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Abstract—This paper studies the problem of mapping
streaming applications that can be modeled by a series-parallel
graph, onto a 2-dimensional tiled CMP architecture. The ob-
jective of the mapping is to minimize the energy consumption,
using dynamic voltage scaling techniques, while maintaining a
given level of performance, reflected by the rate of processing
the data streams. This mapping problem turns out to be NP-
hard, but we identify simpler instances, whose optimal solution
can be computed by a dynamic programming algorithm in
polynomial time. Several heuristics are proposed to tackle the
general problem, building upon the theoretical results. Finally,
we assess the performance of the heuristics through a set of
comprehensive simulations.
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scheduling algorithms; power consumption minimization.

I. INTRODUCTION

The energy consumption of computational platforms has
recently become a critical problem, both for economic and
environmental reasons [1]. To help reduce energy con-
sumption, processors can run at different speeds. Faster
speeds allow for a faster execution, but they also lead to
a much higher (superlinear) power consumption. Energy-
aware scheduling aims at minimizing the energy consumed
during the execution of the target application, both for
computations and for communications. Obviously, this ap-
proach makes sense only if coupled with some performance
bound to be achieved. Otherwise, the optimal solution is to
run each resource at the slowest possible speed. In other
words, we have a bi-criteria optimization problem, with one
objective being energy minimization, and the other being
performance-related.

In this paper, we aim at minimizing the energy con-
sumption of streaming applications whose task graph is
a series-parallel graph (SPG). Streaming applications, or
workflows, are ubiquitous in many domains, as for instance
image processing applications, astrophysics, meteorology,
neuroscience, and so on [2], [3]. Most of these applications
have simple and regular task graphs, such as linear chains,
trees, fork-join graphs, or general SPGs (see Section III-A
for a formal definition of SPGs). For instance, all the
benchmarks of the StreamIt suite [4] are SPGs.

The performance-related objective coupled with energy
minimization is the period of the streaming application.
Typically, a series of data sets enter the input stage and
progress from stage to stage, following the dependencies of
the application, until the final result is computed. Each stage

has its own communication and computation requirements:
it reads inputs from the previous stage(s), processes the
data and outputs results to the next stage(s). The pipeline
operates in a dataflow mode: after a transient behavior due
to the initialization delay, a new data set is completed every
period. The period, which corresponds to the inverse of
the throughput, is a key performance-related objective for
streaming applications [2], [5], [6]. Formally, the period is
the time interval between the arrival of two consecutive data
sets in the application. Given a mapping of the application
onto a platform, the time spent in each resource (processor
or communication link) should not exceed the period.

Finally, the target platform for this study is a Chip
MultiProcessor (CMP), which is composed of p × q ho-
mogeneous cores arranged along a 2D grid. During the last
century, advances in integrated circuit technology have led
chip designers to increase microprocessor performance by
increasing the integration density thus allowing for higher
clock rates and new innovations in micro-architectures. Such
innovations included wider instructions, speculative execu-
tion, branch prediction and dynamic scheduling. However,
in 1996, Olukotum et al. [7] argued that such a trend would
not continue because of the diminishing return caused by
limited instruction level parallelism and they argued that
a better way for using the denser integration would be
to layout multiple simpler processors on the same chip.
Moreover, power consumption consideration prevented the
push towards faster clocks, thus leaving the design of chip
multiprocessors as the only alternative for increasing the
on-chip computational capability. Specifically, increasing the
number of cores rather than the processor’s complexity trans-
lates into slower growth in power consumption. Currently,
chip multiprocessors are commercially available and the
trend is towards the continuous increase in the number of
cores on single chips. The challenge is now to be able to
efficiently utilize the parallelism available on chip [8].

An essential step for exploring the parallelism available
in a streaming application is to provide algorithms and
scheduling strategies for mapping a series-parallel graph
onto a CMP, with the objective of minimizing the energy
consumption while not exceeding a prescribed period. In
some applications, data sets arrive at fixed time intervals,
and hence the period of the application is given a priori,
before any mapping is computed. In other applications, there
is the freedom to choose between a set of possible periods,



which are prescribed by the user. In all cases, the main goal
is to reduce the energy consumption of the mapping, while
enforcing the constraint on the prescribed period.

The contribution of this paper is twofold. On the theoret-
ical side, we assess the complexity of the above-mentioned
mapping problem, using a DAG-partition mapping rule that
partitions the application SPG into an acyclic graph of node
clusters. In turn, each cluster is mapped onto a different
processor of the CMP. Our cost model accounts for com-
munication delays and cost (in terms of consumed energy).
The problem turns out to be NP-hard, so we also study
the complexity of simpler problem instances, either with
a simpler target platform (uni-directional or bi-directional
uni-line CMP), or by restricting to particular applications
whose graph has a bounded degree of parallelism (bounded-
elevation SPGs). The only problem instance that can be
solved in polynomial time, thanks to a dynamic program-
ming algorithm, is the mapping of bounded-elevation SPGs
onto a uni-directional uni-line CMP. For other problem
instances, we provide sophisticated NP-completeness proofs.
On the practical side, building upon the theoretical results,
we design some polynomial-time heuristics to solve the most
general problem, and we assess their performance through
simulation.

The paper is organized as follows. We first survey related
work in Section II. Then we detail the framework in Sec-
tion III, and we provide complexity results in Section IV.
The heuristics are described in Section V, and simulation
results in Section VI. Finally, we conclude and discuss future
research directions in Section VII.

