration or jobs suspension along with Vary-
On/Vary-Off (VOVO) policy which dynamically turn on/off the computing resources.
Sharma et al. [12] presents Blink, a way to handle intermittent power constraints acti-
vating and deactivating servers. For example, a system that blinks every 30 seconds is
on for 30 seconds and then off for 30 seconds. This approach can be useful for some
web applications, but not realistic for the vast majority of applications running in cloud
platforms.

As it can be observed, techniques are employed in order to reduce the brown energy
consumption [5], such as node consolidation, DVFS (processor voltage and frequency
variation) and some authors also take profit of heterogeneity in the datacenter. Never-
theless, with exception of Sharma et al. [12] the authors always consider the grid as a
backup and not a datacenter powered only by renewable energy sources, and the fluc-
tuations that could occur in the power production. The scheduling over several possible
power profiles allow us to see the impact on metrics such as QoS and the usage of
renewable energy. To do so, a module to schedule tasks in a cloud datacenter is pro-
posed in this paper while respecting the several possible power envelopes, minimizing
the number of due date violations. For comparison purposes we also explore classical
greedy algorithms and meta-heuristics constrained by a provided power envelope.

3 Core Problem Formulation

3.1 The principles of the RECO module

IT scheduling problems consist in allocating tasks on the IT resources under constraints
depending on the IT platform current state and on energy availability. Several levels
of decision are concerned as IT resource management (server switch on/off, process
migration, voltage and frequency scaling, etc). On the other side, we have the power
systems where several power profiles could be provided, depending on the moment
when the renewable energy is produced and the batteries are engaged for instance.

RECO focuses on integrating both power and computing systems to provide a power
constrained optimization using power envelopes, which is applicable in the context of
projects such as Datazero. The power envelope is considered as an input of the IT
scheduling problem. The objective is to optimize the tasks placement in a cloud dat-
acenter respecting a power envelope provided by the Power Management while maxi-
mizing the QoS (in our case, minimizing the due date violations).

RECO can be triggered when a new task arrives or due to some changes in the
power envelope. It decides which task will be executed on which resource, when and
at which frequency (using DVFS), and also when each node will be turned on or off.
RECO ensures that the placement will respect a power envelope engaged by a power
module, while minimizing the number of tasks that will be violated (finishing after the
due date).
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In the next sections, the models for IT and power characteristics and the proposed
scheduling approaches are exposed in details.

3.2 IT Management Model

In this work we focus mainly on batch tasks. The IT system receives a set of n tasks
{Tj}j∈{1,...,n}, characterized by the following information: etj represents the execution
time of task Tj running at a reference frequency F (1)

1,1 (see later), memj is the requested
memory, rtj represents the release time of the task (the moment when Tj can start to
be executed), and dj represents the due date of this task (the moment when Tj must be
finished).

M multi-processor hosts {Hh}h∈{1,...,M} populate the datacenter, while each host
Hh is composed of Ch processors equipped with DVFS, each of them exposing Mh

memory. The power dissipated byHh can be computed based on Mudge [13]:

Ph =

P
(idle)
h +

Ch∑
h=1

runh,p · P (dyn)
h · (fh,p)3 if sh = on

0 otherwise

(1)

where sh determines whether Hh is on or off , P
(idle)
h is the idle power, runh,p is a

boolean describing whether there is a task running on the processor, P
(dyn)
h is a host-

dependent coefficient, and fh,p is the clock frequency of processor p on host h.
Every processor have a set of available frequencies Fh,p = {F (1)

h,p , . . . , F
(FMh,p)
h,p },

in such a way that at any instant, fh,p ∈ Fh,p. Finally, note that under any clock fre-
quency, a power overhead of P (on)

h (resp. P (off )
h ) is paid during t(on)

h (resp. t(off )
h ) when

Hh is turned on (resp. off ).
We consider that an external Power Management module sends a set of piecewise

power envelopes in a time window [ti,min , ti,max ] where each envelope i is described
with time steps {ti,l}l∈{0,...,N} (where ti,0 = ti,min and ti,N = ti,max ) and power
values. The available electrical power, constant on each [ti,l, ti,l+1], is given in Watts
andN represents the granularity. Here we also loosely call these time intervals as steps.

