Optimal Closest Policy with QoS and Bandwidth Constraints for Placing Replicas in Tree Networks

Veronika Rehn-Sonigo

GRAAL team, LIP École Normale Supérieure de Lyon France

August 2007

Introduction and motivation

- Replica placement in tree networks
- Set of clients (tree leaves): requests with QoS constraints, known in advance
- Internal nodes may be provided with a replica; in this case they become servers and process requests (up to their capacity limit)

How many replicas required? Which locations? Total replica cost?

Introduction and motivation

- Replica placement in tree networks
- Set of clients (tree leaves): requests with QoS constraints, known in advance
- Internal nodes may be provided with a replica; in this case they become servers and process requests (up to their capacity limit)

How many replicas required?

Which locations?

Introduction and motivation

- Replica placement in tree networks
- Set of clients (tree leaves): requests with QoS constraints, known in advance
- Internal nodes may be provided with a replica; in this case they become servers and process requests (up to their capacity limit)

How many replicas required? Which locations?

Total replica cost?

Introduction and motivation

- Replica placement in tree networks
- Set of clients (tree leaves): requests with QoS constraints, known in advance
- Internal nodes may be provided with a replica; in this case they become servers and process requests (up to their capacity limit)

How many replicas required? Which locations? Total replica cost?

- Handle all client requests, and minimize cost of replicas
- → Replica Placement problem
- Several policies to assign replicas

- Handle all client requests, and minimize cost of replicas
- ullet ightarrow Replica Placement problem
- Several policies to assign replicas

- Handle all client requests, and minimize cost of replicas
- ullet ightarrow Replica Placement problem
- Several policies to assign replicas

- Handle all client requests, and minimize cost of replicas
- ullet Aeplica Placement problem
- Several policies to assign replicas

3/35

- Handle all client requests, and minimize cost of replicas
- ullet Aeplica Placement problem
- Several policies to assign replicas

- Handle all client requests, and minimize cost of replicas
- ullet ightarrow Replica Placement problem
- Several policies to assign replicas

Outline

- Framework
- 2 Complexity results
- Optimal Replica Placement Algorithm
- 4 Conclusion

Outline

- Framework
- 2 Complexity results
- Optimal Replica Placement Algorithm
- 4 Conclusion

Definitions and notations

- ullet Distribution tree ${\mathcal T}$, clients ${\mathcal C}$ (leaf nodes), internal nodes ${\mathcal N}$
- Client $v \in \mathcal{C}$:
 - Sends r(v) requests per time unit (number of accesses to a single object database)
 - Quality of service q(v) (response time)
- Node $j \in \mathcal{N}$:
 - Can contain the object database replica (server) or not
 - Processing capacity W
 - Storage cost sc_j
- Tree edge: $l \in \mathcal{L}$ (communication link between nodes)
 - Communication time comm₁
 - Bandwidth limit BW₁

Definitions and notations

ullet Distribution tree ${\mathcal T}$, clients ${\mathcal C}$ (leaf nodes), internal nodes ${\mathcal N}$

- Client $v \in \mathcal{C}$:
 - Sends r(v) requests per time unit (number of accesses to a single object database)
 - Quality of service q(v) (response time)
- Node $j \in \mathcal{N}$:
 - Can contain the object database replica (server) or not
 - Processing capacity W
 - Storage cost sc_j
- Tree edge: $l \in \mathcal{L}$ (communication link between nodes)
 - Communication time comm_I
 - Bandwidth limit BW_I

Definitions and notations

- ullet Distribution tree ${\mathcal T}$, clients ${\mathcal C}$ (leaf nodes), internal nodes ${\mathcal N}$
- Client $v \in \mathcal{C}$:
 - Sends r(v) requests per time unit (number of accesses to a single object database)
 - Quality of service q(v) (response time)
- Node $j \in \mathcal{N}$:
 - Can contain the object database replica (server) or not
 - Processing capacity W
 - Storage cost sc_j
- Tree edge: $l \in \mathcal{L}$ (communication link between nodes)
 - Communication time comm₁
 - Bandwidth limit BW_I