II. RELATED WORK

Reducing the energy consumption of computational plat-
forms is an important research topic, and many techniques
at the process, circuit design, and micro-architectural levels
have been proposed. The dynamic voltage and frequency
scaling (DVFS) technique has been extensively studied,
since it may lead to efficient energy/performance trade-
offs [9], [10], [11], [12]. Current microprocessors (for in-
stance, from AMD [13] and Intel [14]) allow the speed to be
set dynamically. Indeed, by lowering supply voltage, hence
processor clock frequency, it is possible to achieve impor-
tant reductions in power consumption, without necessarily
increasing the execution time.

Our objective is to minimize the energy consumption for
series-parallel graph (SPG) applications which are mapped
onto a chip multiprocessor (CMP). A detailed related work
section in the companion research report [15] shows that
(i) many of the directed acyclic graphs which represent
classical workflow applications turn out to be series-parallel
graphs [3]; (ii) most of the papers dealing with energy min-
imization approaches are also ensuring some performance
guarantees (real-time constraints, such as a bound on the to-
tal execution time, or a threshold period) [16], [17]; (iii) even

though some papers have considered the mapping of tasks
and threads to CMPs [18], [19], none considers the mapping
of streaming applications with the objective of minimizing
power consumption while maintaining a specified period.

In this paper, the application is a workflow whose struc-
ture is a series-parallel task graph, and the goal is to map this
application onto a CMP with minimum energy consumption
and a given threshold on the period. We are extending previ-
ous work [17], which was conducted for simpler application
structures (linear chains instead of series-parallel graphs),
and for a realistic platform (the CMP) instead of virtual
cliques. To the best of our knowledge, this paper is the
first to investigate the complexity of this problem, and to
propose practical solutions (polynomial time heuristics) for
applications modeled by series-parallel graphs. The work
in [20] shares the same objective as the work in this paper
but is purely empirical. It presents a two-phase heuristic
for mapping a general acyclic graph onto a CMP by first
assigning the levels of the graph to the rows of the CMP
and then mapping the tasks in each level to the nodes of
the row assigned to that level. The heuristic described in
Section V-C follows a similar two-phase strategy but obeys
the DAG-partition mapping rule (see Section III-C).

III. FRAMEWORK

A. Applicative framework

The application that is to be scheduled is a streaming
application: it operates on a collection of data sets that are
executed in a pipelined fashion. In this study, the application
is a series-parallel graph G = (S, E), or SPG. Nodes of
the graph correspond to different application stages, and are
denoted by Si, with 1 ≤ i ≤ n, where n = |S| is the size of
the graph. For each precedence constraint in the application,
say from stage Si to stage Sj , we have an edge Li,j ∈ E . For
1 ≤ i ≤ n, wi is the computation requirement of stage Si,
and for each Li,j ∈ E , with 1 ≤ i, j ≤ n, δi,j is the volume
of communication to be sent from Si to Sj before Sj can
start its computation.

A SPG is built from a sequence of compositions (parallel
or series) of smaller-size SPGs. The smallest SPG consists of
two nodes connected by an edge. The first node is the source
of the SPG while the second is its sink. When composing
two SPGs in series, we merge the sink of the first SPG with
the source of the second. For a parallel composition, the two
sources are merged, as well as the two sinks (see Figure 1
for illustrative examples).

We recursively define the label of each node in a SPG,
which corresponds to its coordinates along a 2D-grid in the
recursive construction: `i = (xi, yi) is the label of stage Si,
for 1 ≤ i ≤ n. First, for a two-node SPG (S1 → S2), the
label of the source S1 is (1, 1), while the label of the sink S2

is (2, 1). The labels are then updated when composing the
SPG. Consider two SPGs, SPG1 with nodes S(1)

1 , . . . , S
(1)
n1 ,



and SPG2 with nodes S(2)
1 , . . . , S

(2)
n2 , and their correspond-

ing labels `(1)i = (x(1)
i , y

(1)
i ) and `

(2)
j = (x(2)

j , y
(2)
j ), for

1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.
• For a series composition, we merge the sink of SPG1,
S

(1)
n1 , with the source of SPG2, S(2)

1 . The resulting
SPG has n = n1 + n2 − 1 nodes with the following
labels: for 1 ≤ i ≤ n1, Si = S

(1)
i and its label is

`i = `
(1)
i , and for 1 < j ≤ n2, Sn1+j−1 = S

(2)
j and

the x values of the labels are incremented by x(1)
n1 − 1,

i.e., `n1+j−1 = (x(2)
j + x

(1)
n1 − 1, y(2)

j ).
• For a parallel composition, assume that x(1)

n1 ≥ x
(2)
n2

(otherwise exchange the two SPGs, so that the first
contains the longest path). We merge both sources (S(1)

1

and S(2)
1 ), and both sinks (S(1)

n1 and S(2)
n2 ). The resulting

SPG has n = n1 + n2 − 2 nodes with the following
labels: S1 is the source and `1 = `

(1)
1 ; Sn is the sink

and `n = `
(1)
n1 ; for 1 < i < n1, Si = S

(1)
i and its label

is `i = `
(1)
i ; for 1 < j < n2, Sn1+j−2 = S

(2)
j , and

the y values of the labels are incremented by y
(1)
max =

max1≤i≤n1(y
(1)
i ), i.e., `n1+j−2 = (x(2)

j , y
(2)
j + y

(1)
max).

