Optimizing Latency and Reliability of Pipeline Workflow Applications

Anne Benoit Veronika Rehn-Sonigo Yves Robert

GRAAL team, LIP
École Normale Supérieure de Lyon
France

HCW 2008
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!

- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms

 Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms

 Even more difficult!

- Structured programming approach

 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Multi-criteria?

Latency: maximal time elapsed between beginning and end of execution of a data set

Failure: the probability that a processor fails during execution

Bi-criteria!
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Multi-criteria?

Latency: maximal time elapsed between beginning and end of execution of a data set

Failure: the probability that a processor fails during execution

Bi-criteria!
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Multi-criteria?

Latency: maximal time elapsed between beginning and end of execution of a data set

Failure: the probability that a processor fails during execution

Bi-criteria!
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Multi-criteria?

Latency: maximal time elapsed between beginning and end of execution of a data set

Failure: the probability that a processor fails during execution

Bi-criteria!
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize latency AND minimize failure probability

Several mapping strategies

The pipeline application
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize latency **AND** minimize failure probability
- Several mapping strategies

The pipeline application

\[S_1 \rightarrow S_2 \rightarrow \ldots \rightarrow S_k \rightarrow \ldots \rightarrow S_n \]
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize latency AND minimize failure probability
- Several mapping strategies

One-to-one Mapping
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize latency **AND** minimize failure probability
- Several mapping strategies

```
S_1 -> S_2 -> ... -> S_k -> ... -> S_n
```

Interval Mapping
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize latency **AND** minimize failure probability
- Several mapping strategies

\[S_1 \rightarrow S_2 \rightarrow \ldots \rightarrow S_k \rightarrow \ldots \rightarrow S_n \]

General Mapping
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize latency AND minimize failure probability
- Several mapping strategies

Interval Mapping

- Replication (one interval onto several processors) in order to increase reliability
Major Contributions

- Definition of bi-criteria mapping
- Complexity results
 - Mono-criterion problems
 - Bi-criteria problems
- Optimal algorithms
Outline

1. Framework
2. Motivating Examples
3. Complexity Results
 - Mono-criterion Problems
 - Bi-criteria Problems
4. Conclusion
The application

- n stages S_k, $1 \leq k \leq n$
- S_k:
 - receives input of size δ_{k-1} from S_{k-1}
 - performs w_k computations
 - outputs data of size δ_k to S_{k+1}
- S_0 and S_{n+1}: virtual stages representing the outside world
The platform

- \(p \) processors \(P_u, 1 \leq u \leq p \), fully interconnected
- \(s_u \): speed of processor \(P_u \)
- bidirectional link \(\text{link}_{u,v} : P_u \rightarrow P_v \), bandwidth \(b_{u,v} \)
- \(\text{fp}_u \): failure probability of processor \(P_u \) (independent of duration, meant to run for a long time)
- one-port model: each processor can either send, receive or compute at any time-step
Different platforms

Fully Homogeneous – Identical processors \((s_u = s)\) and links \((b_{u,v} = b)\): typical parallel machines

Communication Homogeneous – Different-speed processors \((s_u \neq s_v)\), identical links \((b_{u,v} = b)\): networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, \(s_u \neq s_v\) and \(b_{u,v} \neq b_{u',v'}\): hierarchical platforms, grids
Different platforms

Fully Homogeneous – Identical processors \((s_u = s)\) and links \((b_{u,v} = b)\): typical parallel machines

Failure Homogeneous – Identically reliable processors \((fp_u = fp_v)\)

Communication Homogeneous – Different-speed processors \((s_u \neq s_v)\), identical links \((b_{u,v} = b)\): networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, \(s_u \neq s_v\) and \(b_{u,v} \neq b_{u',v'}\): hierarchical platforms, grids

Failure Heterogeneous – Different failure probabilities \((fp_u \neq fp_v)\)
Mapping problem: **Interval Mapping**

