Multi-criteria Scheduling of Pipeline Workflows

Anne Benoit Harald Kosch* Veronika Rehn-Sonigo
 Yves Robert

GRAAL team, LIP
École Normale Supérieure de Lyon
France

*University of Passau
Germany

Working Group
December 6th, 2007
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto communication homogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!

- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto communication homogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!

- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto communication homogeneous platforms
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Multi-criteria?

Period: time interval between the beginning of execution of two consecutive data sets

Latency: maximal time elapsed between beginning and end of execution of a data set

Bi-criteria!
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Multi-criteria?

Period: time interval between the beginning of execution of two consecutive data sets

Latency: maximal time elapsed between beginning and end of execution of a data set

Bi-criteria!
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Multi-criteria?

Period: time interval between the beginning of execution of two consecutive data sets

Latency: maximal time elapsed between beginning and end of execution of a data set

Bi-criteria!
Why restrict to pipelines?

Pipeline: linear application graph

Chains-on-chains partitioning problem
- no communications
- identical processors

Load-balance *contiguous* tasks

\[
\begin{array}{cccccccccccccc}
5 & 7 & 3 & 4 & 8 & 1 & 3 & 8 & 2 & 9 & 7 & 3 & 5 & 2 & 3 & 6 \\
\end{array}
\]

With \(p = 4 \) identical processors?

\[
\begin{array}{cccccccccccccc}
5 & 7 & 3 & 4 & | & 8 & 1 & 3 & 8 & | & 2 & 9 & 7 & | & 3 & 5 & 2 & 3 & 6 \\
\end{array}
\]

\(T_{\text{period}} = 20 \)

If processors have different speeds?
Why restrict to pipelines?

Pipeline: linear application graph

Chains-on-chains partitioning problem
- no communications
- identical processors

Load-balance contiguous tasks

\[
\begin{array}{ccccccccccc}
5 & 7 & 3 & 4 & 8 & 1 & 3 & 8 & 2 & 9 & 7 & 3 & 5 & 2 & 3 & 6 \\
\end{array}
\]

With \(p = 4 \) identical processors?

\[
\begin{array}{ccccccccccc}
5 & 7 & 3 & 4 & | & 8 & 1 & 3 & 8 & | & 2 & 9 & 7 & | & 3 & 5 & 2 & 3 & 6 \\
\end{array}
\]

\[T_{\text{period}} = 20 \]

If processors have different speeds?
Why restrict to pipelines?

Pipeline: linear application graph

Chains-on-chains partitioning problem
- no communications
- identical processors

Load-balance **contiguous** tasks

\[
\begin{array}{ccccccccccc}
5 & 7 & 3 & 4 & 8 & 1 & 3 & 8 & 2 & 9 & 7 & 3 & 5 & 2 & 3 & 6 \\
\end{array}
\]

With \(p = 4 \) identical processors?

\[
\begin{array}{ccccccccccc}
5 & 7 & 3 & 4 | & 8 & 1 & 3 & 8 | & 2 & 9 & 7 | & 3 & 5 & 2 & 3 & 6 \\
\end{array}
\]

\(T_{\text{period}} = 20 \)

If processors have different speeds?
Why restrict to pipelines?

Pipeline: linear application graph

Chains-on-chains partitioning problem
- no communications
- identical processors

Load-balance **contiguous** tasks

\[
\begin{array}{cccccccccccc}
5 & 7 & 3 & 4 & 8 & 1 & 3 & 8 & 2 & 9 & 7 & 3 & 5 & 2 & 3 & 6 \\
\end{array}
\]

With \(p = 4 \) identical processors?

\[
\begin{array}{cccccccccccc}
5 & 7 & 3 & 4 & | & 8 & 1 & 3 & 8 & | & 2 & 9 & 7 & | & 3 & 5 & 2 & 3 & 6 \\
\end{array}
\]

\[T_{\text{period}} = 20 \]

If processors have different speeds?
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize period **AND** minimize latency
- Several mapping strategies

The pipeline application
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize period **AND** minimize latency
- Several mapping strategies

![Pipeline Diagram]

The pipeline application
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize period AND minimize latency
- Several mapping strategies