This construction is illustrated on the examples given in
Figure 1. Note that these rules ensure that the source is
always stage S1, with `1 = (1, 1), and the sink is always
stage Sn, with `n = (xn, 1). Therefore, max1≤i≤n xi = xn,
and we denote by ymax = max1≤i≤n yi the maximum y
value of the labels in the SPG, which we call maximum
elevation. Intuitively, the maximum elevation denotes the
maximal degree of parallelism of the SPG.

In the following, we focus the discussion on bounded-
elevation SPGs, i.e., SPGs whose maximum elevation ymax

is bounded by a constant. Indeed, dealing with bounded-
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Figure 1. Examples of SPG composition.

elevation SPGs, rather than arbitrary SPGs, or even arbitrary
DAGs, is a trade-off between tractability and generality. On
the one hand, bounded-elevation SPGs correspond to a wide
spectrum of applications, and nicely generalize linear chains
and trees (a tree can easily be transformed into a SPG by
adding fake nodes mirroring the tree). For instance, all the
benchmarks of the StreamIt suite [4] are bounded-elevation
SPGs: their maximum elevations range from ymax = 1
(linear chain) to ymax = 17. On the other hand, the
problem of mapping a simple fork-join graph with n nodes
(unbounded-elevation graph) onto two processors, in order
to minimize the energy given a period bound, is NP-
complete (reduction from 2-PARTITION, see Section IV-A).
Dealing with bounded-elevation graphs enables us to identify
polynomial instances, thus providing optimal solutions for
some problem instances.

B. Platform

The target platform is a CMP (Chip MultiProcessor),
composed of p×q homogeneous cores Cu,v , with 1 ≤ u ≤ p,
1 ≤ v ≤ q, arranged along a rectangular grid. There is
a vertical (internal and bi-directional) communication link
between Cu,v and Cu+1,v , for 1 ≤ u ≤ p−1, 1 ≤ v ≤ q, and
a horizontal link between Cu,v and Cu,v+1, for 1 ≤ u ≤ p,
1 ≤ v ≤ q−1. All links have the same bandwidth BW .This
means that it takes a time δ

BW to send δ bytes from one
processor to a neighboring processor. It is possible to use
only some of the communication links, and for instance to
configure the p × q CMP as a 1 × pq bi-directional linear
array, called bi-directional uni-line CMP.

Although the cores of a CMP share the same memory
space, it is possible to implement the message passing
models on CMPs [21] by writing and reading from shared
memory locations. However, for scalability purpose, CMPs
with large number of cores will be organized as a mesh
of tiles, each with its own cache [22]. Therefore, com-
munication through shared memory ultimately translates to
exchange of coherence traffic between the tiles [23], [24],
[25]. Specifically, in the streaming model assumed in this
paper, when a stage Si, mapped to a core Cu,v , writes
into a shared variable, X , that shared variable is cached
in the local cache of Cu,v . Then, when a stage Sj with
Li,j ∈ E , mapped to a core Cu′,v′ 6= Cu,v , reads X , the
cache coherence protocol guarantees that X is cached in the
local cache of Cu′,v′ . Therefore, the values of the cache line
containing X are sent from Cu,v to Cu′,v′ . In other words,
if two stages Si and Sj , connected with an edge Li,j , are
mapped onto two distinct processors, a communication of
size δi,j must occur (implicit messages) to keep the cached
values coherent1. Hence, irrespectively of the programming
model used to implement the SPG, the weight on a directed

1It is assumed that the cache coherence protocol supports cache-to-cache
transfer and exploits communication locality by tracking in each core the
location of frequently accessed blocks [26].



edge between two nodes in the SPG represents the volume
of communication to be sent between the cores executing
the corresponding application stages.

As mentioned in Section II, the voltage and frequency of
each core of the CMP can be set to different values. Alto-
gether, there is a set of possible supply voltages, together
with a set of possible frequencies (or modes, or speeds),
for each core. Let S = {s(1), . . . , s(m)} denote the set of
all possible speeds. It takes a time wi

s(k) to execute one data
set for stage Si at speed s(k) ∈ S on a given core. Each
speed induces a different dynamic power consumption, as
discussed in Section III-E below.

C. Mapping strategies

We discuss several mapping rules to map the SPG ap-
plication onto the CMP. As for the application graph, we
use DAG-partition mappings, which represent a trade-off
between one-to-one and general mappings. The rationale is
the following. One-to-one mappings obey the simplest rule:
each application stage is mapped onto a distinct core. While
easier to optimize and implement, this rule may be unduly
restrictive, and is likely to lead to high communication costs.
Obviously, it also requires that p× q ≥ n, thereby limiting
its applicability to large platforms or small applications. A
natural extension is to search for DAG-partition mappings:
we first partition the initial SPG into subsets, or clusters,
such that the resulting graph is acyclic. Hence this mapping
rule states that if two stages Si and Sj are in the same
subset of the partition, then any other stage Sk which has an
incoming dependency from Si and an outgoing dependency
to Sj , must be in the same subset of the partition. Then
we map the subsets of the partition onto the cores in a
one-to-one fashion. Using this mapping rule, a core which
is executing a subset I of stages {Si}i∈I will perform at
most one input and one output communication for each
elevation value {yi}i∈I . This is well in accordance with
our initial assumption that the SPG has bounded elevation
ymax, because it ensures that each core has at most ymax

communications to perform at each period. In contrast, a
fully general mapping, that allows for arbitrary partitions
of the original application graph, would require an arbitrary
number of communications, only bounded by the total num-
ber of stages n, hence an unlimited amount of buffer space.
Moreover, even for bounded-elevation SPGs, the problem
of finding the general mapping which minimizes the energy
given a period bound is trivially NP-complete (linear chain
onto two processors, reduction from 2-PARTITION [27]).

