
SpeQuloS: A QoS Service for BoT Applications Using Best
Effort Distributed Computing Infrastructures

Simon Delamare
INRIA/LIP, Univ. Lyon, France

Simon.Delamare@inria.fr

Gilles Fedak
INRIA/LIP, Univ. Lyon, France

Gilles.Fedak@inria.fr

Derrick Kondo
INRIA, Univ. Grenoble, France

Derrick.Kondo@inria.fr

Oleg Lodygensky
IN2P3, Univ. Paris XI, France
Oleg.Lodygensky@lal.in2p3.fr

ABSTRACT
Exploitation of Best Effort Distributed Computing Infras-
tructures (BE-DCIs) allow operators to maximize the uti-
lization of the infrastructures, and users to access the un-
used resources at relatively low cost. Because providers do
not guarantee that the computing resources remain available
to the user during the entire execution of their applications,
they offer a diminished Quality of Service (QoS) compared to
traditional infrastructures. Profiling the execution of Bag-
of-Tasks (BoT) applications on several kinds of BE-DCIs
demonstrates that their task completion rate drops near the
end of the execution.
In this paper, we present the SpeQuloS service which en-

hances the QoS of BoT applications executed on BE-DCIs
by reducing the execution time, improving its stability, and
reporting to users a predicted completion time. SpeQuloS
monitors the execution of the BoT on the BE-DCIs, and
dynamically supplies fast and reliable Cloud resources when
the critical part of the BoT is executed. We present the de-
sign and development of the framework and several strate-
gies to decide when and how Cloud resources should be pro-
visioned. Performance evaluation using simulations shows
that SpeQuloS fulfill its objectives. It speeds-up the execu-
tion of BoTs, in the best cases by a factor greater than 2,
while offloading less than 2.5% of the workload to the Cloud.
We report on preliminary results after a complex deployment
as part of the European Desktop Grid Infrastructure.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

Keywords
Distributed Computing Infrastructures, QoS, Grids, Cloud

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’12, June 18–22, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-0805-2/12/06 ...$10.00.

1. INTRODUCTION
There is a growing demand for computing power from

scientific communities to run large applications and pro-
cess huge volumes of scientific data. Meanwhile, Distributed
Computing Infrastructures (DCIs) for scientific computing
continue to diversify. Users can not only select their pre-
ferred architectures amongst Clusters, Grids, Clouds, Desk-
top Grids and more, based on parameters such as perfor-
mance, reliability, cost or quality of service, but can also
combine transparently several of these infrastructures to-
gether. The quest for more computing power also depends
on the emergence of infrastructures that would both offer
lower operating costs and larger computing power.

Amongst the existing DCIs, Best Effort DCIs are able to
meet these two criteria. We call Best Effort DCIs (BE-DCIs)
an infrastructure or a particular usage of an existing infras-
tructure that provides unused computing resources without
any guarantees that the computing resources remain avail-
able to the user during the complete application execution.
Desktop Grids (Condor[25], OurGrid[6], XtremWeb[15]) and
Volunteer Computing Systems (BOINC[4]), which rely on
idle desktop PCs are typical examples of Best Effort DCIs.
But, one can think of other examples: Grid resource man-
agers such as OAR[11] manage a best effort queue to harvest
idle nodes of the cluster. Tasks submitted in the best effort
queue have the lowest priority; at any moment, a regular
task can steal the node and abort the on-going best effort
task. In Cloud computing, Amazon has recently introduced
EC2 Spot instances[2] where users can bid for unused Ama-
zon EC2 instances. If the market Spot price goes under the
user’s bid, a user gains access to available instances. Con-
versely when the Spot price exceeds his bid, the instance is
terminated without notice. Similar features exist in other
Cloud services[29].

Although BE-DCIs are prone to node failures and host
churn, they are still very attractive because of the vast com-
puting power provided at an unmatched low cost. Unsur-
prisingly, several projects such as EDGeS [36] or SuperLink
[16] propose technologies to make BE-DCIs, in particular
Desktop Grids, available to Grid users as regular computing
element such as clusters.

However, because BE-DCIs trade reliability against lower
prices, they offer poor Quality of Service (QoS) with respect
to traditional DCIs. This study presents how the execution
of BoTs, which are the most common source of parallelism
in the Grid [30], is affected by the unreliable nature of BE-
DCIs: the main source of QoS degradation in BE-DCIs is

due to the tail effect in BoT execution. That is, the last
fraction of the BoT causes a drop in the task completion
throughput.
To enhance QoS of BoT execution in BE-DCIs, we pro-

pose a complete service called SpeQuloS which abbreviates
”Speculative execution and Quality of Service”. SpeQuloS
improves the QoS in three ways: i) by reducing time to
complete BoT execution, ii) by improving BoT execution
stability and iii) by informing user about a statistical pre-
diction of BoT completion.
To achieve this objective, SpeQuloS dynamically deploys

fast and trustable workers from Clouds that are available to
support the BE-DCIs. The issue of outliers tasks slowing
down the executions has been addressed by the Mantri sys-
tem for MapReduce applications [3]. We propose a different
approach which does not require knowledge of the resources
that make up the infrastructure. By monitoring the BoT ex-
ecution progress, very few information are needed to detect
the tail effect. This allows to deliver SpeQuloS as an on-
line multi-BoT, multi-users service and able to serve several
BE-DCI simultaneously. In this paper, we describe strate-
gies based on BoT completion thresholds and task execution
variance for deciding when to assign tasks to Cloud workers.
We also investigate two approaches for Cloud resource pro-
visioning and different methods for workload assignment on
Cloud resources. We evaluate these strategies using trace-
driven simulations based from actual Grid, Cloud, and Desk-
top Grid infrastructures. Our simulator models two middle-
ware which represents two different approaches for handling
hosts volatility. One middleware, called XtremWeb-HEP
(XWHEP), uses host failure detection based on heartbeats.
The second middleware, called BOINC, uses task deadlines
and task replication.
Our simulation results show that SpeQuloS correctly ad-

dresses the tail effect: In half of the cases the tail has totally
disappeared, in the other half it has been significantly re-
duced. As a consequence, both for XtremWeb-HEP and
BOINC the execution of BoT applications is greatly im-
proved on every BE-DCIs investigated and for various kind
of BoT workloads. Nevertheless, the strategies implemented
are shown to make a minimal use of the Cloud resources: In
the best cases where a speed-up greater than 2 is achieved,
we observe that less 2.5% of the BoT has been offloaded to
the Cloud. Finally, our evaluation shows that users experi-
ence can be greatly improved as success rate on the predic-
tion of the BoT completion time is 90% on average.
We also describe the implementation and deployment of

SpeQuloS in the scope of the European Desktop Grid Initia-
tive FP7 project[13] (EDGI). Dealing with the deployment
of a such a complex infrastructure had strong a consequence
on the design of the service. Its architecture is modular
and distributed through several independent components.
It supports several Desktop Grid middleware (XtremWeb-
HEP, BOINC) and Cloud technologies (Amazon EC2, Open-
Nebula, Nimbus, Rackspace) In this paper, we present the
development of the prototype and some preliminary results
after being deployed on part of the production European
Desktop Grid Infrastructure (EDGI).
The rest of the paper is organized as follow. In Section

2, we introduce our analysis of running BoT applications
on best effort infrastructures. The SpeQuloS framework is
presented in Section 3. Section 4 presents performance eval-
uation. Section 5 reports on real-world deployment. Related

works are presented in Section 6 and finally we conclude in
Section 7.

2. BEST EFFORT DISTRIBUTED COMPUT-
ING INFRASTRUCTURES

In this section, we define Best Effort Distributed Com-
puting Infrastructures (BE-DCIs). The key principle of BE-
DCIs is that participating nodes can leave the computation
at any moment. We investigate how this characteristic im-
pacts on BoT execution performance.

2.1 BE-DCI Types
The different types of BE-DCIs that we study are as fol-

lows:
Desktop Grids (DGs) are grids composed of regular

desktop computers typically used for computation when no
user activity is detected. A node becomes unavailable when
the user resumes his activity or when the computer is turned
off. DGs can be supported by volunteer computing projects,
such as SETI@home, where individuals offer their comput-
ing resources. DGs can also be internal to an institution
which uses its collection of desktop computers to build a
computational Grid.

Best Effort Grids are regular Grids used in Best Ef-
fort mode. Grid resource management systems, such as
OAR[11], allow submission in a Best Effort queue. Tasks
submitted to that queue have a lower priority and can be
preempted by any other task. Therefore, if available grid re-
sources are exhausted when a regular task is submitted, the
resource manager kills as many best effort tasks as needed
to allow its execution.