- Partition of \([1..n]\) into \(m\) intervals \(I_j = [d_j, e_j]\) (with \(d_j \leq e_j\) for \(1 \leq j \leq m\), \(d_1 = 1\), \(d_{j+1} = e_j + 1\) for \(1 \leq j \leq m - 1\) and \(e_m = n\))

- Interval \(I_j\) mapped onto set of processors \(P_{\text{alloc}(j)}\)

\[
FP = 1 - \prod_{1 \leq j \leq p} (1 - \prod_{u \in \text{alloc}(j)} fp_u)
\]
Mapping problem: **Interval Mapping**

- Partition of $[1..n]$ into m intervals $I_j = [d_j, e_j]$
 (with $d_j \leq e_j$ for $1 \leq j \leq m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \leq j \leq m - 1$ and $e_m = n$)

- Interval I_j mapped onto set of processors $P_{\text{alloc}(j)}$

\[
FP = 1 - \prod_{1 \leq j \leq p} \left(1 - \prod_{u \in \text{alloc}(j)} \text{fp}_u \right)
\]
Mapping problem: **Interval Mapping**

- Partition of $[1..n]$ into m intervals $I_j = [d_j, e_j]$
 (with $d_j \leq e_j$ for $1 \leq j \leq m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \leq j \leq m - 1$ and $e_m = n$)

- Interval I_j mapped onto set of processors $P_{\text{alloc}(j)}$

\[
FP = 1 - \prod_{1 \leq j \leq p} (1 - \prod_{u \in \text{alloc}(j)} fp_u)
\]

\[
\mathcal{L} = \sum_{1 \leq j \leq p} \left\{ k_j \times \frac{\delta_{d_j-1}}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{\min_{u \in \text{alloc}(j)} (s_u)} \right\} + \frac{\delta_n}{b}
\]
Mapping problem: **Interval Mapping**

- Partition of \([1..n]\) into \(m\) intervals \(I_j = [d_j, e_j]\) (with \(d_j \leq e_j\) for \(1 \leq j \leq m\), \(d_1 = 1\), \(d_{j+1} = e_j + 1\) for \(1 \leq j \leq m - 1\) and \(e_m = n\))

- Interval \(I_j\) mapped onto set of processors \(P_{\text{alloc}(j)}\)

\[
\mathcal{FP} = 1 - \prod_{1 \leq j \leq p} \left(1 - \prod_{u \in \text{alloc}(j)} fp_u \right)
\]

\[
\mathcal{L} = \sum_{u \in \text{alloc}(1)} \frac{\delta_0}{b_{in,u}} + \sum_{1 \leq j \leq p} \max_{u \in \text{alloc}(j)} \left\{ \frac{\sum_{i=d_j}^{e_j} w_i}{s_u} + \sum_{v \in \text{alloc}(j+1)} \frac{\delta_{e_j}}{b_{u,v}} \right\}
\]

Veronika.Sonigo@ens-lyon.fr
HCW 2008
Optimizing Latency and Reliability
10/27
Objective function?

Mono-criterion

- Minimize L
- Minimize FP

Bi-criteria

- How to define it?
 Minimize $\alpha \cdot L + \beta \cdot FP$?
- Values which are not comparable
- Minimize L for a fixed failure probability
- Minimize FP for a fixed latency
Objective function?

Mono-criterion

- Minimize \mathcal{L}
- Minimize FP

Bi-criteria

- How to define it?
 Minimize $\alpha \mathcal{L} + \beta FP$?
- Values which are not comparable
- Minimize \mathcal{L} for a fixed failure probability
- Minimize FP for a fixed latency
Objective function?

Mono-criterion

- Minimize \mathcal{L}
- Minimize FP

Bi-criteria

- How to define it?
 Minimize $\alpha \mathcal{L} + \beta FP$?
- Values which are not comparable
 - Minimize \mathcal{L} for a fixed failure probability
 - Minimize FP for a fixed latency
Objective function?