Formally, the mapping is defined by an allocation function
alloc : {1, . . . , n} → {1, . . . , p} × {1, . . . , q} ,

which maps stages onto cores. In other words, if stage Si
is mapped onto core Cu,v , we have alloc(i) = (u, v). Once
application stages are mapped onto cores, there remains to
decide how to route communications between two cores

which need to communicate because of the stage assignment.
Therefore, for each application edge Li,j ∈ E , if alloc(i) 6=
alloc(j), we define pathi,j as the set of communication
links that are used to communicate from core alloc(i) to
core alloc(j). Note that these paths must be defined for the
mapping to be fully determined.

D. Period

As motivated above, we assume that data sets arrive at
regular time intervals, which is called the period of the
application, and denoted by T . Then, given a mapping and
an execution speed for each core, we can check whether the
application can be executed at the prescribed rate: we must
ensure that the cycle-time of each resource (computation or
communication link) does not exceed T .

Let wu,v =
∑

1≤i≤n|alloc(i)=(u,v) wi be the total amount
of work assigned to core Cu,v , running at speed su,v ∈ S.
The cycle-time of Cu,v for computations is wu,v/su,v .

Let b(ver)(u,v) =
∑

1≤i,j≤n|(u,v)↔(u+1,v)∈pathi,j
δi,j be the

number of bits sent between Cu,v and Cu+1,v , and let
b
(hor)
(u,v) =

∑
1≤i,j≤n|(u,v)↔(u,v+1)∈pathi,j

δi,j be the number
of bits sent between Cu,v and Cu,v+1. The cycle-time of
the communication link (u, v)↔ (u + 1, v) (resp. (u, v)↔
(u, v + 1)) is b(ver)(u,v)/BW (resp. b(hor)(u,v) /BW ).

We can then compute the maximum cycle-time, which is
the maximum cycle-time of all resources, and check that it
is not greater than T .

E. Energy model

Once a SPG application has been mapped onto the CMP,
there are two sources of energy consumption: the cores
consume energy for computations and the routers consume
additional energy for communications.

For the computations, we assume that each core involved
in the execution consumes some static energy during the
whole period T , and some dynamic energy that depends on
the amount of operations, and on the speed at which these
operations are executed. Let A be the set of active cores:
A={Cu,v, 1≤u≤p, 1≤v≤q | ∃1≤ i≤n, alloc(i)=(u, v)}.
For each core Cu,v ∈ A, recall that wu,v is its assigned
work and su,v its speed. The total energy consumed for
computations is

E(comp) = |A| × P (comp)
leak × T +

∑
Cu,v∈A

wu,v
su,v

× P (comp)
su,v

,

where T is the prescribed period, P (comp)
leak is the leakage

power dissipated together with computations, and P
(comp)
su,v

is the dynamic power associated with speed su,v .
For the communications, there is also a static part due to

leakage, which is paid for all cores: even if a core is not
enrolled in the computation, its routers and communication
links may be used to route data between remote processors.
The dynamic part is directly proportional to the number of



bits that are sent across each link, b(ver)(u,v) and b(hor)(u,v) . Hence,
the total energy consumed for communications is
E(comm) =

P
(comm)
leak ×T+

(
p−1∑
u=1

q∑
v=1

b
(ver)
(u,v) +

p∑
u=1

q−1∑
v=1

b
(hor)
(u,v)

)
×E(bit),

where T is the period, P (comm)
leak is the aggregated leakage

power dissipated by all routers and links, and E(bit) is the
energy to transfer a bit across neighboring cores. Finally, the
total energy consumption is E = E(comp) + E(comm).

We are ready to formally define the optimization problem
MINENERGY(T ): given a bounded-elevation SPG and a
period threshold T , find a mapping whose maximal cycle-
time does not exceed T and whose energy E is minimum.

IV. COMPLEXITY RESULTS

In this section, we assess the complexity of the MINEN-
ERGY(T ) problem for various instances. We classify results
depending upon the target CMP, which may be uni-directio-
nal uni-line (see Section IV-A), or bi-directional (uni-line or
2D mesh, see Section IV-B). The only polynomial instance
of MINENERGY(T ) is for the uni-directional uni-line CMP.
In this case, we exhibit a dynamic programming algorithm
that finds the optimal solution. It is worth noting that this
polynomial instance becomes NP-complete for SPGs of
unbounded elevation. All other problem instances are NP-
hard, and we formulate the problem as an integer linear
program in Section IV-C.

A. Uni-directional uni-line CMP

In this section, we assume that the CMP is configured as a
uni-directional linear array of q processors. First we provide
a polynomial algorithm to solve the case of bounded-
elevation SPGs. As a digression from the main focus of this
paper (bounded-elevation SPGs), we prove that the problem
becomes NP-hard for SPGs of unbounded elevation.

Theorem 1: The MINENERGY(T ) problem on a uni-di-
rectional uni-line CMP has polynomial complexity.