One-to-one Mapping

S_1 \rightarrow S_2 \rightarrow \cdots \rightarrow S_k \rightarrow \cdots \rightarrow S_n
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize period **AND** minimize latency
- Several mapping strategies

Interval Mapping
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize period AND minimize latency
- Several mapping strategies

GENERAL MAPPING
Major contributions

Theory
Definition of bi-criteria mapping
Problem complexity
Linear programming formulation

Practice
Heuristics for *interval mapping* on clusters
Experiments to compare heuristics and evaluate their performance
Simulation of a real world application
Major contributions

Theory
- Definition of bi-criteria mapping
- Problem complexity
- Linear programming formulation

Practice
- Heuristics for *Interval Mapping on clusters*
- Experiments to compare heuristics and evaluate their performance
- Simulation of a real world application
Outline

1. Framework
2. Complexity results
3. Linear programming formulation
4. Heuristics
5. Experiments
6. Application Simulation
7. Conclusion
The application

- **n** stages S_k, $1 \leq k \leq n$
- S_k:
 - receives input of size δ_{k-1} from S_{k-1}
 - performs w_k computations
 - outputs data of size δ_k to S_{k+1}
- S_0 and S_{n+1}: virtual stages representing the outside world
The platform

- p processors P_u, $1 \leq u \leq p$, fully interconnected
- s_u: speed of processor P_u
- bidirectional link $\text{link}_{u,v}: P_u \rightarrow P_v$, bandwidth $b_{u,v}$
- one-port model: each processor can either send, receive or compute at any time-step
Different platforms

Fully Homogeneous – Identical processors \((s_u = s)\) and links \((b_{u,v} = b)\): typical parallel machines

Communication Homogeneous – Different-speed processors \((s_u \neq s_v)\), identical links \((b_{u,v} = b)\): networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, \(s_u \neq s_v\)
and \(b_{u,v} \neq b_{u',v'}\): hierarchical platforms, grids

In this talk we restrict to *Communication Homogeneous* platforms!
Different platforms

Fully Homogeneous – Identical processors \((s_u = s)\) and links
\((b_{u,v} = b)\): typical parallel machines

Communication Homogeneous – Different-speed processors
\((s_u \neq s_v)\), identical links \((b_{u,v} = b)\): networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, \(s_u \neq s_v\) and \(b_{u,v} \neq b_{u',v'}\): hierarchical platforms, grids

In this talk we restrict to *Communication Homogeneous* platforms!
Mapping problem: **Interval Mapping**

- Partition of $[1..n]$ into m intervals $I_j = [d_j, e_j]$

 (with $d_j \leq e_j$ for $1 \leq j \leq m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \leq j \leq m - 1$ and $e_m = n$)

- Interval I_j mapped onto processor $P_{\text{alloc}(j)}$

\[
T_{\text{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta d_j - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta e_j}{b} \right\}
\]

\[
T_{\text{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta d_j - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta n}{b}
\]
Mapping problem: **Interval Mapping**

- Partition of \([1..n]\) into \(m\) intervals \(I_j = [d_j, e_j]\)
 (with \(d_j \leq e_j\) for \(1 \leq j \leq m\), \(d_1 = 1\), \(d_{j+1} = e_j + 1\) for \(1 \leq j \leq m - 1\) and \(e_m = n\))
- Interval \(I_j\) mapped onto processor \(P_{alloc(j)}\)

\[
T_{\text{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta d_j - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta e_j}{b} \right\}
\]

\[
T_{\text{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta d_j - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta n}{b}
\]
Mapping problem: **Interval Mapping**

- Partition of \([1..n]\) into \(m\) intervals \(I_j = [d_j, e_j]\)
 (with \(d_j \leq e_j\) for \(1 \leq j \leq m\), \(d_1 = 1\), \(d_{j+1} = e_j + 1\) for \(1 \leq j \leq m - 1\) and \(e_m = n\))
- Interval \(I_j\) mapped onto processor \(P_{\text{alloc}(j)}\)

\[
T_{\text{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta d_j - 1}{b} + \sum_{i=d_j}^{e_j} \frac{w_i}{s_{\text{alloc}(j)}} + \frac{\delta e_j}{b} \right\}
\]

\[
T_{\text{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta d_j - 1}{b} + \sum_{i=d_j}^{e_j} \frac{w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta n}{b}
\]
Objective function?