Mono-criterion

- Minimize \mathcal{L}
- Minimize FP

Bi-criteria

- How to define it?
 Minimize $\alpha \mathcal{L} + \beta FP$
- Values which are not comparable
- Minimize \mathcal{L} for a fixed failure probability
- Minimize FP for a fixed latency
Outline

1. Framework

2. Motivating Examples

3. Complexity Results
 - Mono-criterion Problems
 - Bi-criteria Problems

4. Conclusion
Mono-criterion - Interval Mapping

Minimize \mathcal{L}

Comm. Hom. Platform

Hetero. Platform
Mono-criterion - Interval Mapping

Minimize \mathcal{L}

Comm. Hom. Platform

Hetero. Platform

Veronika.Sonigo@ens-lyon.fr HCW 2008
Optimizing Latency and Reliability 13/27
Mono-criterion - Interval Mapping

Minimize \mathcal{L}

Comm. Hom. Platform

Hetero. Platform
Bi-criteria - Interval Mapping

Minimize FP with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22

$w_1 = 1$
$w_2 = 100$

$s = 1, fp = 0.1$
$s = 100, fp = 0.8$
Bi-criteria - Interval Mapping

Minimize \(FP \) with fixed latency

Communication homogeneous - Failure heterogeneous

Fixed latency: 22

\[w_1 = 1, \quad w_2 = 100 \]

\[10 + 101 \gg 22 \]

\(s = 1, \; fp = 0.1 \)

\(s = 100, \; fp = 0.8 \)
Bi-criteria - Interval Mapping

Minimize FP with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22

$10 \rightarrow S_1 \rightarrow 1 \rightarrow S_2 \rightarrow 0$

$w_1 = 1 \quad w_2 = 100$

$20 + 101/100 < 22$

$FP = (1 - (1 - 0.8^2)) = 0.64$
Minimize FP with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22

$w_1 = 1, w_2 = 100$

$30 + 101/100 > 22$

$s = 1, fp = 0.1$

$s = 100, fp = 0.8$
Minimize FP with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22

$10 + 1/1 + 10 \times 1 + 100/100 = 22$

$FP : 1-(1-0.1)\times(1-0.8^{10}) < 0.2$
Outline

1. Framework
2. Motivating Examples
3. Complexity Results
 - Mono-criterion Problems
 - Bi-criteria Problems
4. Conclusion
Mono-criterion Problems

Minimize the failure probability?

Theorem 1

Minimizing the failure probability can be done in polynomial time.

- Replicate the whole pipeline as a single interval.
- Use all processors.
- True for all platform types.
Mono-criterion Problems

Minimize the failure probability?

Theorem 1

Minimizing the failure probability can be done in polynomial time.

- Replicate the whole pipeline as a single interval.
- Use all processors.
- True for all platform types.
Mono-criterion Problems

Minimize the failure probability?

Theorem 1
Minimizing the failure probability can be done in polynomial time.

- Replicate the whole pipeline as a single interval.
- Use all processors.
- True for all platform types.
Mono-criterion Problems

Minimize the latency?

Theorem 2

Minimizing the latency can be done in polynomial time on *Communication Homogeneous* platforms.

Idea:

- Latency is optimized by suppressing all communications.
- Replication increases latency (additional communication).

Map whole pipeline on fastest processor.
Mono-criterion Problems

Minimize the latency?

Theorem 2

Minimizing the latency can be done in polynomial time on *Communication Homogeneous* platforms.

Idea:

- Latency is optimized by suppressing all communications.
- Replication increases latency (additional communication).

Map whole pipeline on fastest processor.
Minimize the latency?

Theorem 2

Minimizing the latency can be done in polynomial time on Communication Homogeneous platforms.

Idea:

- Latency is optimized by suppressing all communications.
- Replication increases latency (additional communication).