Proof: We exhibit a dynamic programming algorithm
which computes the optimal solution. Let G be a bounded-
elevation SPG. First we define admissible subgraphs of G
recursively:
• G is admissible;
• if a subgraph G of G is admissible, then any subgraph

of G obtained by deleting one node which has no
successor in G is admissible too.

Let H be a set of one or several nodes deleted from G
with this process, and let G′ = G \ H . Note that the
partition {G′, H} is acyclic, and that any possible acyclic
partition of G into two subgraphs can be obtained with this
construction. If we iterate the construction on G′, we can
build any DAG-partition of G.

How many admissible subgraphs can we have? Let ymax

be the maximal elevation of G. Consider any admissible

subgraph G. By definition, two nodes with the same y
coordinate are linked by a dependence. Therefore, for each
value of y between 1 and ymax, there can be at most one
node of elevation y and without successor in G. Hence there
are at most nymax admissible subgraphs (and this bound is
asymptotically met for a fork-join shaped graph composed
of ymax chains of length n/ymax assembled with a source
and sink node).

For any admissible subgraph G of G, let E(G, k) be
the minimum energy consumption required to execute the
subgraph G onto exactly the first k processors. The goal
is to determine minqk=1 E(G, k). The dynamic programming
formulation can be expressed as:

E(G, k) = min
G′⊆G

(
E(G′, k − 1)⊕ Ecal(G \G′)

)
,

with the initialization E(G, 1) = Ecal(G).
The minimum is taken over all admissible subgraphs G′

such that communications between G′ and G \ G′ do not
exceed the bandwidth: Cout(G′)

BW ≤ T , where Cout(G′)
denotes the aggregated output data volume of G′, i.e., the
sum of the output data δi of all stages Si ∈ G′ which have
no successor in G′.
Ecal(H) represents the energy consumed for the computa-

tions of the nodes in H when mapped to the same processor.
Given such a node set H , we select the minimum speed that
allows for computing all the stages in H within the period T ,
and we compute the corresponding energy consumption. If
no such speed exists, we let Ecal(H) = +∞. Finally, the
⊕ operator means that the energy consumed by the induced
communications is added to the sum.

At each step, there are no more than nymax admissible
graphs G′, and therefore we have at most n2ymax values of
Ecal(H) to compute, which is done in O(n). Altogether, we
have designed an algorithm whose worst-case complexity is
O(q × n × n2ymax), which is polynomial since ymax is a
constant.

The previous theorem only holds for bounded-elevation
SPGs. With unbounded-elevation SPGs, the problem be-
comes NP-hard:

Proposition 1: The extension of MINENERGY(T ) to un-
bounded-elevation SPGs on a uni-directional uni-line CMP
is NP-complete.

Proof sketch: In fact, without any energy consideration,
the simpler mono-criterion problem of matching a prescribed
period is NP-complete. The associated decision problem
is as follows: given a period T , is there a DAG-partition
mapping whose period is no more than T ? The problem
is obviously in NP: given a period and a mapping, we can
check in polynomial time that it is valid (compute its period).

The completeness comes from a reduction from 2-
PARTITION [27]. For our problem, the application consists
of a fork-join graph of elevation n, with no communication
costs, and the computation cost of the i-th node of the fork-
join is the ai from 2-PARTITION. The source and the sink



have no computation cost. The platform consists of two
cores which can operate only at a unique speed 1, and
we ask whether we can achieve a period (

∑n
i=1 ai)/2. The

equivalence is then immediate, see [15] for the proof.

B. Bi-directional CMPs

First we consider uni-line CMP, before investigating the
general case of 2D meshes.

Theorem 2: The MINENERGY(T ) problem on a bi-direc-
tional uni-line CMP is NP-complete.

This theorem ensures that the problem is NP-hard for a
1× q CMP, hence for CMPs of arbitrary shapes. However,
the problem complexity for a square CMP of size p × p
is not a consequence of Theorem 2. We also establish this
complexity:

Theorem 3: The MINENERGY(T ) problem on a square
CMP is NP-complete.

The proofs of both Theorems 2 and 3 are surprisingly
long and difficult. Due to lack of space, we refer to the
companion research report [15] for full details.

C. Integer linear program

The general problem of finding the optimal DAG-partition
mapping, for a given period, has been shown to be NP-hard.
However, we have been able to formulate the problem as
an integer linear program (ILP), which allows us to find
the optimal solution of the problem (in exponential time)
for small problem instances. Actually, this ILP can also
find the optimal general mapping (without the restriction of
DAG-partition mappings), by removing the DAG-partition
constraint from the program.

Unfortunately, because of the large number of variables
needed to express communication paths in the CMP, we were
unable to obtain results on a platform larger than a 2 × 2
CMP with ILOG CPLEX (www.ilog.com/products/cplex/).
The ILP formulation can be found in the companion research
report [15].

V. HEURISTICS

In this section, we describe the five heuristics that we
have designed and implemented, thus providing practical
solutions to the MINENERGY(T ) problem.

A. Random heuristic

This first heuristic calls a procedure which works in two
steps. The procedure first randomly builds a DAG-partition
of the initial SPG, while ensuring that the period is matched
for computations: we choose randomly a speed for the core
which will handle the current subgraph G (initially, the
source of the SPG), and we keep a list of stages of the
SPGs that can be added to G while maintaining a DAG-
partition. We pick a stage from this list randomly as long
as computations do not exceed the period. When moving
to the next core, we choose the first stage in the current

list and iterate. In the second step, we decide randomly on
which core each subgraph is mapped, and communications
are done following an XY routing: a communication from
Cu,v to Cu′,v′ follows horizontal links from Cu,v to Cu′,v ,
and then vertical links from Cu′,v to Cu′,v′ . If the period is
not exceeded on any communication link, then the mapping
is valid, otherwise there is no solution.