Mono-criterion

- Minimize T_{period}
- Minimize $T_{latency}$

Bi-criteria

- How to define it?

 Minimize $\alpha \cdot T_{period} + \beta \cdot T_{latency}$?

- Values which are not comparable

- Minimize T_{period} for a fixed latency
- Minimize $T_{latency}$ for a fixed period
Objective function?

Mono-criterion

- Minimize T_{period}
- Minimize T_{latency}

Bi-criteria

- How to define it?
 - Minimize $\alpha \cdot T_{\text{period}} + \beta \cdot T_{\text{latency}}$?
- Values which are not comparable
- Minimize T_{period} for a fixed latency
- Minimize T_{latency} for a fixed period
Objective function?

Mono-criterion

- Minimize T_{period}
- Minimize T_{latency}

Bi-criteria

- How to define it?
 Minimize $\alpha \cdot T_{\text{period}} + \beta \cdot T_{\text{latency}}$?
- Values which are not comparable
 - Minimize T_{period} for a fixed latency
 - Minimize T_{latency} for a fixed period
Objective function?

Mono-criterion

- Minimize T_{period}
- Minimize T_{latency}

Bi-criteria

- How to define it?
 Minimize $\alpha \cdot T_{\text{period}} + \beta \cdot T_{\text{latency}}$?
- Values which are not comparable
- Minimize T_{period} for a fixed latency
- Minimize T_{latency} for a fixed period
Outline

1. Framework
2. Complexity results
3. Linear programming formulation
4. Heuristics
5. Experiments
6. Application Simulation
7. Conclusion
Complexity results

Lemma

The optimal mapping which *minimizes latency* can be determined in polynomial time.

Assign whole pipeline to fastest processor!
No communications to pay in this case.
Complexity results

Lemma
The optimal mapping which minimizes latency can be determined in polynomial time.

Assign whole pipeline to fastest processor!
No communications to pay in this case.
Complexity results

Minimize the period?
Chains-on-chains problem with different speed processors!

Definition (HETERO-1D-PARTITION-DEC)

Given n elements a_1, a_2, \ldots, a_n, p values s_1, s_2, \ldots, s_p and a bound K, can we find a partition of $[1..n]$ into p intervals I_1, I_2, \ldots, I_p, with $I_k = [d_k, e_k]$ and $d_k \leq e_k$ for $1 \leq k \leq p$, $d_1 = 1$, $d_{k+1} = e_k + 1$ for $1 \leq k \leq p - 1$ and $e_p = n$, and a permutation σ of $\{1, 2, \ldots, p\}$, such that

$$\max_{1 \leq k \leq p} \frac{\sum_{i \in I_k} a_i}{s_{\sigma(k)}} \leq K$$
Minimize the period?

Chains-on-chains problem with different speed processors!

Definition (HETERO-1D-PARTITION-DEC)

Given n elements a_1, a_2, \ldots, a_n, p values s_1, s_2, \ldots, s_p and a bound K, can we find a partition of $[1..n]$ into p intervals I_1, I_2, \ldots, I_p, with $I_k = [d_k, e_k]$ and $d_k \leq e_k$ for $1 \leq k \leq p$, $d_1 = 1$, $d_{k+1} = e_k + 1$ for $1 \leq k \leq p - 1$ and $e_p = n$, and a permutation σ of $\{1, 2, \ldots, p\}$, such that

$$\max_{1 \leq k \leq p} \frac{\sum_{i \in I_k} a_i}{s_{\sigma(k)}} \leq K ?$$
Minimize the period?

Chains-on-chains problem with different speed processors!

Definition (Hetero-1D-Partition-Dec)

Given \(n \) elements \(a_1, a_2, \ldots, a_n \), \(p \) values \(s_1, s_2, \ldots, s_p \) and a bound \(K \), can we find a partition of \([1..n]\) into \(p \) intervals \(\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_p \), with \(\mathcal{I}_k = [d_k, e_k] \) and \(d_k \leq e_k \) for \(1 \leq k \leq p \), \(d_1 = 1 \), \(d_{k+1} = e_k + 1 \) for \(1 \leq k \leq p - 1 \) and \(e_p = n \), and a permutation \(\sigma \) of \(\{1, 2, \ldots, p\} \), such that

\[
\max_{1 \leq k \leq p} \frac{\sum_{i \in \mathcal{I}_k} a_i}{s_{\sigma(k)}} \leq K
\]
Complexity results

Theorem 1

The **Hetero-1D-Partition-Dec** problem is NP-complete.