Cloud Spot Instances are variable-priced instances pro-
vided by Amazon EC2 Cloud service. Contrary to regular
EC2 instances, which have a fixed price per hour of utiliza-
tion, Spot instance prices vary according to a market price.
An user can bid for a Spot instance by declaring how much
he is willing to pay for one hour of utilization. If the market
price goes lower than the user’s bid, the instance is started.
The user will only be charged at the price of the market,
not at its bid price. If the market price goes higher than
the bid, the instance is stopped. The Nimbus Cloud system
has recently added support for Cloud Spot instances, as well
as “Backfill” instances[29], which are low priority instances
started when host resources are unused.

2.2 BoT Execution on BE-DCIs
Bag of Tasks (BoT) are set of tasks that can be executed

individually. Although there are many solutions for BoT ex-
ecution on cross-infrastructure deployments, we assume that
a Desktop Grid middleware is used to schedule tasks on the
computing resources. We adopt the following terminology to
describe the main components of Desktop Grid middleware:
the server which schedules tasks, the user who submits tasks
to the server, and workers which fetch and execute tasks on
the computing resources.

Desktop Grid middleware have several desired features to
manage BE-DCI resources: resilience to node failures, no
reconfiguration when new nodes are added, task replication
or task rescheduling in case of node failures and push/pull
protocols that help with firewall issues. We consider two
well-established Desktop Grid middleware: BOINC which
runs many large popular volunteer computing projects such

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

B
o

T
 c

o
m

p
le

ti
o

n
 r

at
io

Time

Continuation is performed
 at 90% of completion

Ideal Time Actual Completion Time

Tail Duration

Slowdown = (Tail Duration + Ideal Time) / Ideal Time

BoT completion
Tail part of the BoT

Figure 1: Example of BoT execution with noteworthy values

as SETI@Home, and XtremWeb-HEP, which is an evolution
of XtremWeb for the EGI Grid which implements several
security improvements such as handling of Grid certificates.
Condor and OurGrid would have also been excellent can-
didates, but we focus on middleware already deployed in
EDGI infrastructure.
User tasks are submitted to the BOINC or XtremWeb-

HEP server. Then, depending on the BE-DCIs targeted, the
BoT is executed in the following way; on Desktop Grids, a
desktop node runs the worker software. On the Grid , the
worker software is submitted as a PilotJob, i.e. when the
Grid task is executed, it starts the worker which connects to
the DG server and can start executing tasks from this server.
When using Cloud resources, we follow a similar procedure
by creating an instance which contains the worker software
and runs it at start-up. Several projects [35, 16, 27] follow
a similar approach, and find it to be efficient and scalable.
We captured several BoT executions, using the experi-

mental environment described in Section 4.1. BoT execution
profiles denote a slowdown in BoT completion rate during
the last part of its execution. Indeed, examination of indi-
vidual BoT execution traces showed that most of time, BoTs
execution progression follows a pattern illustrated by Figure
1: The last fraction of the BoT takes a large part of the total
execution time. We called this phenomenon the tail effect.
To characterize this tail effect, we investigate the differ-

ence between the BoT actual completion time and an ideal
completion time. The ideal completion time is the BoT
completion time that would be achieved if the completion
rate, calculated at 90% of the BoT completion, was con-

stant. Therefore, the ideal completion time is tc(0.9)
0.9

, where
tc(0.9) is the elapsed time when 90% of the BoT is com-
pleted. Figure 1 illustrates this definition. The ideal com-
pletion time is computed at 90% of completion because we
observed that except during start-up, the BoT completion
rate remains approximately constant up to this stage of ex-
ecution. Therefore, the ideal completion would have been
equivalent if it had been calculated at 50% or 75% of BoT
completion.
Intuitively, the ideal completion time could be obtained

in an infrastructure which would offer constant computing
capabilities.
We define the tail slowdown metric as the ratio between

ideal completion time and actual BoT completion time. The
tail slowdown reflects the BoT completion time increase fac-
tor resulting from the tail effect. Figure 2 presents the cu-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

F
ra

ct
io

n
 o

f
ex

ec
u

ti
o

n
 w

h
er

e
ta

il
 s

lo
w

d
o

w
n

 <
 S

Tail Slowdown S (Completion time observed divided by ideal completion time)

BOINC

XWHEP

Figure 2: Profiling execution of BoTs in BE-DCIs: Tail
Slowdown is the BoT completion time divided by the ideal
completion time (i.e. determined by assuming a constant
completion rate). The cumulative distribution function of
observed slowdowns is represented.

Table 1: Average fraction of Bag of Tasks in the tail, i.e.
the ratio between the number of tasks in the tail versus the
total number of tasks in the BoT and average percentage of
execution time in tail, i.e. the percentage of BoT execution
time (makespan) spent in the tail.

Avg. % of BoT in tail Avg. % of time in tail
BE-DCI Trace BOINC XWHEP BOINC XWHEP
Desktop Grids 4.65 5.11 51.8 45.2
Best Effort Grids 3.74 6.40 27.4 16.5
Spot Instances 2.94 5.19 22.7 21.6

mulative distribution functions of tail slowdowns observed
during BoT executions in various BE-DCI environments.

One can observe that the distribution is largely skewed
and in some cases, the slowdown seriously impacts BoT
completion time. About one half of BoT executions are
not extremely affected by the tail effect. In those cases,
the tail slowdown does not exceed 1.33, meaning that tail
effect slows the execution by no more than 33%. Other
cases are less favorable; the tail effect doubles the comple-
tion time from 25% of executions with XWHEP middleware
to 33% with BOINC. In the worst 5% of execution, the tail
slowdown is to 400% with XWHEP and 1000% for BOINC.
These results are mostly due to host volatility and the fact
that Desktop Grid middleware have to wait for failure de-
tection before reassigning tasks.

The tail part of a BoT execution is the set of tasks ex-
ecuted during the tail effect, i.e. later than the ideal com-
pletion time. These tasks create the tail effect by taking
unusually long to complete. Table 1 shows characteristics of
BoT tails, according to middleware and types of BE-DCIs
considered.

In the table, we see that a few percent of BoTs’ tasks be-
long to the tail, whereas an significant part of the execution
takes place during the tail. Therefore, the completion time
of a small fraction of a BoT is many times longer than com-
pletion time of most of the BoT. This also explains why the
ideal time remains approximately the same when it is cal-
culated up to 90% of BoT completion; the tail effect never
appears before that stage.

Results of this section show that the tail effect can affect
all kind of BE-DCIs, whatever is its volatility, or amount
of resources, for both BOINC and XW-HEP middleware.

User CreditSystem Oracle Scheduler Information BE-DCI Cloud worker

submit(BoT Id)

grabInfo()

BoTsCompletion

Monitor LoopMonitor Loop

ComputegetPrediction(BoT Id)

Process

PredictedCompletionT ime

BoT Execution LoopBoT Execution Loop

orderQoS(BoT Id,Credits)

getQoSOrders()

QoSOrdersList[BoT Id]

shouldUseCloud(BoT Id)

CloudworkersToStart startCloudWorker(Cloud,BE-DCI,BoT Id)

Computebill(BoT Id,Credits)

stopCloudWorker(Cloud,BoT Id)

Scheduler LoopScheduler Loop

pay(BoT Id)

Results

Figure 3: Sequence diagram of SpeQuloS interactions in a
typical use-case scenario

It may strongly slow down the completion time of BoTs
executed on BE-DCIs and cause high execution variance,
precluding any performance prediction.

3. SPEQULOS
In this section, we are describing SpeQuloS service and

implementation, which aims at providing QoS to BoT exe-
cution on BE-DCIs.

3.1 Overview of the SpeQuloS Service
SpeQuloS is a service which provide QoS to users of Best

Effort DCIs managed by Desktop Grids (DG) middleware,
by provisioning stable resources from Cloud services.
To supply resources to a BE-DCI, SpeQuloS uses Infras-

tructure as a Service (IaaS) Cloud to instantiate a virtual
instance, called a Cloud worker. To be able to process tasks
from the BE-DCI, a Cloud worker typically runs the DG
middleware worker software that is used in the BE-DCI.
SpeQuloS implements various strategies to ensure efficient

usage of Cloud resources and provides QoS features to BE-
DCI users. As access to Cloud resources is costly, SpeQuloS
provides a framework to regulate access to those resources
among users and account for their utilization.
SpeQuloS is composed of several modules as shown in Fig-

ure 3. The Information module gathers and stores informa-
tion from BE-DCIs (see Section 3.2). The Credit System
module is in charge of the billing and accounting of Cloud-
related operations (Section 3.3). The Oracle module helps
SpeQuloS determine how to efficiently deploy the Cloud re-
sources, and gives QoS information to users (Section 3.4 and
3.5). The Scheduler module manages the BoT and the Cloud
workers during its execution (Section 3.6).
Figure 3 presents a simplified sequence diagram of a typi-

cal usage of SpeQuloS and the different interactions between
the components of the system.
The progression of the scenario is represented vertically,

and the various function calls between SpeQuloS modules
are represented by arrows. A description of the various steps
of this scenario is as follows:

• The first step of the scenario is a user submitting a
BoT tagged with the BoT Id to a BE-DCI. The BoT
execution is then monitored by the Information mod-
ule.