For each problem instance, Random calls ten times this
procedure, and keeps the solution which minimizes the
energy consumption, if there is at least one valid solution;
otherwise it fails.

B. Greedy heuristic

Given a speed s ∈ S, this heuristic greedily assigns the
SPG onto the platform, on which all cores are running at
speed s. The greedy assignment is done through procedure
greedy(s). The idea is to try all possible speed values, and
to keep the best solution.

The greedy procedure greedy(s) works as follows: we
keep a list of cores which are ready to be processed,
and for each core, a list of successors, together with the
corresponding outgoing communications. Initially, the only
core in the list is C1,1, and we assign to this core the source
stage S1. The corresponding list of successors corresponds
to the successors of S1 in the SPG, and they are sorted
by non-increasing communication volume to S1. When we
process a core Cu,v , we successively try to add some of
the successors (from the current list) to this same core until
the list is empty or the period is exceeded for computations
on Cu,v .

For each set of stages mapped onto Cu,v and the
corresponding list of successors, we greedily share the
corresponding communications between neighboring cores
Cu,v+1 and Cu+1,v: communications are taken from the
sorted list and assigned to the core which has currently
the smallest amount of incoming communications. Then,
we check that the partitioning is correct (no cycles in the
dependence graph, i.e., we have a DAG-partition), and we
check whether the bound on the period is achieved, both
for computations and communications. If it is correct, we
save the current solution before adding one more stage onto
core Cu,v and iterating with one more stage on Cu,v .

At the end of the iteration, we keep the last valid (saved)
solution, i.e., the valid solution with the most number of
stages onto Cu,v . Cores Cu,v+1 and Cu+1,v are then added
to the list of ready cores, together with the list of successors
(i.e., the stages that can either be assigned to this core, or
forwarded to the neighboring cores).

The procedure finishes when the list of ready cores is
empty, which means that all stages have been processed.
Otherwise, the heuristic fails, and we move to the next
speed. The energy for the mapping obtained with a given
speed is computed by first downgrading the speed of each
core, if possible: the procedure returns the mapping, and then



we compute the amount of computations on each core, and
set the core to the slowest possible speed, in order to save
energy. Cores which are not used are turned off. Finally, the
Greedy heuristic selects the mapping which corresponds to
the lowest energy consumption.

C. 2D dynamic programming algorithm

This heuristic, called DPA2D, starts by mapping the initial
SPG onto an xmax × ymax grid, following the labels of the
nodes (see Section III-A). Then, this grid is mapped onto
the CMP, thanks to a double nested dynamic programming
algorithm.

First, we perform a dynamic programming algorithm to
cut the grid into a set of columns, which are to be mapped
onto a column of cores. Let E(m, v,D) be the optimal
energy consumption to compute the first m levels of the
SPG (i.e., all stages Si with xi ≤ m), using v columns of
cores, regardless of the outgoing communications. D is then
the corresponding distribution of outgoing communications,
i.e., a list of triplets (y, b, i), where y is the row from
which communication is outgoing (i.e., the communication
is initiated by core Cy,v), b is the amount of data, and Si is
the destination stage. We enforce these communications to
go through Cy,v+1, and then the communication will be
redistributed to the destination core through vertical links.
The solution is E(xmax, q,D), and the recurrence is written
as:

E(m, v, D) = min
m′<m

„
E(m′, v − 1, D′) + Ecomm(D′)

+Ecol(m′ + 1, m, D′, D)

«
,

with the initialization E(m, 1, D) = Ecol(1,m, ∅, D).
D′ is the distribution of outgoing communications cor-

responding to the m′ which leads to the optimal energy
consumption, i.e., obtained with E(m′, v − 1, D′).
Ecomm(D′) is the energy consumption induced by com-

munications from column v− 1 to column v (on horizontal
links), given the distribution D′ of outgoing communications
of column v + 1. If the bandwidth is exceeded on one
of these horizontal links (i.e., ∃1 ≤ y ≤ p such that∑

(y,b,i)∈D′ b > BW ), we set Ecomm(D′) = +∞.
Ecol(m1,m2, D

′, D) is the optimal energy consumption
of the column of the CMP which is processing stages Si
with m1 ≤ xi ≤ m2: it accounts both for computations,
and for vertical communications in the column, given the
distribution of outgoing communications of the previous
column, D′. The distribution of outgoing communications
of this column is then D. Note that in the recurrence, D is
an output of Ecol(m′ + 1,m,D′, D), while D′ is an output
of E(m′, v − 1, D′). The values of Ecol (and therefore,
distribution D) are computed thanks to another dynamic
programming algorithm: we compute Ecol

(m1,m2,D′,D)(g, u),
which corresponds to the mapping of stages Si, with m1 ≤
xi ≤ m2 and yi ≤ g, onto the u first cores of a column
of the CMP. As before, D′ is an input, it corresponds to

the distribution of outgoing communications arriving into
the current column, while D is the distribution of outgoing
communications of the current column for the solution
which minimizes the energy consumption. Then we have
Ecol(m1,m2, D

′, D) = Ecol
(m1,m2,D′,D)(ymax, p).