Definitions and notations

- ullet Distribution tree ${\mathcal T}$, clients ${\mathcal C}$ (leaf nodes), internal nodes ${\mathcal N}$
- Client $v \in \mathcal{C}$:
 - Sends r(v) requests per time unit (number of accesses to a single object database)
 - Quality of service q(v) (response time)
- Node $j \in \mathcal{N}$:
 - Can contain the object database replica (server) or not
 - Processing capacity W
 - Storage cost sc_j
- Tree edge: $I \in \mathcal{L}$ (communication link between nodes)
 - Communication time comm_I
 - Bandwidth limit BW_I

Problem instances (1/2)

- Goal: place replicas to process client requests
- Client i ∈ C: Servers(i) ⊆ N set of servers responsible for processing its requests
- $r_{i,s}$: number of requests from client i processed by server s $(\sum_{s \in Servers(i)} r_{i,s} = r_i)$
- $R = \{s \in \mathcal{N} | \exists i \in C, s \in Servers(i)\}$: set of replicas

Problem instances (2/2)

- Minimize $\sum_{s \in R} sc_s$ under the constraints:
- Server capacity: $\forall s \in R, \sum_{i \in C \mid s \in Servers(i)} r_{i,s} \leq W_s$
- QoS: $\forall i \in \mathcal{C}, \forall s \in \mathsf{Servers}(i), \sum_{l \in \mathsf{path}[i \to s]} \mathsf{comm}_l \leq \mathsf{q}_i$.
- Link capacity: $\forall l \in \mathcal{L} \sum_{i \in \mathcal{C}, s \in Servers(i) | l \in path[i \to s]} r_{i,s} \leq BW_l$
- Restrict to case where $sc_s = W$: REPLICA COUNTING problem on homogeneous platforms.

Problem instances (2/2)

- Minimize $\sum_{s \in R} sc_s$ under the constraints:
- Server capacity: $\forall s \in R, \sum_{i \in \mathcal{C} | s \in Servers(i)} r_{i,s} \leq W_s$
- QoS: $\forall i \in \mathcal{C}, \forall s \in \mathsf{Servers}(i), \sum_{I \in \mathsf{path}[i \to s]} \mathsf{comm}_I \leq \mathsf{q}_i$.
- Link capacity: $\forall I \in \mathcal{L} \sum_{i \in \mathcal{C}, s \in Servers(i) | I \in path[i \to s]} r_{i,s} \leq BW_I$
- Restrict to case where $sc_s = W$: REPLICA COUNTING problem on homogeneous platforms.

Problem instances (2/2)

- Minimize $\sum_{s \in R} sc_s$ under the constraints:
- Server capacity: $\forall s \in R, \sum_{i \in \mathcal{C} | s \in Servers(i)} r_{i,s} \leq W_s$
- QoS: $\forall i \in \mathcal{C}, \forall s \in \mathsf{Servers}(i), \sum_{I \in \mathsf{path}[i \to s]} \mathsf{comm}_I \leq \mathsf{q}_i$.
- Link capacity: $\forall I \in \mathcal{L} \sum_{i \in \mathcal{C}, s \in Servers(i) | I \in path[i \to s]} r_{i,s} \leq BW_I$
- Restrict to case where $sc_s = W$: REPLICA COUNTING problem on homogeneous platforms.

Outline

- 1 Framework
- 2 Complexity results
- Optimal Replica Placement Algorithm
- 4 Conclusion

Complexity results

Homogeneous platform: REPLICA COUNTING problem, no bandwidth constraints

Closest polynomial	[Cidon02,Liu06]	
Ciosest polynomial	[Clubilo2,Llubb]	polynomial [Liu06]
Upwards NP-com	plete [Be06]	NP-complete [Be06]
Multiple polyno	mial [Be06]	NP-complete [Be07]

Heterogeneous platforms: all problems are NP-complete

New result

Homogeneous platforms with bandwidth and QoS constraints: Closest remains polynomial [Re07]

Complexity results

Homogeneous platform: REPLICA COUNTING problem, no bandwidth constraints

	No QoS	With QoS
Closest	polynomial [Cidon02,Liu06]	polynomial [Liu06]
Upwards	NP-complete [Be06]	NP-complete [Be06]
Multiple	polynomial [Be06]	NP-complete [Be07]