• At any moment, the user can request the Oracle to pre-
dict the BoT completion time to estimate QoS benefits
of using Cloud resources. Then, the user may order to
the Credit System QoS support for his BoT by allocat-
ing an amount of credits. The Credit System verifies
that there are enough credits on the user’s account to
allow the order, and then it provisions credits to the
BoT.

• The Scheduler periodically asks the Credit System if
there are credits allocated for some BoTs. If credits are
provisioned for a BoT, it asks the Oracle if it should
start Cloud workers to accelerate the BoT execution.

• Cloud workers are started by the Scheduler to take part
in the BoT execution. The Scheduler has to ensure
that appropriate BE-DCI tasks are assigned to Cloud
workers.

• At each fixed period of time, the Cloud resource us-
age must be billed. For each Cloud worker started,
the Scheduler reports to the Credit System the corre-
sponding credits used. If all the credits allocated to
the BoT have been spent, or if the BoT execution is
completed, Cloud workers are stopped.

• The Scheduler finally asks to the Credit System to pay
for the Cloud resources usage. The Credit System
closes the order relative to the BoT. If the BoT ex-
ecution was completed before all the credits have been
spent, the Credit System transfers back the remaining
credits to the user’s account.

3.2 Monitoring BoT Executions
SpeQuloS collects information on BoT executions which

are relevant to implement QoS strategies with two objec-
tives: 1) provide real-time information on BoT execution
and BE-DCI computational activities and 2) archive BoT
execution traces from which a statistical model can be ex-
tracted in order to compute a prediction of BoT execution
time. To do so, the Information module stores in a database
the BoT completion history as a time series of the number
of completed tasks, the number of tasks assigned to work-
ers and the number of tasks waiting in the scheduler queue.
The amount of information transmitted per BoT is less than
few hundreds bytes per minute, which allows the system to
handle many BoTs and infrastructures simultaneously.

One key point is to hide infrastructure idiosyncrasies, i.e.,
different Desktop Grid middleware that have specific ways
of managing queues should appear in an unified format. Be-
cause we monitor the BoT execution progress, a single QoS
mechanism can be applied to a variety of different infras-
tructures.

3.3 Cloud Usage Accounting and Arbitration
Because Cloud resources are costly and shared among

users, a mechanism is required to account for Cloud resource
usage and to enable Cloud usage arbitration. The Credit
System module provides a simple credit system whose inter-
face is similar to banking. It allows depositing, billing and
paying via virtual credits.

BE-DCI users spend their credits to support a BoT execu-
tion. Credits denote an amount of Cloud worker usage. At
the moment, the Credit Systems uses a fixed exchange rate;
1 CPU.hour of Cloud worker usage costs 15 credits. At the
end of the BoT execution, the amount of credits correspond-
ing to the actual usage of Cloud resources is withdrawn from
the user’s credit account.
SpeQuloS manages users’ accounts. A deposit policy is

used by administrators for the provisioning of these accounts.
Although simple, the system is flexible enough to give ad-
ministrators control over Cloud usage. For instance, a sim-
ple policy that limits SpeQuloS usage of a Cloud to 200
nodes per day would be to write a deposit function, run
once every 24 hours, which deposits d = max(6000, 6000 −
user credit spent) credits into an account. Furthermore,
the mechanism allows one to easily implement more com-
plex policies, such as the “network of favors”[5], which would
allow cooperation among multiple BE-DCIs and multiple
Clouds providers.

3.4 Providing QoS Estimation to BE-DCI users
Providing QoS features to BE-DCI users requires one to

appropriately inform these users on the QoS level they can
expect. These objectives are the responsibility of the Oracle
module and are allowed by a careful exploitation of history
of BoT execution traces collected by the Information module
as well as real-time information about the progress of BoT
execution. With this information, the Oracle module is able
to compute a predicted completion time for the BoT. This
prediction helps users to decide if it worth spending credits
for BoT QoS.
The following prediction methods are currently used in

SpeQuloS: when a user asks for a prediction, SpeQuloS re-
trieves the current user BoT completion ratio (r) and the
elapsed time since BoT submission (tc(r)), using the BoTs
execution history stored in the Information module. It com-

putes the predicted completion time tp as: tp = α. tc(r)
r

.
SpeQuloS then returns this predicted time and its associ-
ated statistical uncertainty.
The α factor allows one to adjust the prediction based

on the history of previous BoT executions in a given BE-
DCI. At initialization, α factor is set to 1. Then, after some
BoTs executions, the value of α is adjusted to minimize the
average difference between the predicted time and the com-
pletion times actually observed. The statistical uncertainty
returned to the user is the success rate (with a ± 20% toler-
ance) of predictions performed on previous BoT executions,
observed from the historical data.

3.5 Cloud Resources Provisioning Strategies
We design and evaluate several different strategies for the

Oracle module to decide when and how many Cloud workers
should be started. We introduce three strategies to decide
when to launch Cloud workers:

• Completion Threshold (9C): Cloud workers are started
as soon as the number of completed tasks reaches 90%
of the total BoT size.

• Assignment Threshold (9A): Cloud workers are started
as soon as the number of tasks assigned to workers
reaches 90% of total BoT size.

• Execution Variance (V): Let tc(x) be the time at which
x percent of BoT tasks are completed and ta(x) be

the time at which x percent of BoT tasks were as-
signed to workers. We call the execution variance
var(x) = tc(x)− ta(x). Intuitively, the sudden change
in the execution variance indicates that the system in
no longer in steady state. Cloud workers are launched
when the execution variance doubles compared to the
maximum one measured during the first half of the
BoT execution. More precisely, if c is the fraction of
the BoT completed, Cloud workers are started as soon
as var(c) ≥ 2.maxx∈[0,50%](var(x)).

Assuming that users spend an amount of credits corre-
sponding to S cpu.hours of Cloud usage, we propose two
approaches to decide how many Cloud workers to start:

• Greedy (G): S workers are immediately started. Cloud
workers that do not have tasks assigned stop immedi-
ately to release the credits. Doing so, other workers
which have obtained tasks can complete their task.

• Conservative (C): Let tc(x) be the elapsed time at which

x percent of BoT tasks are completed. Then tc(x)
x

is
the BoT completion rate. At time te, xe and tc(xe) are
known from the SpeQuloS Information module mon-
itoring. We can give an estimation of the remaining
time tr by assuming a constant completion rate:

tr = tc(1)− te = tc(1)− tc(xe) =
tc(xt)

xt
− tc(xt)

Then, max(S
tr
, S) Cloud workers are launched, ensur-

ing that there will be enough credits for them to run
during the estimated time needed for the BoT to be
completed.

We present three methods in the way of using these Cloud
resources :

• Flat (F): Cloud workers are not differentiated from any
regular workers by the DG server. Thus, in this strat-
egy, all workers compete to get the remaining tasks of
the tail.

• Reschedule (R): In contrast with Flat, the DG server
differentiates Cloud workers from the regular workers.
Cloud workers are served first with pending tasks if
there are some, and if not with a duplicate of the tasks
which are being executed on regular workers. This
strategy ensures that tasks executed on regular work-
ers and which may cause the tail are scheduled in the
Cloud. However, the strategy is optimistic in the sense
that it allows a regular worker which has computed a
result to send the result and finish the task.

• Cloud Duplication (D): Cloud workers do not connect
to DG server, but connect to a dedicated server hosted
in the Cloud. All uncompleted tasks (even those under
execution) are duplicated from the DG server to this
Cloud server and are processed by Cloud workers. This
strategy allows one to execute all the tasks of the tail
on the stable Cloud resources, while keeping Cloud
workers separated from regular Cloud workers.

Note that these strategies have different implementation
complexities. Flat is the simplest one which does not need
modification of the DG scheduler. Reschedule requires one

to modify the DG scheduler in order to differentiate Cloud
workers from regular one, which is not always possible in a
production infrastructure where system administrators are
reluctant to patch their DG servers. Cloud Duplication al-
lows one to keep the DG scheduler unchanged but requires
that SpeQuloS implement the task duplication from DG to
Cloud server and the merging of results coming from Cloud
workers and the regular BE-DCI.