3.3 Objective

The aim is to find when and at which frequency to run every task, i.e. to find assignment
functions σproc , σhost and σfreq expressing that Tj runs on processor σproc(j) of host
σhost(j) at frequency F (σfreq(j))

σhost(j),σproc(j)
, and a starting point function st expressing that

Tj starts at time st(j) . We denote by ft(j) the finish time of Tj , hence, for all j:

ft(j) = st(j) +
F

(σfreq(j))

σhost(j),σproc(j)

F
(1)
1,1

· etj . (2)

The problem can then be formulated as follows: minimize
∑
j max (0, ft(j)− dj),

while fulfilling memory and power constraints.
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4 Core Problem Resolution

Finding a mapping of the tasks onto the processors such that no due date constraint is vi-
olated is an NP-complete problem, while DVFS is not enabled and memory is not taken
into account, even with two processors. In this way, we focus on approximation meth-
ods. More specifically, we explore Greedy Heuristics (GH) and Genetic Algorithms
(GA) as a way to validate our proposal. GH can provide locally optimal decisions, and
in general have a short execution time. On the other hand, the combinations of choices
locally optimal do not always lead to a global optimum. The second approach (GA),
can provide a large number of adapted solutions and also makes possible to approach
a local minimum starting from an existing solution. Nevertheless, the problem of GA
methods can be the execution time on large scale problems. In this work we propose
a time window approach. More specifically, an off-line resource allocation problem is
considered with a fixed set of tasks that have constant resource needs.

The difference from regular scheduling algorithms is that in this case we need con-
sidering the power envelope as a constraint. To do so, the implemented algorithms use a
power check function which is responsible for evaluating if a task can be scheduled in a
given processing element on the desired time interval. It returns how much power would
be consumed to schedule the task using a specific processor and frequency. Hereafter,
two different approaches that provide scheduling possibilities are presented but this
model is not limited to it and new approaches could be used as long as they rely on the
presented function.

For GH, we considered three versions of the Best Fit, where we use different sort
task functions. It tries to fit the tasks in the node that presents the smallest power con-
sumption, respecting the power envelope and resource constraints, and three versions of
the First Fit algorithm which schedules a task at the first available node which can finish
the task before the due date. The difference among the three versions of each algorithm
is the way that the tasks are sorted: (i) Due date, closest task first; (ii) Arrival time, first
task that arrives is the first to be scheduled; and (iii) Task size, longest one first. Even
though the changes occur only in the task ordering, the impact on the results can be
significant. All considered GH algorithms must respect the power envelope, meaning
that if there is not enough power in a given time step to power a machine, this task will
be delayed until the next time step in which a possible solution is found (increasing the
start step).

Regarding the GA we propose two variations, the first one where the fitness func-
tion consists only in reducing the number of due date violations, and the second one
uses a weight based approach, also trying to minimize the power consumption in a
Mixed Objective (hereafter called MPGA - MultiPhase Genetic Algorithm and MPGA-
MO - MultiPhase Genetic Algorithm Mixed Objective, respectively). Equation 3 is used
to normalize all metrics considered for each chromosome Ck, described below, where
M (max) is the maximum value for a given metric, M (min) is the minimum, and Mk is
the value of the kth chromosome. The normalized values are then inputs in Equation 4
where DDk is the normalized due date violations and Ek is the normalized energy con-
sumption. The metrics should be weighted using α, depending on the importance of the
objective (for MPGA the only metric considered is the number of due date violations,
i.e. α is equal to 1).
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M
(norm)
k =

M (max) −Mk

M (max) −M (min)
(3)

fitnessk = α×DDk + (1− α)× Ek (4)

In both cases each chromosome represents a scheduling possibility for the given
power profile. Figure 1 presents an example of crossover operation (Algorithm 1) where
each gene represents a task and the value is the node where it will be executed. For the
crossover operation we consider two points crossover since it allows the change of a
higher number of genes in a single operation, and the selection consists in tournament
selection, which allows the best fitted genes to survive. After that, the processor, fre-
quency and time are assigned using a greedy algorithm. To improve the execution time
of both GAs (the verification of the power available occurs for each step in the power
envelope) we also use two different power envelopes, the first one provides a rough
scheduling based on an aggregation of the initially provided envelope, reducing in this
case the number of steps. After obtaining an initial placement, a fine grained power
envelope (smaller steps) is used to absorb power peaks and respect the given power
envelope.

Node 0Node 2 Node 3
T1 T3T2

Node 3 Node 0 Node 2
T1 T3T2

Node 0 Node 2 Node 3
T1 T3T2

Node 3 Node 0 Node 2
T1 T3T2

Parents OffspringsCrossover/Mutation

Fig. 1. Genetic algorithm chromosome representation and crossover example.

A pseudocode of the GA used is presented in Algorithm 1 where it can be seen the
generation of the simplified envelope in line 2 (assigned to individuals in line 4), the
first execution from line 6 to 11, and the execution with the detailed power envelope
and the respective stopping criteria from line 12 to 19. The stopping criteria for the
MPGA, since it only considers the number of due date violations, is when it has at least
one chromosome that has no violation the execution can be stopped, or the maximum
number of generations is reached. For the second algorithm (MPGA-MO) the stopping
criteria is only the number of generations, since the minimum energy to schedule the
tasks in advance cannot be defined easily.