Map whole pipeline on fastest processor.
Mono-criterion Problems

Minimize the latency?
What about *Fully Heterogeneous* platforms?

Remember example:

![Diagram showing two stages S1 and S2 with one-to-one mappings.]

Theorem 3

Minimizing the latency is NP-hard on *Fully Heterogeneous* platforms for one-to-one mappings.
Mono-criterion Problems

But ... considering general mappings ...

Theorem 4
Minimizing the latency is polynomial on *Fully Heterogeneous* platforms for general mappings.
Mono-criterion Problems

But ... considering general mappings ...

Theorem 4

Minimizing the latency is polynomial on *Fully Heterogeneous* platforms for general mappings.

Optimal mapping: Shortest path in the graph.
Mono-criterion Problems

But ... considering general mappings ...

Theorem 4
Minimizing the latency is polynomial on *Fully Heterogeneous* platforms for general mappings.

Optimal mapping: Shortest path in the graph.

Interval mapping: still an open problem
Bi-criteria Problems

\[1 - (1 - fp^{a+b}) \leq 1 - ((1 - fp^a)(1 - fp^b)) \]

Lemma

On *Fully Homogeneous* and *Communication Homogeneous-Failure Homogeneous* platforms, there is a mapping of the pipeline as a single interval which minimizes the failure probability under a fixed latency threshold, and there is a mapping of the pipeline as a single interval which minimizes the latency under a fixed failure probability threshold.
Bi-criteria Problems

\[1 - (1 - fp^{a+b}) \leq 1 - ((1 - fp^a)(1 - fp^b)) \]

Lemma

On *Fully Homogeneous* and *Communication Homogeneous-Failure Homogeneous* platforms, there is a mapping of the pipeline as a single interval which minimizes the failure probability under a fixed latency threshold, and there is a mapping of the pipeline as a single interval which minimizes the latency under a fixed failure probability threshold.
Bi-criteria Problems

\[1 - (1 - fp^{a+b}) \leq 1 - ((1 - fp^a)(1 - fp^b))\]

Lemma

On *Fully Homogeneous* and *Communication Homogeneous-Failure Homogeneous* platforms, there is a mapping of the pipeline as a single interval which minimizes the failure probability under a fixed latency threshold, and there is a mapping of the pipeline as a single interval which minimizes the latency under a fixed failure probability threshold.
Fully Homogeneous platforms

Minimize FP for a fixed latency \mathcal{L}

Algorithm 1

begin

Find k maximum, such that

$$k \times \frac{\delta_0}{b} + \sum_{1 \leq j \leq n} \frac{w_j}{s} + \frac{\delta_n}{b} \leq \mathcal{L}$$

Replicate the whole pipeline as a single interval onto the k (most reliable) processors

end
Fully Homogeneous platforms

Minimize FP for a fixed latency \mathcal{L}

Algorithm 1

begin

Find k maximum, such that

$$k \times \frac{\delta_0}{b} + \frac{\sum_{1 \leq j \leq n} w_j}{s} + \frac{\delta_n}{b} \leq \mathcal{L}$$

Replicate the whole pipeline as a single interval onto the k (most reliable) processors

end
Fully Homogeneous platforms

Minimize \mathcal{L} for a fixed failure probability FP

Algorithm 2

```plaintext
begin
  Find $k$ minimum, such that
  
  $$1 - (1 - fp^k) \leq FP$$

  Replicate the whole pipeline as a single interval onto the $k$ (most reliable) processors

end
```
Fully Homogeneous platforms

Minimize \mathcal{L} for a fixed failure probability FP

Algorithm 2

\begin{verbatim}
begin
 Find k minimum, such that
 \[1 - (1 - fp^k) \leq FP\]
 Replicate the whole pipeline as a single interval onto the k (most reliable) processors
end
\end{verbatim}
Other Platform Configurations

Communication Homogeneous platforms - Failure Homogeneous

Slightly modified *Fully Homogeneous* algorithms are optimal.