3.6 Starting Workers on the Cloud
The Scheduler module manages the Cloud resources pro-

visioned to support execution of the BoT for which users
have required QoS. If credits have been allocated, and the
Oracle decides that Cloud workers are needed, the Scheduler
starts Cloud workers to support a BoT execution. As soon as
Cloud resources are not needed anymore, or allocated credits
are exhausted, the Cloud workers are shutdown remotely.
Technically, this feature is achieved by building Cloud in-

stances which embed the DG worker middleware. We use
the libcloud library, which allows unifying access to various
IaaS Cloud technologies in a single API. Once the Cloud
worker is executed on a Cloud resource, the Scheduler con-
nects through SSH to the instance and configures the worker
to connect to the BE-DCI for processing tasks from the
appropriate BoT. Indeed, it is important to ensure that a
Cloud worker on which a user is spending credits is not com-
puting tasks belonging to other users.
Algorithms 1 and 2 present the various operations per-

formed by the Scheduler module to monitor BoT execution
and to manage Cloud workers.

Algorithm 1 Monitoring BoT

for all B in BoTs do
if Oracle.shouldUseCloud(B) then
if CreditSystem.hasCredits(B) then
for all CW in Oracle.cloudWorkersToStart(B) do
CW.start()
configure(B.getDCI(),CW)

end for
end if

end if
end for

Algorithm 2 Monitoring Cloud workers

for all CW in startedCloudWorkers do
B ← CW.getSupportedBoT()
if (Info.isCompleted(B)) or (not CreditSys-
tem.hasCredits(B)) then
CW.stop()

else
CreditSystem.bill(B,CW)

end if
end for

3.7 Implementation
SpeQuloS has been developed as a set of independent

modules, using the Python programming language and MySQL
databases. Communication between modules use web ser-
vices, therefore modules can be deployed on different net-
works. Several BE-DCIs and Cloud services can be con-
nected at the same time to a single SpeQuloS server.
The SpeQuloS implementation targets a production level

of quality. Testing and deployment are performed by differ-

ent teams of the EDGI consortium. The SpeQuloS source
code is publicly available1.

Desktop Grids Middleware and Grids Integration
SpeQuloS supports both BOINC and XWHEP middleware
which are used in BE-DCIs. To distinguish QoS-enabled
BoT from others, tasks belonging to these BoT are tagged
by the users using a special field in the middleware task
description (batchid in BOINC and xwgroup in XWHEP).

One issue is to ensure that Cloud workers only compute
tasks belonging to the BoT for which credits has been provi-
sioned. We solve this situation in BOINC by adding a new
policy to the matchmaking mechanism. Note that BOINC
requires that scheduling policies be coded and specified by
compile time, which requires patching the BOINC server.
For XWHEP, developers agreed to include a new configura-
tion option in version 7.4.0 that met our needs.

Another challenge is to enable SpeQuloS support in hy-
brid infrastructures, where regular Grids are used. The 3G-
Bridge[36] developed by SZTAKI is used in the EDGI infras-
tructure to provide Grid and Desktop Grid interoperability.
Tasks submitted to a regular Grid’s computing element con-
nected to the 3G-Bridge may be transparently redirected
to a Desktop Grid. To enable SpeQuloS’s support of BoTs
submitted using the 3G-Bridge, it has been adapted to store
the identifier used by SpeQuloS to recognize a QoS-enabled
BoT.

Cloud Services Support
Thanks to the versatility of the libcloud library, SpeQu-
loS supports the following IaaS Cloud technologies: Ama-
zon EC2 and Eucalyptus (which are two compliant tech-
nologies deployed either on commercial or private Clouds),
Rackspace (which is a commercial Cloud), OpenNebula and
StratusLab (which implement the Open Cloud Computing
Interface specification, delivered through the Open Grid Fo-
rum), and Nimbus (a Cloud system targeting scientists). In
addition, we have developed a new driver for libcloud so that
SpeQuloS can use Grid5000[8] as an IaaS cloud.

4. EVALUATION
In this section we report on the performance evaluation of

SpeQuloS using simulations.
We have developed simulator of BOINC and XWHEP,

which uses node availability traces from real infrastructure
and generates traces of BoT execution. It also optionally
simulates SpeQuloS utilization.

4.1 Simulations Setup

4.1.1 BE-DCIs Availability Traces
There have been many studies around nodes volatility for

BE-DCIs. In particular several data-sets are provided by the
Failure Trace Archive [23]. However, to our knowledge, there
was no availability measurement for Cloud Spot instances or
Grid systems used in best effort mode. As summarized in
Table 2, we collected following traces:

• Desktop Grid: For this study we consider the public
volunteer computing project SETI@Home (seti) ran

1http://graal.ens-lyon.fr/~sdelamar/spequlos/

by BOINC[21], and the private Desktop Grid deploy-
ments at University Notre Dame, ran by Condor[34]
(nd). All these traces are provided by the Failure Trace
Archive[23].

• Best Effort Grid: We consider using best effort queues
of Grid5000[8] (G5K) infrastructure. We generated
traces from the Gantt utilization charts for both Lyon
(g5klyo) and Grenoble (g5kgre) G5K clusters for De-
cember 2010 period. The unused resources reported in
charts are considered as resources available in best ef-
fort. In other words, a node is available in Best Effort
Grid traces when it does not compute regular tasks,
and vice-versa.

• Cloud Spot Instances: Cloud Spot instances such as
Amazon EC2 Spot instances are variable-priced in-
stances. These instances are only started if an user
bid is higher than their current price. Thus, with Spot
instances, the host availability depends both on the
user’s bids and the instance price market variation.

We consider the following usage of Spot instance: a
total renting cost per hour (S) is set by the user to
use several instances. As this cost is constant while
the market price varies, the number of provisioned in-
stances will vary. To implement this scenario, we use
the following strategy: We place a sequence of n bids
at price S

i
, where i ∈ 1..n. n should be chosen high

enough so that S
n
is lower than the lowest possible Spot

Instance price. Hence, we ensure that the maximum
number of Spot Instances are started for total renting
cost of S.

Bids are placed using the persistent feature, which en-
sures that the requests will remain in consideration af-
ter each instance termination. Using price market his-
tory provided by Amazon from January to March 2011,
we have generated the instances availability traces of
the c1.large instance for a renting cost of 10 dollars
(spot10) and 100 dollars (spot100) per hour.

Computing power of BE-DCI nodes depends on its na-
ture. As DG workers use regular desktop computers, their
computing power is much lower than Grid or Cloud ones. In
addition, whereas Grid computing resources are usually ho-
mogeneous, DG and even Cloud resources show heterogene-
ity. Previous works[17, 24] allow us to model nodes power.
Table 2 shows BE-DCIs workers computing power drawn
from that studies: Cloud and Grid nodes are three times
faster than DG nodes average and DG and Cloud computing
power is heterogeneous and follows a normal distribution.

4.1.2 BoT Workloads
BoT applications are a major source of DCIs workload.

We follow the definition of BoT given in [30, 19] where a BoT
is an ordered set of n independent tasks: β = {T1, ..., Tn}.
All tasks in β have the same owner and the same group name
or group identifier. In addition, Desktop Grid systems im-
pose users to register applications in the server, thus we also
have the requirement that tasks refer to the same applica-
tion.
Tasks may not be submitted at the same time. We define

AT (Ti), the arrival time of the task Ti and we haveAT (Ti) <

AT (Tj) id i < j. More, we define ϵ, the maximal time be-
tween two tasks arrivals, thus we have ∀i in(1, n), AT (Ti+1)−
AT (Ti) < ϵ. A typical ϵ value is 60 seconds, as used [30].

BoTs are also defined by their size i.e. the number of
tasks. Each task also has a number nops of instructions to be
processed. In homogeneous BoT, all the tasks have the same
number of instructions. Conversely, in heterogeneous BoTs,
the number of operations per tasks follows a probabilistic
distribution.

The BoT workloads that we selected in our experimen-
tation come from our experience in distributed computing
infrastructures, such as the ones used in the EDGI project.
The BIG workload is representative of BoT observed in pub-
lic volunteer computing projects, and SMALL workload is rep-
resentative of BoT observed in Grids such as Grid5000[18].
The RANDOM workload is statistically generated based on sci-
entific studies conducted by Minh and Al, cited in [30].
Those BoTs vary in terms of size, number of instructions per
task and task arrival times. Table 3 summarizes the BoT
attributes. As shown in the table, SMALL and LARGE BoTs
are homogeneous BoT, whereas RANDOM is heterogeneous.