When a set of individuals of a generation is computed, the greedy algorithms is used
to perform the time schedule and DVFS adjustment (scheduleAndCheckConstraints
called in lines 8 and 16). In a simplified manner, how the tasks would be allocated in a
processor is presented in Figure 2 where we illustrate a node with two processors. In (a)
we present the scheduling after the greedy algorithm that defines the time and processor
inside a node is executed. The aim of this greedy algorithm is to align the execution
of the processors of the same node to be able to switch it off. First we populate an
associative array with all the tasks and the time intervals where they can be scheduled.
After, we get the first unscheduled task and compare if there is another task which the
time to be schedule intercepts this time interval. The algorithm evaluates then, what is



IT Optimization for Datacenters Under Renewable Power Constraint 7

Algorithm 1: Multiphase genetic algorithm pseudocode.
input : Set of tasks in queue, set of resources available, power envelope for the window,

selection method, population size, number of generations first phase, number of
generations second phase, number of simplified steps, mutation probability,
crossover probability

output: Tasks scheduled, actions to be performed in nodes, QoS metrics, power
consumption estimation

1 begin
2 simplifiedPowerEnvelope = generateSimplifiedEnvelope(powerEnvelope,nSteps);

/* First Phase - Simplified Power Envelope */
3 foreach Individual i in population do
4 i.setPowerEnvelope(simplifiedPowerEnvelope.copy);
5 end
6 generateInitialPopulation();
7 for (g=0; g < generationsFirstPhase; g++) do
8 scheduleAndCheckConstraints(individuals);
9 calculateFitness(individuals);

10 selectionMethod.select(individuals);
11 end

/* Second Phase - Detailed Power Envelope */
12 foreach Individual i in population do
13 i.setPowerEnvelope(powerEnvelope.copy);
14 end
15 while StopCriteriaNotReached do
16 scheduleAndCheckConstraints(individuals);
17 calculateFitness(individuals);
18 selectionMethod.select(individuals);
19 end
20 end

the earliest start step in which the tasks can be allocated and not violated. Finally, the
algorithm finds a free processor inside the node and schedule the tasks in parallel (as
illustrated in (b) by T1 in Processor 1 and T2 and T3 in Processor 2. We also highlight
that the algorithm always verifies the power envelope and resources constraints.

In Figure 2 (c) we show a per processors DVFS where we reduce the frequency of
Processor 2 in this case, to reduce the power consumption, and consequently increasing
the execution time of tasks T2, T3. The frequency in this case is only reduced if the due
date is not violated. This DVFS control does not impact the idle power consumption
of a node, allowing an easy consolidation of nodes where more energy saving can be
obtained. In this sense, at the end of the task placement and DVFS adjustment we also
calculate when each node can be turned off in order to reduce the power consumption
without impacting the system performance.
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T1

T2
Processor 1

Processor 2 T3

on off

T1

T2
Processor 1

Processor 2 T3

on off

(b)

(c)T1 T3T2

Node 0
Processor 1

Frequency: F1
Start: 1:00pm
End: 5:00pm

Node 0
Processor 2

Frequency: F0
Start: 1:00pm
End: 2:30pm

Node 0
Processor 2

Frequency: F3
Start: 2:30pm
End: 5:00pm

(a)

Fig. 2. Tasks allocation inside a node with two processing elements using greedy scheduling
inside GA (a), and DVFS adjustment where (b) is before DVFS and (c) after DVFS adjustment.

5 Evaluation Methodology and Results

5.1 Methodology

To validate RECO we simulated an IT and Power production infrastructure based on the
prototype presented in the previous section. The DCWoRMS simulator and the other
modules are executed on the same machine. The IT infrastructure inside the simula-
tor is based on Villebonnet et al. [14], more specifically we are using 30 hosts (15 of
each kind) and the power consumption values of Paravance and Taurus clusters from
Grid50004. We consider P (dyn) = 4.725W ·s3 (see Equation 1) and P (idle) = 69.9W
for Paravance and P (dyn) = 5.255W ·s3 and P (idle) = 95.8W for Taurus. For Para-
vance we considered P (on) = 112.91W over t(on) = 189 s and for P (off ) = 65.7W
over t(off ) = 10 s . For Taurus we considered P (on) = 125.78W over t(on) = 164 s
and for P (off ) = 106.63W over t(off ) = 11 s.

Regarding the GA, we bound the number of generations to 100 (resp. 400) with the
simplified power envelope (resp. with the original power envelope) and the population
size to 100 individuals. The probabilities for crossover and mutation are 0.9 and 0.3
respectively. For the MPGA-MO we consider α = 0.9 where the main objective is
minimize the due date violations. For the Google based workload generator we use a
two-day window (i.e. all the tasks have to be executed inside this interval) to generate
3 different workloads with 234, 569 and 1029 tasks. Each workload is scheduled with
3 different power profiles as observed in Figure 3. PROFILE I with peak production of
7249W and average of 2879W, PROFILE II peak production of 7249W and average of
2893W and PROFILE III with peak production of 6387W and average of 2756W. Even
though the values are similar, the moment in which the power is delivered is different,
as observed in Figure 3.