Involved reduction

Theorem 2

The period minimization problem for pipeline graphs is NP-complete.

Direct consequence from Theorem 1

All bi-criteria optimization problems are NP-complete on Communication Homogeneous platforms.
Complexity results

Theorem 1

The \textbf{Hetero-1D-Partition-Dec} problem is \textit{NP-complete}.

Involved reduction

Theorem 2

The period minimization problem for pipeline graphs is \textit{NP-complete}.

Direct consequence from Theorem 1

All bi-criteria optimization problems are \textit{NP-complete} on \textit{Communication Homogeneous} platforms.
Theorem 1
The **HETERO-1D-PARTITION-DEC** problem is NP-complete.

Involved reduction

Theorem 2
The period minimization problem for pipeline graphs is NP-complete.

Direct consequence from Theorem 1

All bi-criteria optimization problems are NP-complete on Communication Homogeneous platforms.
Complexity results

Theorem 1

The Hetero-1D-Partition-Dec problem is NP-complete.

Involved reduction

Theorem 2

The period minimization problem for pipeline graphs is NP-complete.

Direct consequence from Theorem 1

All bi-criteria optimization problems are NP-complete on Communication Homogeneous platforms.

Theorem 1

The **HETERO-1D-PARTITION-DEC** problem is NP-complete.

Involved reduction

Theorem 2

The period minimization problem for pipeline graphs is NP-complete.

Direct consequence from Theorem 1

All bi-criteria optimization problems are NP-complete on *Communication Homogeneous* platforms.
Outline

1. Framework
2. Complexity results
3. Linear programming formulation
4. Heuristics
5. Experiments
6. Application Simulation
7. Conclusion

- **Integer LP** to solve **Interval Mapping** on **Communication Homogeneous** platforms
- Many integer variables: no **efficient** algorithm to solve
- Approach limited to small problem instances
- **Absolute performance of the heuristics for such instances**
Linear program: variables

- \(T_{\text{opt}} \): period or latency of the pipeline, depending on the objective function

Boolean variables:
- \(x_{k,u} \): 1 if \(S_k \) on \(P_u \)
- \(y_{k,u} \): 1 if \(S_k \) and \(S_{k+1} \) both on \(P_u \)
- \(z_{k,u,v} \): 1 if \(S_k \) on \(P_u \) and \(S_{k+1} \) on \(P_v \)

Integer variables:
- \(\text{first}_u \) and \(\text{last}_u \): integer denoting first and last stage assigned to \(P_u \) (to enforce interval constraints)
Linear program: variables

- T_{opt}: period or latency of the pipeline, depending on the objective function

Boolean variables:
- $x_{k,u}$: 1 if S_k on P_u
- $y_{k,u}$: 1 if S_k and S_{k+1} both on P_u
- $z_{k,u,v}$: 1 if S_k on P_u and S_{k+1} on P_v

Integer variables:
- first_u and last_u: integer denoting first and last stage assigned to P_u (to enforce interval constraints)
Linear program: constraints

Constraints on procs and links:
- $\forall k \in [0..n + 1], \quad \sum_u x_{k,u} = 1$
- $\forall k \in [0..n], \quad \sum_{u \neq v} z_{k,u,v} + \sum_u y_{k,u} = 1$
- $\forall k \in [0..n], \forall u, v \in [1..p] \cup \{\text{in, out}\}, u \neq v, \quad x_{k,u} + x_{k+1,v} \leq 1 + z_{k,u,v}$
- $\forall k \in [0..n], \forall u \in [1..p] \cup \{\text{in, out}\}, \quad x_{k,u} + x_{k+1,u} \leq 1 + y_{k,u}$