4.1.3 Simulations parameters
Simulators are configured with DG middleware standard

parameters. For the BOINC simulator, each task is repli-
cated 3 times (target nresult=3), and 2 replicas results are
needed to consider a task completed (min quorum=2). Two
task replicas cannot be executed on the same worker (one res
ult per user per wu=1). After it is assigned to a worker,
the maximum time to receive a replica result before reas-
signing it is set to 1 day (delay bound=86400). For XW
simulator, workers send a keep alive message every minute
(keep alive period=60). When the server does not receive
any keep alive message from a worker for 15 minutes (worker
timeout=900), it reassigns task executed on this worker to
another one.

Pseudorandom number generator used in simulators can
be initialized by a seed value to reproduce exactly the same
simulation executions. Therefore, using the same seed value
allows a fair comparison between a BoT execution where
SpeQuloS is used and the same execution without SpeQuloS.

SpeQuloS users can choose the amount of credits they allo-
cate to support BoT executions. In simulations, the amount
of credits is set to be equivalent, in terms of CPU.hour, to
10% of total BoT workload. Therefore, depending on the
BoT category considered, the number of provisioned credits
varies. The BoT workload is computed as its size multiplied
by tasks’ wall clock time. Task wall clock time is an esti-
mated upper bound for individual task execution time and
is set to 11000 seconds for SMALL BoTs, 180 seconds for BIG
BoTs and 2200 seconds for RANDOM BoTs.

The simulator executes the various BoTs described in ta-
ble 3 on selected BE-DCIs representative of Desktop Grids
(seti, nd), Best Effort Grids (g5klyo, g5kgre) and Clouds
(spot10, spot100), using BOINC and XWHEP. Different
BoT submission times are used in order to simulate execu-
tion in different time period of the BE-DCI traces. Results
of this section are produced thanks to simulations of more
than 25000 BoT executions.

4.2 Evaluation of Cloud Resources Provision-
ing Strategies

In this section, we report on the performance evaluation

Table 2: Summary of the Best Effort DCI traces. The trace length, number of nodes average (mean), standard deviation (std.
dev.), minimum (min) and maximum (max) are presented. av. quartiles and unav. quartiles are the nodes availability and
unavailability duration quartiles, in seconds. avg. power and power std. dev. are the average node power (in instructions per
second) and node power standard deviation.

trace length (days) mean deviation min max av. quartiles (s) unav. quartiles (s) avg. power (nops/s) power std. dev.
seti 120 24391 6793 15868 31092 61,531,5407 174,501,3078 1000 250
nd 413.87 180 4.129 77 501 952,3840,26562 640,960,1920 1000 250
g5klyo 31 90.573 105.4 6 226 21,51,63 191,236,480 3000 0
g5kgre 31 474.69 178.7 184 591 5,182,11268 23,547,6891 3000 0
spot10 90 82.186 3.814 29 87 4415,5432,17109 4162,5034,9976 3000 300
spot100 90 823.95 4.945 196 877 1063,5566,22490 383,1906,10274 3000 300

Table 3: Characteristic of BoT workload: size is the number of tasks in the BoT, nops/task is the number of instructions
per tasks and arrival the repartition function of tasks arrival time. weib is the Weibull distribution and norm, the Normal
distribution.

Size nops / task Arrival time
SMALL 1000 3600000 0
BIG 10000 60000 0

RANDOM norm(µ = 1000, σ2 = 200) norm(µ = 60000, σ2 = 10000) weib(λ = 91.98, k = 0.57)

of SpeQuloS strategies for Cloud provisioning presented in
Section 3.5. We evaluate every combination of the strategies
to find which one gives the best performance. We evaluate
these combined strategies via trace-driven simulation for dif-
ferent middleware (BOINC or XWHEP), different BE-DCI
availability traces, and different classes of BoTs. We look
for the best strategy over all scenarios. The naming of the
strategy combinations follows this scheme: 9A-G-D means
that Cloud workers will start when 90% of the tasks have
been assigned (Assignment Threshold), all the Cloud work-
ers are started at once (Greedy) and all uncompleted tasks
are duplicated to the Cloud (Cloud Duplication).

4.2.1 Tail Removal Efficiency
The first experiment aims at comparing the efficiency of

the Cloud provisioning strategies to alleviate the tail effect.
We define the Tail Removal Efficiency (TRE) as the per-
centage reduction of the tail duration with SpeQuloS com-
pared to without SpeQuloS. We calculate TRE as TRE =
1− tspeq−tideal

tnospeq−tideal
, where tnospeqs is the completion time mea-

sured without SpeQuloS (which is likely to be affected by
tail), tspeq is the completion time measured for the same
BoT execution when SpeQuloS is used. tideal is the ideal
completion time for that execution without the tail.
Figures 4a, 4b and 4c present the complementary cumu-

lative distribution function of TRE for several combinations
of Cloud resource provisioning strategies. For a given effi-
ciency, the figures show the fraction of BoT executions which
obtained a greater efficiency.
We first observe that all the strategies are able to signif-

icantly address the tail effect. In the best cases (Fig. 4c,
9A-G-D, 9A-C-D), the tail has disappeared in one half of the
BoT executions (TRE=100%) and for 80% of the BoT exe-
cutions the tail has been at least halved (TRE>50%), which
is satisfactory.
A comparison of the strategies shows that for the Flat de-

ployment strategy (Fig. 4a) has the worst performances re-
gardless of the combination used : in half of the BoT execu-
tions the tail has not been significantly reduced (TRE<30%).
Reschedule (Fig. 4b) and Cloud Duplication strategies (Fig.
4c) both performs better than Flat if the Execution Variance
is excluded : 80% of the BoT executions have addressed

the tail effect (TRE>30%). Clearly, the Execution Variance
causes a severe drop of performance of any combinations
which include this strategy. The Assignment threshold strat-
egy has slightly better results than the Completion threshold
strategy, and Reschedule is slightly better than Cloud dupli-
cation, especially when the Completion threshold strategy is
used.

The Flat strategy cannot reach the same level of perfor-
mance as the others because Cloud resources are in com-
petition with BE-DCIs resources. In this strategy, tasks
are assigned without distinction between Cloud workers and
normal workers, which leads to Cloud workers not receiving
tasks from DG server even during the tail part of the BoT
execution. The Execution Variance strategy which tries to
dynamically detect the tail effect by monitoring the varia-
tion of tasks’ execution time, is shown to be less efficient
than the others. We observed that unfortunately this strat-
egy starts Cloud workers too late for a significant number of
executions.

4.2.2 Cloud Resource Consumption
The second criteria for the performance comparison of the

strategies is the Cloud resource consumption. Lower is the
resource consumption, better is the strategy. In our system,
1 CPU.hour of Cloud workers usage is billed as 15 cred-
its. The metric used to measure the Cloud utilization is the
number of credits spent during the execution.

Figure 5 shows the average percentage of credits spent
against the credits provisioned. In most cases, less than
25% of provisioned credits are spent. In our evaluation,
provisioned credits are equivalent to 10% of the total BoT
workload in terms of Cloud worker CPU.hours. Our results
mean that actually, less than 2.5% of the BoT workload is
executed in the Cloud, and so is the equivalent consumption
of credits.

Figure 5 shows that credit consumption of the Cloud du-
plication strategy is lower than Flat which is lower than
Reschedule. Indeed, in this last strategy, Cloud workers are
continuously busy because they receive uncompleted task
duplicates until the BoT execution is finished. Results also
show that Assignment threshold consumes more than the
others because it starts Cloud workers earlier, and that Con-
servative method saves a little more credits than Greedy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

ct
io

n
 o

f
B

o
T

 w
h
er

e
ta

il
 e

ff
ic

ie
n
cy

 >
 P

Tail Removal Efficiency (Percentage P)

9C-G-F

9A-G-F

V-G-F

9C-C-F

9A-C-F

V-C-F

(a) Flat deployment strategy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

ct
io

n
 o

f
B

o
T

 w
h
er

e
ta

il
 e

ff
ic

ie
n
cy

 >
 P

Tail Removal Efficiency (Percentage P)

9C-G-R

9A-G-R

V-G-R

9C-C-R

9A-C-R

V-C-R

(b) Reschedule deployment strategy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

ct
io

n
 o

f
B

o
T

 w
h
er

e
ta

il
 e

ff
ic

ie
n
cy

 >
 P

Tail Removal Efficiency (Percentage P)

9C-G-D

9A-G-D

V-G-D

9C-C-D

9A-C-D

V-C-D

(c) Cloud duplication deployment strategy

Figure 4: Complementary cumulative distribution functions of Tail Removal Efficiency for several combinations of Cloud
resources provisioning strategies. Tail removal efficiency denotes the reduction percentage of the tail duration using SpeQuloS
compared to without SpeQuloS.