For the distribution within a column, the recurrence
writes:

Ecol
(m1,m2,D′,D)(g, u) = min

g′≤g

0@Ecol
(m1,m2,D′,D)(g

′, u− 1)

+Ecal
(m1,m2,D)(g

′ + 1, g)
+Ever

(m1,m2,D′)(g
′ + 1, g, u− 1)

1A,

with the initialization Ecol
(m1,m2,D′,D)(0, u) = 0, and no

outgoing communications from row 1 to row u, except the
communications from D′ that must be forwarded to the next
column.
Ever
(m1,m2,D′)(g

′ + 1, g, u − 1) is the energy consumption
of the vertical communications between cores u − 1 and u
in the column. These communications can either come from
two dependent stages of the column, or be forwarded from
the previous column (D′). If the bandwidth of the link is
exceeded, we set the value to +∞.

Finally, Ecal
(m1,m2,D)(g

′ + 1, g) is the optimal energy con-
sumption of a core which is computing all stages Si such
that m1 ≤ xi ≤ m2, and g′ + 1 ≤ yi ≤ g. If the period
cannot be respected, or if the corresponding partition does
not respect the DAG-partition constraint, the value is set
to +∞. Moreover, this function is adding to distribution D
the communications from a stage Si to another stage Sj ,
with xj > m2. These communications will occur on row u.

Note that in the recursive computation of Ecol, we can
have g′ = g, which means that no stage is assigned to
core Cu,v . This may happen if there are not enough stages
in the column, or if this would save communications.

D. 1D heuristics

The two last heuristics configure the CMP as a uni-
directional uni-line CMP with r = p×q cores, by embedding
it into the bi-directional platform as a snake:

C1,1 → C1,2 → · · · → C1,q

↓
C2,1 ← · · · ← C2,q−1 ← C2,q

↓
C3,1 → C3,2 → . . .

The DPA1D heuristic builds upon the theoretical results
of Section IV, and computes the optimal solution of the
dynamic programming algorithm of Theorem 1 with r =
p× q cores. The mapping is then done along the snake; no
other communication link is used. Note that if the SPG is
a linear chain, even if there are communication costs, then
this heuristic is optimal, since any other solution could not
exploit the communication links discarded with the snake
structure. However, DPA1D may make wrong decisions
when communications are intensive, since it is restricted to



a subset of communication links. Moreover, its complexity
of O(p× q×n×nymax) makes it intractable for SPGs with
large ymax.

Finally, the DPA2D1D heuristic computes the solution
with the DPA2D heuristic (Section V-C) on a 1×r CMP, and
then do the mapping along the snake, similarly to DPA1D.
The goal of this heuristic is to obtain efficient solutions when
communications are not too intensive, and when the optimal
DPA1D cannot find a solution in reasonable time.

VI. SIMULATION RESULTS

This section reports simulation results assessing the per-
formance of the various heuristics. As for the applications,
we randomly generate series-parallel graphs of various el-
evation and different computation-to-communication ratios.
We also experimented with a real set of applications ex-
tracted from the StreamIt suite [4], but due to lack of
space we mainly present results for the randomly generated
graphs, because they allow us to better explore the parameter
space. As for the target platform, we use CMP grids, whose
hardware characteristics are representative of state-of-the-
art devices. The source code for all simulations is publicly
available at graal.ens-lyon.fr/~prenaud/sp-cmp/.

Streaming applications. We randomly build SPG appli-
cations (by applying recursively series and parallel compo-
sitions of SPG applications), and we extract their size n
and their elevation ymax, together with their computation-
to-communication ratio (CCR), defined as the sum

∑n
i=1 wi

of all computations over the sum
∑
Li,j∈E δi,j of all commu-

nications. We generate 50 SPGs of elevation y, for 1 ≤ y ≤
20, and their size is such that 40 ≤ n ≤ 60. The CCR ratio is
set either to 10 (compute-intensive applications), 1 (balanced
applications) or 0.1 (communication-intensive applications).

CMP configuration. For processor speeds and power
consumption, we use the model of the Intel Xscale, fol-
lowing [28], [29]. There are five speeds for each core:
su,v = (0.15, 0.4, 0.6, 0.8, 1) GHz, with power consump-
tion P

(comp)
su,v = (80, 170, 400, 900, 1600) mW . We assume

that the power consumption of the processor when it is idle
is P (comp)

leak = 80mW . We use 16-byte wide communication
links [30], whose bandwidths are BW = 16× 1.2 Gbytes,
which is reasonable according to [30]. Note that from
the communication prospective, decreasing CCR has the
same effect on the results as decreasing the width of the
communication link below 16 bytes. The link energy is
assumed to be between 1 and 10 picojoule per bit [31]; we
fix E(bit) = 6pJ . Finally, we use P (comm)

leak = 0 without loss
of generality (because for all heuristics the same quantity
P

(comm)
leak × T will be added to the total energy).

Period bound T . We need to find a meaningful value of T
for each workflow. Indeed, if T is too large, all heuristics
will map all stages onto a single processor running at the
slowest speed, while if T is too small, all heuristics will fail.

We choose T as follows: for each workflow, we start with
T = 1s. With such a period, we observe that at least one
heuristic succeeds. Then we iteratively divide the period by a
factor of 10 and run all heuristics under this new value until
all heuristics fail. We retain the period as the penultimate
value, which is the last one before total failure. Note that
this value depends on the workflow. It is chosen to give
some tightness to the mapping problem: at least one heuristic
succeeds to find a mapping that matches the bound T , but
none does for T/10.