Constraints on intervals:
- $\forall k \in [1..n], \forall u \in [1..p], \quad \text{first}_u \leq k.x_{k,u} + n.(1 - x_{k,u})$
- $\forall k \in [1..n], \forall u \in [1..p], \quad \text{last}_u \geq k.x_{k,u}$
- $\forall k \in [1..n - 1], \forall u, v \in [1..p], u \neq v,$
 $\quad \text{last}_u \leq k.z_{k,u,v} + n.(1 - z_{k,u,v})$
- $\forall k \in [1..n - 1], \forall u, v \in [1..p], u \neq v, \quad \text{first}_v \geq (k + 1).z_{k,u,v}$
Linear program: constraints

Constraints on procs and links:
- \(\forall k \in [0..n+1], \sum_u x_{k,u} = 1 \)
- \(\forall k \in [0..n], \sum_{u \neq v} z_{k,u,v} + \sum_u y_{k,u} = 1 \)
- \(\forall k \in [0..n], \forall u, v \in [1..p] \cup \{\text{in, out}\}, u \neq v, x_{k,u} + x_{k+1,v} \leq 1 + z_{k,u,v} \)
- \(\forall k \in [0..n], \forall u \in [1..p] \cup \{\text{in, out}\}, x_{k,u} + x_{k+1,u} \leq 1 + y_{k,u} \)

Constraints on intervals:
- \(\forall k \in [1..n], \forall u \in [1..p], \text{first}_u \leq k.x_{k,u} + n.(1 - x_{k,u}) \)
- \(\forall k \in [1..n], \forall u \in [1..p], \text{last}_u \geq k.x_{k,u} \)
- \(\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v, \text{last}_u \leq k.z_{k,u,v} + n.(1 - z_{k,u,v}) \)
- \(\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v, \text{first}_v \geq (k + 1).z_{k,u,v} \)
Linear program: constraints

\[\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} + \left(\sum_{v \neq u} \frac{\delta_k}{b} z_{k,u,v} \right) \right\} \leq T_{\text{period}} \]

\[\sum_{u=1}^{p} \sum_{k=1}^{n} \left[\left(\sum_{t \neq u, t \in [1..p]} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} \right] + \left(\sum_{u \in [1..p] \cup \{\text{in} \}} \frac{\delta_n}{b} z_{n,u,\text{out}} \right) \leq T_{\text{latency}} \]

Min period with fixed latency

\[T_{\text{opt}} = T_{\text{period}} \]

\[T_{\text{latency}} \text{ is fixed} \]

Min latency with fixed period

\[T_{\text{opt}} = T_{\text{latency}} \]

\[T_{\text{period}} \text{ is fixed} \]
Linear program: constraints

\[\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} + \left(\sum_{v \neq u} \frac{\delta_k}{b} z_{k,u,v} \right) \right\} \leq T_{\text{period}} \]

\[\sum_{u=1}^{p} \sum_{k=1}^{n} \left[\left(\sum_{t \neq u, t \in [1..p] \cup \{in, out\}} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} \right] + \left(\sum_{u \in [1..p] \cup \{in\}} \frac{\delta_n}{b} z_{n,u,out} \right) \leq T_{\text{latency}} \]

Min period with fixed latency

\[T_{\text{opt}} = T_{\text{period}} \]

\[T_{\text{latency}} \text{ is fixed} \]

Min latency with fixed period

\[T_{\text{opt}} = T_{\text{latency}} \]

\[T_{\text{period}} \text{ is fixed} \]
Outline

1 Framework
2 Complexity results
3 Linear programming formulation
4 Heuristics
5 Experiments
6 Application Simulation
7 Conclusion
Heuristics

- Target clusters: *Communication Homogeneous* platforms and *Interval Mapping*
- n stages
- p processors

Two sets of heuristics
- Minimizing latency for a fixed period
- Minimizing period for a fixed latency
Minimizing Latency for a Fixed Period (1/2)

Sp mono P: Splitting mono-criterion

- Map the whole pipeline on the fastest processor.
- At each step, select used processor j with largest period.
- Try to split its stage interval, giving some stages to the next fastest processor j' in the list (not yet used).
- Split interval at any place, and either assign the first part of the interval on j and the remainder on j', or the other way round. Solution which minimizes $\max(\text{period}(j), \text{period}(j'))$ is chosen if better than original solution.
- Break-conditions:
 Fixed period is reached or period cannot be improved anymore.
Minimizing Latency for a Fixed Period (2/2)

3-Explo mono: 3-Exploration mono-criterion – Select used processor j with largest period and split its interval into three parts.