 0

 10

 20

 30

 40

 50

9C
-G

-F

9C
-G

-R

9C
-G

-D

9C
-C

-F

9C
-C

-R

9C
-C

-D

9A
-G

-F

9A
-G

-R

9A
-G

-D

9A
-C

-F

9A
-C

-R

9A
-C

-D

V
-G

-F

V
-G

-R

V
-G

-D

V
-C

-F

V
-C

-R

V
-C

-D

P
er

ce
n
ta

g
e

o
f

cr
ed

it
s

u
se

d

Combination of SpeQuloS strategies

Figure 5: Credits consumption of various SpeQuloS strate-
gies combinations. Lower is better.

Overall, our strategies have a low credit consumption. It
ensures that enough credits are supplied to support the BoT
execution until it ends and leaves more credits to users to
support other BoT executions.

4.3 SpeQuloS Performance
In this section, we evaluate SpeQuloS performance to ef-

fectively enhance QoS of BoT executed on BE-DCIs. The
results of this section use the Completion threshold, Conser-
vative and Reschedule (9C-C-R) strategy combination, which
is a good compromise between Tail Removal Efficiency per-
formance, credits consumption and ease of implementation.

4.3.1 Completion Speedup
Figures 6a, 6b, 6c, 6d, 6e and 6f show the average BoT

completion time measured with and without SpeQuloS. Each
figure presents results from one DG middleware and BoT.
Each figure’s pair of columns show results for each BE-DCI
trace.
The results show that in all cases, SpeQuloS decreases the

completion time. Performance enhancement depends on the
BE-DCI, BoT and middleware considered. More important
gains are observed with BOINC, seti, and the RANDOM BoT,
for which average completion time is reduced from 28818
seconds to 3195 seconds. In contrast, with XWHEP, spot10
and BIG BoT, the average completion is not much improved
(from 2524 to 2521 seconds).
More important benefits are observed with highly volatile

BE-DCIs (seti, nd, g5klyo). As the tail effect is more im-
portant in these BE-DCIs, using SpeQuloS can significantly
increase the performance.

Benefits are also more important for SMALL BoTs, which
are made of long tasks, and RANDOM BoTs, which are hetero-
geneous, in particular with Desktop Grid DCIs (seti & nd),
for which node characteristics (low power and high volatil-
ity) make it difficult to execute such BoTs without SpeQu-
loS.

Even if BOINC and XWHEP completion times cannot be
compared, as these middleware differ in the way they de-
tect and handle task execution failures, one can note that
XWHEP is slightly less improved than BOINC when Spe-
QuloS is used.

4.3.2 Execution Stability
One additional QoS enhancement that SpeQuloS aims to

provide to BE-DCI users is execution stability. The execu-
tion stability is the ability to observe similar BoT comple-
tion times on the same execution environment (i.e., the BE-
DCI considered, BoT workload, and DG middleware used).
Providing a stable execution allows users to deduce from
previous executions the QoS level they can expect from a
BE-DCI. Figures 7a and 7b show the repartition functions
of normalized BoT completion times around the average.
Each execution’s completion time is divided by the average
completion time measured under the same execution envi-
ronment in terms of BE-DCI availability traces, DG middle-
ware used, and BoT category. Figures report on results ob-
tained with every BE-DCI traces and BoT categories mixed.

For the XWHEP middleware, the execution stability is
not much improved by SpeQuloS, as it was already good
without it. However, the execution stability of BoTs us-
ing BOINC middleware is significantly improved by SpeQu-
loS. Without SpeQuloS, Figure 7a shows that a high num-
ber of executions have a normalized completion time lower
than 1. This means that the average completion time is
increased by a few, lengthy executions. As SpeQuloS is
able to avoid such problematic cases, the average comple-
tion time becomes much more representative. This leads to
a very satisfactory execution stability, actually better than
for XWHEP.

4.3.3 Completion Time Prediction

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

SETI

N
D

G
5K

LY
O

G
5K

G
R
E

SPO
T10

SPO
T100

C
o

m
p

le
ti

o
n

 t
im

e
(s

)

BE-DCI

No SpeQuloS
SpeQuloS

(a) BOINC & SMALL BoT

 0

 5000

 10000

 15000

 20000

 25000

SETI

N
D

G
5K

LY
O

G
5K

G
R
E

SPO
T10

SPO
T100

C
o

m
p

le
ti

o
n

 t
im

e
(s

)

BE-DCI

No SpeQuloS
SpeQuloS

(b) BOINC & BIG BoT

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

SETI

N
D

G
5K

LY
O

G
5K

G
R
E

SPO
T10

SPO
T100

C
o

m
p

le
ti

o
n

 t
im

e
(s

)

BE-DCI

No SpeQuloS
SpeQuloS

(c) BOINC & RANDOM BoT

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

SETI

N
D

G
5K

LY
O

G
5K

G
R
E

SPO
T10

SPO
T100

C
o

m
p

le
ti

o
n

 t
im

e
(s

)

BE-DCI

No SpeQuloS
SpeQuloS

(d) XWHEP & SMALL BoT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

SETI

N
D

G
5K

LY
O

G
5K

G
R
E

SPO
T10

SPO
T100

C
o

m
p

le
ti

o
n

 t
im

e
(s

)

BE-DCI

No SpeQuloS
SpeQuloS

(e) XWHEP & BIG BoT

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

SETI

N
D

G
5K

LY
O

G
5K

G
R
E

SPO
T10

SPO
T100

C
o

m
p

le
ti

o
n

 t
im

e
(s

)

BE-DCI

No SpeQuloS
SpeQuloS

(f) XWHEP & RANDOM BoT

Figure 6: Average completion time measured with and without SpeQuloS under various execution environments.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5

F
ra

ct
io

n
 o

f
ex

ec
u

ti
o

n

Completion time repartition arround the average

No SpeQuloS
SpeQuloS

(a) BOINC

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1 2 3 4 5

F
ra

ct
io

n
 o

f
ex

ec
u

ti
o

n

Completion time repartition arround the average

No SpeQuloS
SpeQuloS

(b) XWHEP

Figure 7: Repartition functions of execution completion
time normalized with the average completion time observed
under same environment (BE-DCI traces, DG middleware,
BoT). Curves centered around 1 denote stable executions.

Table 4: Percentage of success for SpeQuloS completion time
prediction, according to BoT execution environment. A suc-
cessful prediction is reported when the actual BoT comple-
tion time is comprised between ± 20% of the predicted com-
pletion time.

BoT category & Middleware
SMALL BIG RANDOM

BE-DCI BOINC XWHEP BOINC XWHEP BOINC XWHEP Mixed
seti 100 100 100 82.8 100 87.0 94.1
nd 100 100 100 100 100 96.0 99.4
g5klyo 88.0 89.3 96.0 87.5 75 75 85.6
g5kgre 96.3 88.5 100 92.9 83.3 34.8 83.3
spot10 100 100 100 100 100 100 100
spot100 100 100 100 100 76 3.6 78.3
Mixed 97.6 96.1 99.2 93.5 89.6 65.3 90.2

Table 4 shows the percentage of successful SpeQuloS pre-
dictions, described in Section 3.4, made when the BoT com-
pletion is 50%. A successful prediction is reported when
the actual completion time fits the SpeQuloS predicted time
associated with an uncertainty of ± 20% (meaning that the
actual completion time is comprised between 80% and 120%
of the predicted time). For each BoT execution profiled,
the α factor is computed using all available BoT executions
with same BE-DCI trace, middleware, and BoT category.
In other words, the “learning phase” (during which α is ad-
justed), is discarded and we assume perfect knowledge of the
history of previous BoT executions.

Results show that the success rate of SpeQuloS predic-
tion is high, except for some execution environments for
which prediction is an issue. Still, the overall success rate
is higher than 90%, meaning than the predicted comple-
tion time given by SpeQuloS is correct within ± 20% in

9 cases out of 10, which is remarkable given the unpre-
dictable nature of BE-DCIs. Results also show that pre-
dictions are slightly better with BOINC middleware than
with XtremWeb-HEP, which can be explained by the more
stable execution of this middleware, as reported in previous
section. Another observation is that the RANDOM BoTs gives
inferior prediction quality. Indeed, as this BoT is highly
heterogeneous, predicting completion time is harder as task
execution times vary greatly amongst BoT executions.
Results of this section have shown that SpeQuloS is able

to effectively enhance the QoS of BoTs executed on BE-
DCIs. Indeed, using SpeQuloS, BoT completion time is ac-
celerated by a factor of as much as 5, while assigning to
Cloud resources less than 2.5% of the total workload. Addi-
tionally, SpeQuloS increases the execution stability, mean-
ing that BoTs executed in similar environments will present
similar performance. Finally, SpeQuloS can accurately pre-
dict the BoT completion time and provide this information
to BE-DCI users.