Heterogeneous platforms: all problems are NP-complete

New result

Homogeneous platforms with bandwidth and QoS constraints: Closest remains polynomial [Re07]

Complexity results

Homogeneous platform: REPLICA COUNTING problem, no bandwidth constraints

Closest polynomial	[Cidon02,Liu06]	
Ciosest polynomial	[Clubilo2,Llubb]	polynomial [Liu06]
Upwards NP-com	plete [Be06]	NP-complete [Be06]
Multiple polyno	mial [Be06]	NP-complete [Be07]

Heterogeneous platforms: all problems are NP-complete

New result:

Homogeneous platforms with bandwidth and QoS constraints: *Closest* remains polynomial [Re07]

Outline

- 1 Framework
- 2 Complexity results
- Optimal Replica Placement Algorithm
- 4 Conclusion

Optimal Closest Policy

Dealing with Bandwidth Constraints

Optimal Closest policy

- Homogeneous platform
- QoS constraints
- Bandwidth constraints

Base: optimal algorithm of Liu et al. for homogeneous data grids with QoS constraints

Provided extensions:

- Bandwidth constraints
- $\mathcal{C} \cap \mathcal{N} = \emptyset$

Dealing with Bandwidth Constraints

Optimal Closest policy

- Homogeneous platform
- QoS constraints
- Bandwidth constraints

Base: optimal algorithm of Liu et al. for homogeneous data grids with QoS constraints

Provided extensions:

- Bandwidth constraints
- $\mathcal{C} \cap \mathcal{N} = \emptyset$

12/35

Basic idea:

computation of the minimal necessary number of replicas in a subtree

Basic idea:

computation of the minimal necessary number of replicas in a subtree

13/35

Basic idea:

computation of the minimal necessary number of replicas in a subtree

Basic idea:

computation of the minimal necessary number of replicas in a subtree

13/35

Basic idea:

computation of the minimal necessary number of replicas in a subtree

Basic idea:

computation of the minimal necessary number of replicas in a subtree

13/35

Basic idea:

computation of the minimal necessary number of replicas in a subtree

Basic idea:

computation of the minimal necessary number of replicas in a subtree

Optimal Closest Policy

Basic idea:

computation of the minimal necessary number of replicas in a subtree

ORP - Optimal Replica Placement Algorithm

Preparation Tree transformation

Step 1 Bottom up computation of the contribution of client requests

C(v, i): the contribution of node v on its i-th ancestor

e(v,i): children of v that have to be equipped with a replica to minimize the contribution on the i-th ancestor of v (respecting some additional constraints).

ORP - Optimal Replica Placement Algorithm

Preparation Tree transformation

Step 1 Bottom up computation of the contribution of client requests

Step 2 Top down replica placement

```
procedure Place-replica (v, i)
        if v \in \mathcal{C} then
         return;
       end
       place a replica at each node of e(v, i);
       forall c \in \text{children}(v) do
          if c \in e(v, i) then
            Place-replica(c,0);
          else
            Place-replica(c,i+1);
          end
       end
```

15/35

Complexity and Optimality

Theorem

- (i) Algorithm ORP runs in polynomial time.
- (ii) Algorithm ORP returns an optimal solution to the REPLICA PLACEMENT problem with fixed W, QoS and bandwidth constraints, if there exists a solution.

16/35

Outline

- 1 Framework
- 2 Complexity results
- Optimal Replica Placement Algorithn
- 4 Conclusion

Optimal Closest Policy

Conclusion

- REPLICA PLACEMENT optimization problem with QoS and bandwidth constraints.
- Restriction to *Closest*/Homogeneous instances
- Polynomial runtime
- Optimality
- Interplay of different-nature constraints

Completion of the study on complexity of *Closest*/Homogeneous.

Future work

- Consider the problem with several object types
- Extension with more complex objective functions

Conclusion

- REPLICA PLACEMENT optimization problem with QoS and bandwidth constraints.
- Restriction to Closest/Homogeneous instances
- Polynomial runtime
- Optimality
- Interplay of different-nature constraints

Completion of the study on complexity of *Closest/*Homogeneous.

Future work

- Consider the problem with several object types
- Extension with more complex objective functions