3-Explo bi: 3-Exploration bi-criteria – More elaborated choice where to split: split the interval with largest period so that $\max_{i \in \{j,j',j''\}} \left(\frac{\Delta \text{latency}}{\Delta \text{period}(i)} \right)$ is minimized.

Sp bi P: Splitting bi criteria – Binary search over latency: at each step choose split that minimizes $\max_{i \in \{j,j'\}} \left(\frac{\Delta \text{latency}}{\Delta \text{period}(j)} \right)$ within the authorized latency increase.

$\Delta \text{latency} : T_{\text{latency}}$ after split - T_{latency} before split

$\Delta \text{period} : T_{\text{period}(j)}$ before split - $T_{\text{period}(j)}$ after split
Minimizing Period for a Fixed Latency

Sp mono L: Splitting mono-criterion – Similar to **Sp mono P** with different break condition: splitting is performed as long as fixed latency is not exceeded.

Sp bi L: Splitting bi criteria – Similar to **Sp mono L**, but at each step choose solution that minimizes

\[
\max_{i \in \{j, j'\}} \left(\frac{\Delta \text{latency}}{\Delta \text{period}(i)} \right)
\]

while fixed latency is not exceeded.
Outline

1. Framework
2. Complexity results
3. Linear programming formulation
4. Heuristics
5. Experiments
6. Application Simulation
7. Conclusion
Plan of experiments

- Assess performance of polynomial heuristics
 - Random applications, \(n \in \{5, 10, 20, 40\} \) stages
 - Random Communication Homogeneous platforms, \(p = 10 \) and \(p = 100 \) processors
 - \(b = 10 \), proc. speed between 1 and 20
 - Relevant parameters: ratios \(\frac{\delta}{b} \) and \(\frac{w}{s} \)
 - Average over 50 similar random appli/platform pairs
Plan of experiments

- Assess performance of polynomial heuristics
- Random applications, \(n \in \{5, 10, 20, 40\} \) stages
- Random *Communication Homogeneous* platforms, \(p = 10 \) and \(p = 100 \) processors
- \(b = 10 \), proc. speed between 1 and 20
- Relevant parameters: ratios \(\frac{\delta}{b} \) and \(\frac{w}{s} \)
- Average over 50 similar random appli/platform pairs
Experiment 1 - balanced comm/comp, hom comm

- communication time $\delta_i = 10$
- computation time between 1 and 20
- 10 processors

10 stages.

😊 Sp bi P
😊 3-Explo mono

40 stages.

酺 Sp mono P
酺 3-Explo mono
Experiment 1 - balanced comm/comp, hom comm

- communication time $\delta_i = 10$
- computation time between 1 and 20
- 10 vs. 100 processors

40 stages, 10 procs.
- 😊 Sp mono P
- 😞 3-Explo mono

40 stages, 100 procs.
- 😊 3-Explo bi
- 😞 3-Explo mono
Experiment 2 - balanced comm/comp, het comm

- communication time between 1 and 100
- computation time between 1 and 20

100 processors.
40 stages.

害羞 Icon: Sp bi P
哭泣 Icon: 3-Explo mono

Veronika.Sonigo@ens-lyon.fr December 2007
Experiment 3 - large computations

- communication time between 1 and 20
- computation time between 10 and 1000

100 processors.
5 stages.

😊 Sp bi P
😊 Sp mono L
Experiment 4 - small computations

- communication time between 1 and 20
- computation time between 0.01 and 10

100 processors.
5 stages.