5. SPEQULOS DEPLOYMENT IN EDGI
In this section, we present the deployment of SpeQuloS

as a part of the European Desktop Grid Infrastructure[13]
(EDGI). EDGI connects several private and public Desk-
top Grids (IberCivis, University of Westminster, SZTAKI,
CNRS/University of Paris XI LAL and LRI DGs) to several
Grids (European Grid Infrastructure (EGI), Unicore, ARC)
and private Clouds (StratusLab and local OpenStack, Open-
Nebula).
The main objective of EDGI is to transparently provide

the vast amount of computing power of DGs to EGI users.
Ultimately, these users would submit their applications to
regular Computing Elements and thanks to EDGI, these
tasks can be executed on DGs without any difference noticed
by the user. SpeQuloS is one element amongst a full soft-
ware stack, featuring a bridge from Grids to Desktop Grids,
a data distribution network, monitoring, eScience portal and
more.
We present the current preliminary deployment of SpeQu-

loS, on part of the EDGI production infrastructure, which is
illustrated in Figure 8. The current deployment includes a
production infrastructure, composed of two DGs, XW@LRI
and XW@LAL, both ran by XWHEP and managed by the
University of Paris-XI. For testing purposes, XW@LRI is
connected to Grid’5000 and gathers resources in best effort
mode from 6 of its clusters with a bound on 200 nodes at a
time. SpeQuloS uses Amazon EC2 as a supporting Cloud for
XW@LRI. The XW@LAL server is connected to the local
Desktop Grid of the laboratory. XW@LAL can also har-
vest computing resources from the EGI Grids through the
EDGI’s 3G Bridge[36]. A local OpenNebula part of the Stra-
tusLab infrastructure is used as a supporting Cloud for the
LAL Desktop Grid.An interesting side-effect of this setup
is that BoTs submitted through XtremWeb-HEP to EGI
can eventually benefit from the QoS support provided by
SpeQuloS using resources from StratusLab. In the context
of the EDGI project, another SpeQuloS deployment is in
progress, to provide QoS support to other EDGI’s DGs, such
SZTAKI’s one, through a fully-dedicated OpenNebula Cloud
service.
Several EDGI applications are installed and used regu-

larly, such as DART (a Framework for Distributed Audio
Analysis and Music Information Retrieval by Cardiff Uni-

Table 5: The University Paris-XI part of the European Desk-
top Grid Infrastructure. The table reports on the number of
tasks executed on XW@LAL and XW@LRI Desktop Grids,
as well as the number of EGI tasks executed on those DGs
and the number of tasks assigned by SpeQuloS to Stratus-
Lab and Amazon EC2 Cloud services.

XW@LAL XW@LRI EGI StratusLab EC2
#tasks 557002 129630 10371 3974 119

versity), BNB-Grid (which is aimed at solving hard combi-
natorial, discrete and global optimization problems) and IS-
DEP (which is a fusion plasma application which simulates
the Tokamak of ITER). Table 5 summarizes the usage of the
infrastructure during the first half of 2011 where SpeQuloS
has been gradually deployed.

6. RELATED WORK
Many scenarios motivate the assemblage of Grids or Clouds

with Best Effort infrastructures, and in particular Desk-
top Grids. GridBot [35] puts together Superlink@Technion,
Condor pools and Grid resources to execute both through-
put and fast-turnaround oriented BoTs. The European FP7
projects EDGeS[36] and EDGI[13] have developed bridge
technologies to make Desktop Grid infrastructure transpar-
ently available to any EGI Grid users as a regular Comput-
ing Element. Similarly, the Latin America EELA-2 Grid has
been bridged with the OurGrid infrastructures [9].

In [33], authors investigate the cost and performance of
running a Grid workload on Amazon EC2 Cloud. Similarly,
in [24], the authors introduce a cost-benefit analysis to com-
pare Desktop Grids and Amazon EC2. ElasticSite[28] of-
floads a part of the Grid workload to the Cloud when there
is peak user demand. In [1], authors propose a Pareto effi-
cient strategy to offload Grid BoTs whith deadlines on the
Cloud.

Providing QoS features in Grids is hard and not solved
yet satisfactorily [12, 20, 38]. It is even more difficult in
an environment where there are no guaranteed resources [7].
Unlike aforementioned work, we do not modify the resource
manager scheduling policies to incorporate QoS features. In-
stead, we use an extrinsic approach by providing additional
resources. However, the two approaches could coexist by
classifying the DG workers according to their historical be-
havior and allocating applications with QoS needs to the
more trustable and faster workers. In [37], a framework is
presented to extend Grid resources using Cloud computing.
Similarly, Aneka [10] supports the integration between Desk-
top Grids and Clouds. These works would be the closest to
ours although we went further in term of implementation
and evaluation.

There exists a large literature about predicting tasks com-
pletion time. For instance QBETS [31] uses time series
to model and forecast task queues. Closer to our context
[14], proposes a framework to model and predicts the var-
ious steps (submission, validation, waiting in the scheduler
queue) that a work unit spend in a volunteer computing
project. Our work differs by the fact that we address hetero-
geneous environments. As a result, we adopted an unique
representation based on BoT progression to hide idiosyn-
crasies of BE-DCIs. Thus, the Oracle never accesses directly

Figure 8: SpeQuloS’ current deployment as a part of the EDGI infrastructure. SpeQuloS’ modules are split and duplicated
across the deployment.

the BoT Queue, but rather a history of past BoTs and on-
line monitoring information.
Mitigation of the tail in Desktop Grid computing has been

addressed in the past [22]. The difference between that prior
work and ours is that we provide prediction and stability es-
timates for QoS, we devise new algorithms for using ded-
icated cloud resources, and we evaluate these algorithms
more completely in a wide range of scenarios (in terms of
different BoT classes, desktop grid middleware, and plat-
forms with different degrees of volatility and heterogeneity).
In [39], authors propose the LATE (Longest Approximate

Time to End) scheduling to alleviate outliers in MapReduce
computation. The LATE scheduler monitors tasks execution
and speculatively executes those of the tasks which are an-
ticipated to have the latest finished time on the fastest hosts.
Recently, the Mantri system[3] have been proposed, where
the authors identifies several causes of dramatic slowdown
of computation, including workload imbalance due to data
skew, network contention due to disadvantageous commu-
nication patterns and overloaded machine. Because these
MapReduce systems run within a cluster, they assume a
finer grain of information: individual task monitoring versus
global BoT progress rate monitoring in the case of SpeQu-
loS. SpeQuloS deals with considerably large infrastructures,
potentially hundreds of thousands hosts with very different
characteristics in the case of Desktop Grids. As infrastruc-
tures are treated as black box, SpeQuloS cannot implement
MapReduce speculative execution heuristics which relies on
a per-hosts information or network topologies information
in the case of Mantri.
Providing cost-effective usage of Cloud resources is a topic

of growing interest. Authors of [26] propose a mechanism to
minimize the cost of scheduling an entire workflow on Cloud
resources, while trying to satisfy a user-supplied deadline.
Conversely, [32] presents a scheduler that minimizes com-
pletion time of BoT executed on multiple Clouds under a
constrained budget. In our work, most of workload is pro-
cessed by BE-DCIs and we only use Cloud resources to pro-
cess its most critical part. However, these works could be
consisered to optimize Cloud resources usage by SpeQuloS.

7. CONCLUSION AND FUTURE WORKS
Although Best Effort Distributed Computing Infrastruc-

tures (BE-DCIs) such as Desktop Grids, Best Effort Grids
or Cloud Spot instances are the “low cost” solution available
to high-throughput computing users, they are now getting
more widely accessible. We have introduced SpeQuloS, a
framework to enhance QoS for BoT applications when exe-
cuted in BE-DCIs. We hope that this effort will help to make
BE-DCIs “first class citizens” in the computing landscape.

The main principle of SpeQuloS is to monitor the execu-
tion of BoTs and dynamically provision external stable and
powerful Cloud resources to help BE-DCIs to execute the
most critical part of the BoT. We proposed several strategies
and evaluated them using trace-driven simulations. Provid-
ing QoS to grid computing is considered a difficult issue,
however our approach is able to substantially improve QoS
with respect to several criteria, namely completion time,
completion time stability and prediction, and just as im-
portant, feedback to the user on the predicted QoS benefits.