Communication Homogeneous platforms - Failure Heterogeneous

Lemma does not hold anymore.
Remember example.
Open problem

Fully Heterogeneous platforms

On *Fully Heterogeneous* platforms, the bi-criteria (decision problems associated to the) optimization problems are NP-hard.
Other Platform Configurations

Communication Homogeneous platforms - Failure Homogeneous

Slightly modified *Fully Homogeneous* algorithms are optimal.

Communication Homogeneous platforms - Failure Heterogeneous

Lemma does not hold anymore.
Remember example.

Open problem

Fully Heterogeneous platforms

On *Fully Heterogeneous* platforms, the bi-criteria (decision problems associated to the) optimization problems are NP-hard.
Other Platform Configurations

Communication Homogeneous platforms - Failure Homogeneous
Slightly modified *Fully Homogeneous* algorithms are optimal.

Communication Homogeneous platforms - Failure Heterogeneous
Lemma does not hold anymore.
Remember example.
Open problem

Fully Heterogeneous platforms
On *Fully Heterogeneous* platforms, the bi-criteria (decision problems associated to the) optimization problems are NP-hard.
1. Framework

2. Motivating Examples

3. Complexity Results
 - Mono-criterion Problems
 - Bi-criteria Problems

4. Conclusion
Related work

Subhlok and Vondran Latency and throughput optimization on pipeline graphs (homogeneous platforms only)

Benoit et al. Extension of the work of Subholk and Vondran

Mapping pipelined computations onto clusters and grids DAG

[Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.], three-criteria optimization

Mapping pipelined computations onto special-purpose architectures FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Real World Application Motion-JPEG
Conclusion

- Bi-criteria mapping problem: latency and reliability
- Pipeline structured workflow applications
- Complexity study

Interval Mapping

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-crit.</td>
<td>(\mathcal{L})</td>
<td>polyn.</td>
<td>polyn.</td>
</tr>
<tr>
<td></td>
<td>(\mathcal{FP})</td>
<td>polyn.</td>
<td>polyn.</td>
</tr>
<tr>
<td>Bi-crit.</td>
<td>(\mathcal{L} - \mathcal{FP}) hom</td>
<td>polyn.</td>
<td>polyn.</td>
</tr>
<tr>
<td></td>
<td>(\mathcal{L} - \mathcal{FP}) het</td>
<td>polyn.</td>
<td>?</td>
</tr>
</tbody>
</table>

\(\text{min } \mathcal{L}\), one-to-one mapping: NP

\(\text{min } \mathcal{L}\), general mapping: polynomial
Conclusion

- Bi-criteria mapping problem: latency and reliability
- Pipeline structured workflow applications
- Complexity study

Interval Mapping

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{L}</td>
<td>polyn.</td>
<td>polyn.</td>
<td>$\mathbb{?}$</td>
</tr>
<tr>
<td>\mathbb{FP}</td>
<td>polyn.</td>
<td>polyn.</td>
<td>polyn.</td>
</tr>
<tr>
<td>$\mathcal{L} \cdot \mathbb{FP}$</td>
<td>polyn.</td>
<td>polyn.</td>
<td>NP</td>
</tr>
<tr>
<td>$\mathcal{L} \cdot \mathbb{FP}$</td>
<td>polyn.</td>
<td>$\mathbb{?}$</td>
<td>NP</td>
</tr>
</tbody>
</table>

- $\min \mathcal{L}$, one-to-one mapping: NP
- $\min \mathcal{L}$, general mapping: polynomial
Future work

Theory

- Extension to fork, fork-join and tree workflows
- Multi-criteria: throughput in addition to reliability and latency

Practice

- Design of multi-criteria heuristics
- Comparison of effective performance against theoretical performance
- Real experiments on heterogeneous clusters with different applications, using MPI