5.2 Results Evaluation

In Figure 4 we present the number of due date violations (a) the total time violated
(b) and energy consumption (c) for all the proposed workloads for best fit and genetic
algorithms (first fit is presented only in text for better visualization), considering the
three different power profiles.

4 https://www.grid5000.fr/
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Fig. 3. Graphical representation of the three power profiles.

Considering the three power profiles with only 234 tasks, almost all algorithms,
even with the power constraint, can reduce the number of violations to 0 and keep
the energy consumption around 15kWh. The exceptions in this case are the first fit
algorithms which have a higher energy consumption (around 18kWh) and one violation
(198s of total time violated) with PROFILE II. As the number of tasks increases an
expected degradation of performance of both first fit and best fit algorithms is observed
when compared to the GA. When considering 1029 tasks we have in PROFILE I 18 due
date violations (114046s) for the best fit algorithm against 5 (545446s) and 6 (30684s)
of the two genetic algorithms variations, which also obtained a reduction of 6.3% in
the energy consumption. In PROFILE II we observed the same behavior, reducing from
19 (189892s) to 12 (78471s and 114845s) due date violations with a reduction of 4.9%
in the energy consumption. The same goes for PROFILE III which reduced from 22
(169612s) to 11 (118092s and 118477s) due date violations with an economy of 5% in
energy. The values for the total time violated of the tasks may seem high but we need
to consider that the scheduling is constrained by a power envelope, and in this case
the tasks need to be delayed for the next moment with enough power available (if we
consider only solar energy for instance, this may take a whole day).

In Figure 5 we present the power produced and consumed for PROFILE I. These re-
sults were obtained when using the Best Fit Due Date (a) and MPGA-MO (b) schedul-
ing planners with PROFILE I and 1029 tasks. We can observe that in some points (such
as in the first 100 samples) the power consumption can be similar for both algorithms
due to the high number of tasks that needs to be scheduled and so reaching the maxi-
mum power available. This justifies why we have different number of due date viola-
tions with the same workload under different power profiles: at some points we have too
many tasks to be scheduled, and they lack flexibility (time between release and due date)
to wait the next moment where enough power will be available (samples 100-200). This
highlights the importance of the generation of multiple power envelopes when consid-
ering renewable energy sources and storage elements engagement. We could not only
save energy but also provide a better QoS; this behavior can be observed by comparing
the results obtained with PROFILE I against the two others, which have a higher number
of violations and in case of PROFILE II also a higher energy consumption.

The results become even more significant if we consider the long term impact that
it could provide. For PROFILE I, displayed in Figure 5, in a period of 2 days we could
save 164.98 kWh using the MPGA-MO, instead of 155.35 kWh and 160.04 kWh for
first fit and best fit due date respectively. This energy could be stored and used in the
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Fig. 4. Power available and consumed in the power profiles using best fit and genetic algorithm
scheduling plan.

generation of the next scheduling windows improving the results, or sold to the grid
power provider.

In Figure 6 the average execution time of all the algorithms (with minimum and
maximum values in the bars) is presented. Despite of the smaller number of due date vi-
olations and lower energy consumption, as expected, the Genetic Algorithm can have an
execution time exponentially higher than the greedy ones. Nevertheless, if the schedul-
ing requested is not a reactive action, this execution time is not prohibitive (around 12
minutes in the worst case for two days scheduling). We also highlight that it is possible
to improve even more the execution time by improving the stopping criteria, but this
will have an impact of the quality of the schedule.
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Fig. 5. Power available and consumed in the power PROFILE I considering two different algo-
rithms and 1029 tasks.
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6 Conclusion

This article focused on presenting and evaluating an optimization module called RECO
that aims to schedule tasks in a cloud datacenter while respecting the possible power
envelopes.

We presented different algorithms that try to minimize due date violations while
respecting power and resource constraints. The proposed genetic algorithm approach
(MPGA and MPGA-MO) was able to reduce from 304 (First Fit) to 11 due date viola-
tions, in the best scenario, while also reducing the energy consumption from 78.7kWh
to 73.15kWh respecting one of the power envelopes provided by a power manager. We
have also presented an evaluation of the impact the power envelopes can have in the
task scheduling, and concluded that more power does not necessarily means better QoS
for the IT part, but it is more important to know when this power is delivered.

Finally, we intend to continue our research extending RECO to support real time
task arrival, services (not only batch tasks), and variations in the amount of resources
that are consumed by the applications. We also intend to connect RECO’s generic in-
terface through a message queue with an electrical middleware to receive the power
envelopes.
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