😊 3-Explo bi
😊 Sp mono L
Failure Thresholds for 10 procs

Failure threshold: largest fixed value (latency or period) for which a heuristic does not find a solution.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Heuristic</th>
<th>Number of stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>E1</td>
<td>Sp mono P</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>4.5</td>
</tr>
<tr>
<td>E3</td>
<td>Sp mono P</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>140.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>140.0</td>
</tr>
</tbody>
</table>

Small values are good! 😊 Sp mono P

.drawRect

🚫 3-Explo mono

Veronika.Sonigo@ens-lyon.fr December 2007

Multi-criteria Scheduling of Pipeline Workflows 33/44
Failure Thresholds for 10 procs

Failure threshold: largest fixed value (latency or period) for which a heuristic does not find a solution.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Heuristic</th>
<th>Number of stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>E1</td>
<td>Sp mono P</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>4.5</td>
</tr>
<tr>
<td>E3</td>
<td>Sp mono P</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>140.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>140.0</td>
</tr>
</tbody>
</table>

Small values are good! 😊
3-Explo mono 😞
Failure Thresholds for 10 procs

Failure threshold: largest fixed value (latency or period) for which a heuristic does not find a solution.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Heuristic</th>
<th>Number of stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>E1</td>
<td>Sp mono P</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>4.5</td>
</tr>
<tr>
<td>E3</td>
<td>Sp mono P</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>140.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>140.0</td>
</tr>
</tbody>
</table>

Notes
- Small values are good!
- 😊 Sp mono P
- 😞 3-Explo mono
Failure Thresholds for 10 procs

Failure threshold: largest fixed value (latency or period) for which a heuristic does not find a solution.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Heuristic</th>
<th>Number of stages</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Sp mono P</td>
<td></td>
<td>3.0</td>
<td>3.3</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td></td>
<td>3.0</td>
<td>4.7</td>
<td>9.0</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td></td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td></td>
<td>3.3</td>
<td>3.3</td>
<td>6.0</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td></td>
<td>4.5</td>
<td>6.0</td>
<td>13.0</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td></td>
<td>4.5</td>
<td>6.0</td>
<td>13.0</td>
<td>25.0</td>
</tr>
<tr>
<td>E3</td>
<td>Sp mono P</td>
<td></td>
<td>50.0</td>
<td>70.0</td>
<td>100.0</td>
<td>250.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td></td>
<td>50.0</td>
<td>140.0</td>
<td>450.0</td>
<td>950.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td></td>
<td>50.0</td>
<td>90.0</td>
<td>250.0</td>
<td>400.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td></td>
<td>100.0</td>
<td>140.0</td>
<td>300.0</td>
<td>650.0</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td></td>
<td>140.0</td>
<td>270.0</td>
<td>500.0</td>
<td>1000.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td></td>
<td>140.0</td>
<td>270.0</td>
<td>500.0</td>
<td>1000.0</td>
</tr>
</tbody>
</table>

Small values are good!

- ☺ Sp mono P
- 😞 3-Explo mono
Summary of experiments

- Performance of bi-criterion heuristics highly depends on the number of available processors.

 - Small number of processors:
 - Sp mono P and Sp mono L
 - Small latencies: Sp bi P

 - Increasing number of processors:
 - Sp bi P and Sp bi L
Performance of bi-criterion heuristics highly depends on the number of available processors.

- Small number of processors:
 - Sp mono P and Sp mono L
 - Small latencies: Sp bi P

- Increasing number of processors:
 - Sp bi P and Sp bi L
Summary of experiments

- Performance of bi-criterion heuristics highly depends on the number of available processors.

- Small number of processors:
 - Sp mono P and Sp mono L
 - Small latencies: Sp bi P

- Increasing number of processors:
 - Sp bi P and Sp bi L
Real World Application

The JPEG encoder

- Image processing application
- JPEG: standardized interchange format
- Data compression
- 7 stages

![JPEG Encoder Diagram](image-url)
JPEG Encoder

Source Image Data → 122 → Scaling (177) → 128 → YUV Conversion (83) → 384 → Subsampling → 128 → Block Storage (34) → 256 → Compression Table (256) → 256 → FDCT (4926) → 512 → Quantizer (134) → 256 → Entropy Encoder (158) → 26 → Compressed Image Data

- **Scaling**: 122 ms, 177 kB
- **YUV Conversion**: 83 ms, 384 kB
- **Block Storage**: 34 ms, 256 kB
- **Subsampling**: 128 ms, 128 kB
- **FDCT**: 4926 ms, 512 kB
- **Quantizer**: 134 ms, 256 kB
- **Entropy Encoder**: 158 ms, 26 ms

Veronika.Sonigo@ens-lyon.fr December 2007
Simulation environment

- MPI application
- Message passing + sleep()
- Homogeneous processors (Salle Europe)
- Simulation of heterogeneity
- Mapping 7 stages on 10 processors
Influence of the fixed parameter on the solution