Results. In Figure 2, we plot the energy computed by
the five heuristics for each application, given a CMP of size
4× 4. On the horizontal axis, we represent the elevation of
the SPG. For each value of the elevation, we average the
results obtained on the randomly generated applications. On
the vertical axis, we plot the inverse of the energy found by
each heuristic, normalized to the minimum value obtained
over all heuristics (so that the best heuristic returns 1, and
the other ones return smaller values).

When computations are predominant, i.e., when the CCR
is uniformly equal to 10, we observe that the two 1D heuris-
tics always return good results. For small elevations, DPA1D
is the best, but it often fails as soon as the elevation is greater
than 4, thus leading to poor results. DPA2D1D returns very
good results whatever the elevation of the graph. The 2D
heuristic DPA2D is the best for elevations greater than 6,
but it often fails on graphs with small elevation, because
it wastes a lot of cores. For instance, if the application is
exactly a pipeline (elevation 1), DPA2D can only enroll 4
cores over the 16 that are available. This fact holds true
irrespective of the CCR. Greedy and Random are not as
good, but Greedy always outperforms Random.

When communications and computations are more bal-
anced (CCR of 1), similar results can be observed, but
DPA2D1D is a bit further from the best solution, since
it cannot utilize all the communication links. Finally, for
communication-intensive applications (CCR of 0.1), Ran-
dom gets much worse than the other heuristics: its energy
can be up to 10 times worse than the best one. Also, the 1D
heuristics do not perform well, except for small elevation
graphs, because of their restriction in the communication
pattern. In a general manner, we see that DPA2D is the best
heuristic when the application graph has a high elevation.

Random and Greedy are running in average in 1 ms,
DPA2D and DPA2D1D in 50 ms and DPA1D in 10 s.

Finally, in Table I, we report the number of failures for
each heuristic. With a large CCR (10 or 1), DPA2D1D
almost always succeeds to find a solution, which are in turn
pretty good (see Figure 2). Greedy is always reasonably
robust, whatever the CCR, and is followed closely by
Random. DPA2D fails a bit more frequently because it
does not often succeed with graphs of small elevation, as
explained earlier. Finally, DPA1D succeeds only for graphs
of small elevation, which leads to a very high failure rate.



Random Greedy
DPA2D DPA1D DPA2D1D

CCR = 10 (compute-intensive)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

1/
E

elevation

CCR = 1 (balanced)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

1/
E

elevation

CCR = 0.1 (communication-intensive)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

1/
E

elevation

Figure 2. Normalized energy for a 4× 4 CMP grid.

Table I
NUMBER OF FAILURES (OUT OF 1000 INSTANCES PER CCR VALUE).

CCR Random Greedy DPA2D DPA1D DPA2D1D
10 29 28 85 758 1
1 29 28 78 760 3

0.1 300 287 348 670 458

We have performed further simulations on larger appli-
cations (with sizes up to 200), different CMP grid sizes
(6 × 6), and also on a real set of applications extracted
from the StreamIt suite [4]. The detailed results can be
found in the companion research report [15], but overall
the conclusions remain the same. Greedy seems to be a
general-purpose heuristic that succeeds on most graphs and
is always superior to Random. On the contrary, the three
remaining heuristics are “specialized”: for SPGs of small
elevation, DPA1D is the best heuristic (it is even optimal
with no communications). When the elevation gets higher,
one should resort to DPA2D1D, which is able to find an
efficient 1D solution while DPA1D fails, at least when com-
munications are not too intensive. When communications
increase, DPA2D becomes the most efficient heuristic, since
it judiciously handles communications in the 2D grid.

VII. CONCLUSION

This paper contributes to the efficient utilization of mul-
ticores by considering an important class of streaming ap-
plications that can be modeled by a series-parallel graph,
and studying the problem of mapping these applications to
2-dimensional tiled CMP architectures. The objective of the
mapping is to minimize the energy consumption while main-
taining a given level of performance, reflected by the rate of
processing the data streams. Both processing/communication
capabilities and power consumption are considered during
the mapping, but it is assumed that only the processing
power can be managed through dynamic voltage scaling. We
will consider systems in which the communication power
can also be managed in future work.

From a theoretical angle, we showed that most of the
bi-criteria mapping problems were NP-complete, with the
notable exception of uni-directional uni-line CMPs, for
which an elaborated dynamic programming algorithm re-
turns the optimal solution. The latter result holds true only
for bounded-elevation SPGs, and the problem becomes NP-
complete otherwise, which provides yet another evidence of
the interest to restrict to particular graph structures rather
than to deal with arbitrary DAGs. We strongly believe that
bounded-elevation SPGs represent a very interesting trade-
off, as they combine a large practical significance while
being amenable to rigorous analysis. From a practical angle,
the simulations conducted confirmed the efficiency of the
main design principles underlying the various heuristics.
While Greedy is the most robust approach, it is always
superseded by one of the three specialized algorithms, either
DPA1D or DPA2D1D for long pipeline-like graphs, or
DPA2D for fat graphs of large elevation.



Finally, our future research will investigate general map-
pings, and assess the difference with DAG-partition map-
pings, both from a theoretical and a practical perspective.
We also hope to succeed in simplifying the integer linear
program for some problem instances, thereby providing an
absolute measure of the quality of the various heuristics.
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