Development and deployment of SpeQuloS have shown the
potential but also the difficulties of mixing hybrid infrastruc-
tures. Our framework is composed of several small indepen-
dent and distributed modules which accomplish several key
tasks: information retrieval and archiving, accounting and
arbitration, prediction and forecasting, scheduling and re-
source provisioning. We have demonstrated its applicability
to the European Desktop Grid Infrastructure, where the ser-
vice provides QoS support for two Desktop Grids and one
Best-effort Grid connected to three different Clouds. We are
now working to integrate the system into the project’s Grid
portal so that end-users can benefit from the service, and we
hope to significantly improve their experience of using the
infrastructure.

Our future work will focus on improving the performance
of tail detection and mitigation. In particular, we would like
to anticipate when a BoT is likely to produce a tail by cor-
relating the execution with the state of the infrastructure:
resource heterogeneity, variation in the number of comput-
ing resources and rare events such as massive failures or
network partitioning.

Acknowledgment
Authors would like to thank Peter Kacsuk, Jozsef Kovacs,
Michela Taufer, Trilce Estrada and Kate Keahey for their in-
sightful comments and suggestions throughout our research
and development of SpeQuloS.
Some of the experiments presented in this paper were car-

ried out using the Grid’5000 experimental testbed, being
developed under the INRIA ALADDIN development action
with support from CNRS, RENATER and several Universi-
ties as well as other funding bodies.
This work was funded by EDGI project, supported by

the European Commission FP7 Capacities Programme un-
der grant agreement RI-261556.

8. REFERENCES
[1] O. Agmon Ben-Yehuda, A. Schuster, A. Sharov, M. Silberstein,

and A. Iosup. ExPERT: Pareto-efficient task replication on
grids and clouds. Technical Report CS-2011-03, Technion, 2011.

[2] Amazon Web Services. An introduction to spot instances.
Technical report, Amazon Elastic Compute Cloud, 2009.

[3] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in
map-reduce clusters using mantri. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, OSDI’10, 2010.

[4] D. Anderson. BOINC: A system for public-resource computing
and storage. In proceedings of the 5th IEEE/ACM
International GRID Workshop, Pittsburgh, USA, 2004.

[5] N. Andrade, F. Brasileiro, W. Cirne, and M. Mowbray.
Automatic grid assembly by promoting collaboration in
peer-to-peer grids. Journal of Parallel and Distributed
Computing, 67(8), 2007.

[6] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg.
OurGrid: An approach to easily assemble grids with equitable
resource sharing. In Proceedings of the 9th Workshop on Job
Scheduling Strategies for Parallel Processing, 2003.

[7] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski.
Fault-aware scheduling for bag-of-tasks applications on desktop
grids. In Proceedings of the 7th IEEE/ACM International
Conference on Grid Computing, GRID ’06, 2006.

[8] R. Bolze and all. Grid5000: A large scale highly reconfigurable
experimental grid testbed. International Journal on High
Peerformance Computing and Applications, 2006.

[9] F. Brasileiro, A. Duarte, D. Carvalho, R. Barber, and
D. Scardaci. An approach for the co-existence of service and
opportunistic grids: The EELA-2 case. In Latin-American
Grid Workshop, 2008.

[10] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and
R. Buyya. The Aneka platform and QoS-driven resource
provisioning for elastic applications on hybrid clouds. Future
Generation Computer Systems, 2011.

[11] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin,
G. Mounie, P. Neyron, and O. Richard. A batch scheduler with
high level components. In Proceedings of the Fifth IEEE
International Symposium on Cluster Computing and the Grid
(CCGrid’05), Washington, DC, USA, 2005.

[12] F. Dong and S. G. Akl. Scheduling algorithms for grid
computing: State of the art and open problems. Technical
report, Queen’s University Kingston, 2006.

[13] European desktop grid infrastructure. http://edgi-project.eu/,
2010.

[14] T. Estrada, K. Reed, and M. Taufer. Modeling job lifespan
delays in volunteer computing projects. In 9th IEEE
International Symposium on Cluster Computing and Grid
(CCGrid), 2009.

[15] G. Fedak, C. Germain, V. Neri, and F. Cappello. XtremWeb: A
Generic Global Computing Platform. In CCGRID’2001 Special
Session Global Computing on Personal Devices, 2001.

[16] M. Fishelson and D. Geiger. Exact genetic linkage
computations for general pedigrees. Bioinformatics. 2002;18
Suppl 1:S189-98., 2002.

[17] E. Heien, D. Kondo, and A. David. Correlated resource models
of internet end hosts. 31st International Conference on
Distributed Computing Systems (ICDCS), Minneapolis,
Minnesota, USA, 2011.

[18] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters,
and D. H. Epema. The grid workloads archive. Future
Generation Computer Systems, 24(7), 2008.

[19] A. Iosup, O. Sonmez, S. Anoep, and D. Epema. The
performance of bags-of-tasks in large-scale distributed systems.
In Proceedings of the 17th international symposium on High
performance distributed computing, HPDC ’08, 2008.

[20] M. Islam, P. Balaji, P. Sadayappan, and D. Panda. QoPS: A
QoS based scheme for parallel job scheduling. In Job
Scheduling Strategies for Parallel Processing, Lecture Notes in
Computer Science. Springer, 2003.

[21] B. Javadi, D. Kondo, J. Vincent, and D. Anderson. Mining for
statistical availability models in large-scale distributed systems:
An empirical study of SETI@home. In 17th IEEE/ACM
International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Systems
(MASCOTS), 2009.

[22] D. Kondo, A. Chien, and H. Casanova. Resource management
for rapid application turnaround on enterprise desktop grids. In
ACM Conference on High Performance Computing and
Networking, SC 2004, USA, 2004.

[23] D. Kondo, B. Javadi, A. Iosup, and D. Epema. The Failure
Trace Archive: Enabling comparative analysis of failures in
diverse distributed systems. In 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2010.

[24] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and
D. Anderson. Cost-benefit analysis of cloud computing versus
desktop grids. In 18th International Heterogeneity in
Computing Workshop, 2009.

[25] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle
workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems (ICDCS), 1988.

[26] M. Mao and M. Humphrey. Auto-scaling to minimize cost and
meet application deadlines in cloud workflows. In International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11. ACM, 2011.

[27] A. C. Marosi and P. Kacsuk. Workers in the clouds. Parallel,
Distributed, and Network-Based Processing, Euromicro
Conference on, 2011.

[28] P. Marshall, K. Keahey, and T. Freeman. Elastic site: Using
clouds to elastically extend site resources. In Proceedings of
CCGrid’2010, Melbourne, Australia, 2010.

[29] P. Marshall, K. Keahey, and T. Freeman. Improving utilization
of infrastructure clouds. In IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid
2011), 2011.

[30] T. N. Minh and L. Wolters. Towards a profound analysis of
bags-of-tasks in parallel systems and their performance impact.
In High-Performance Parallel and Distributed Computing,
2011.

[31] D. C. Nurmi, J. Brevik, and R. Wolski. QBETS: queue bounds
estimation from time series. In Proceedings of the 2007 ACM
SIGMETRICS international conference on Measurement and
modeling of computer systems, SIGMETRICS ’07, 2007.

[32] A.-M. Oprescu and T. Kielmann. Bag-of-tasks scheduling under
budget constraints. In CloudCom, 2010.

[33] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel.
Amazon S3 for science grids: a viable solution? In Proceedings
of the 2008 international workshop on Data-aware distributed
computing, DADC ’08, 2008.

[34] B. Rood and M. J. Lewis. Multi-state grid resource availability
characterization. In 8th Grid Computing Conference, 2007.

[35] M. Silberstein, A. Sharov, D. Geiger, and A. Schuster. GridBot:
execution of bags of tasks in multiple grids. In Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, SC ’09, 2009.

[36] E. Urbah, P. Kacsuk, Z. Farkas, G. Fedak, G. Kecskemeti,
O. Lodygensky, A. Marosi, Z. Balaton, G. Caillat, G. Gombas,
A. Kornafeld, J. Kovacs, H. He, and R. Lovas. EDGeS: Bridging
egee to boinc and xtremweb. Journal of Grid Computing, 2009.

[37] C. Vázquez, E. Huedo, R. S. Montero, and I. M. Llorente. On
the use of clouds for grid resource provisioning. Future Gener.
Comput. Syst., 2011.

[38] C. Weng and X. Lu. Heuristic scheduling for bag-of-tasks
applications in combination with qos in the computational grid.
Future Generation Computer Systems, 21(2), 2005.

[39] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica.
Improving mapreduce performance in heterogeneous
environments. In OSDI’08, 2008.