LP solutions:

minimize latency

<table>
<thead>
<tr>
<th>Fixed Parameter</th>
<th>Optimal Period</th>
<th>Fixed</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{fix} = 310$</td>
<td>$L_{opt} = 337,575$</td>
<td>P_6</td>
<td>P_3</td>
</tr>
<tr>
<td>$P_{fix} = 320$</td>
<td>$L_{opt} = 336,729$</td>
<td>P_6</td>
<td>P_3</td>
</tr>
<tr>
<td>$P_{fix} = 330$</td>
<td>$L_{opt} = 322,700$</td>
<td>P_3</td>
<td>P_3</td>
</tr>
</tbody>
</table>

minimize period

<table>
<thead>
<tr>
<th>Fixed Parameter</th>
<th>Optimal Period</th>
<th>Fixed</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{fix} = 370$</td>
<td>$P_{opt} = 307,319$</td>
<td>P_5</td>
<td>P_3</td>
</tr>
<tr>
<td>$L_{fix} = 340$</td>
<td>$P_{opt} = 307,319$</td>
<td>P_4</td>
<td>P_3</td>
</tr>
<tr>
<td>$L_{fix} = 330$</td>
<td>$P_{opt} = 322,700$</td>
<td>P_3</td>
<td>P_3</td>
</tr>
</tbody>
</table>
Overview of the different solutions

Minimize latency with $T_{\text{period}} = 310$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Intervals</th>
<th>Processors</th>
<th>Latency</th>
<th>Simu</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>[1-3][4-7]</td>
<td>6,3</td>
<td>337,575</td>
<td></td>
</tr>
<tr>
<td>Sp mono P</td>
<td>[1-3][4-7]</td>
<td>4,3</td>
<td>337,575</td>
<td>308,2</td>
</tr>
<tr>
<td>3-Explo mono</td>
<td>[1][2-3][4-7]</td>
<td>4,6,3</td>
<td>350,57</td>
<td>310,02</td>
</tr>
<tr>
<td>3-Explo mono</td>
<td>[1][2-3][4-7]</td>
<td>6,4,3</td>
<td>350,57</td>
<td>310,06</td>
</tr>
<tr>
<td>Sp bi P</td>
<td>does not succeed</td>
<td></td>
<td>(322,7)</td>
<td>307,02</td>
</tr>
</tbody>
</table>
Overview of the different solutions

Minimize period with $T_{\text{latency}} = 370$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Intervals</th>
<th>Processors</th>
<th>Period</th>
<th>Simu</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>[1][2-3][4-7]</td>
<td>5,7,3</td>
<td>307,319</td>
<td></td>
</tr>
<tr>
<td>Sp mono L</td>
<td>[1-3][4-7]</td>
<td>4,3</td>
<td>307,319</td>
<td>308,15</td>
</tr>
<tr>
<td>Sp bi L</td>
<td>[1-7]</td>
<td>3</td>
<td>322,7</td>
<td>307,00</td>
</tr>
</tbody>
</table>

Veronika.Sonigo@ens-lyon.fr December 2007 Multi-criteria Scheduling of Pipeline Workflows
Outline

1. Framework
2. Complexity results
3. Linear programming formulation
4. Heuristics
5. Experiments
6. Application Simulation
7. Conclusion
Related work

Subhlok and Vondran—Extension of their work (pipeline on hom platforms)

Mapping pipelined computations onto clusters and grids—DAG
[Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.],
three-criteria optimization

Mapping pipelined computations onto special-purpose architectures—
FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids—Use of stochastic process algebra [Benoit et al.]
Conclusion

Theoretical side
- Bi-criteria mapping problem on Communication Homogeneous platforms
- Pipeline structured applications
- Complexity study
- Linear programming formulation

Practical side
- Design of several polynomial heuristics
- Extensive simulations to compare their performance
- Simulation of a real world application
- Evaluation
Future work

Theory

- Extension to stage replication
- Extension to fork, fork-join and tree workflows
- Multi-criteria: reliability in addition to period and latency

Practice

- Real experiments on heterogeneous clusters with bigger pipeline applications, using MPI
- Comparison of effective performance against theoretical performance