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Abstract. An addition chain for a positive integer n is a set 1 = a0 < a1 < · · · < ar = n of
integers such that for each i ≥ 1, ai = aj + ak for some k ≤ j < i. This paper is concerned with
some of the computational aspects of generating minimal length addition chains for an integer n.
Particular attention is paid to various pruning techniques that cut down the search time for such
chains. Certain of these techniques are influenced by the multiplicative structure of n. Later sections
of the paper present some results that have been uncovered by searching for minimal length addition
chains.
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1. Introduction. Dellac [6] asks what is the minimum number of multiplications
required to raise a number A to the power m. Since exponents are added when powers
of the same base are multiplied, this gives rise to the concept of an addition chain.
This topic has been studied somewhat extensively over the intervening 100 years.
Many questions have been posed concerning this deceptively simple problem. While
some of these have been answered, others remain tantalizingly open.

This paper explores some of the computational aspects of generating minimal
length addition chains for an integer n. The emphasis on computation is of interest
in light of the surprising discoveries that the generation of minimal length addition
chains has uncovered, some of which led Knuth [12] to say that perhaps no conjecture
concerning addition chains is safe. Some of these discoveries will be mentioned in
section 10.

The algorithm to be explored for generating minimal length addition chains is
a backtracking algorithm that uses branch and bound methods to prune the search
tree. Since the algorithm is exponential in nature, particular attention will be paid
to pruning the search tree. The pruning bounds dramatically increase the efficiency
of the search and increase the feasibility of pursuing a variety of questions concerning
addition chains. For example, the determination of c(r), the first integer requiring r
steps in an addition chain of minimal length, is greatly facilitated by these methods.

Of course, the trick when pruning a search tree is not to cut off too much. Estab-
lishing the validity of the pruning bounds used in the backtracking algorithm will be
a primary focus of what follows. It will be seen that certain classes of pruning bounds
are affected by the multiplicative structure of n.

The paper is organized as follows. Section 2 includes some notation and prior
results. Section 3 develops the notion of the search tree for addition chains. In
section 4, an algorithm is discussed which will find all the minimal addition chains
for the integer n. The algorithm is adapted easily to find just one such chain. In
section 5, the pruning bounds that come most readily to mind are developed. In
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section 6, improvements are made to class 1 bounds. Section 7 discusses pruning
bounds that involve more than one member of an addition chain. In section 8, class
1 and class 2 bounds are applied to n and their effectiveness is explored. In section 9,
class 1 pruning bounds are refined in a way that is influenced by the multiplicative
nature of n, and a summary is given of the pruning bounds developed in the paper.
Section 10 further explores the efficiency of the various classes of pruning bounds and
presents some computational results found concerning the addition chain problem.
Finally, in section 11 concluding remarks are made with some reference to future
directions.

2. Preliminaries. An addition chain for a positive integer n is a set 1 = a0 <
a1 < · · · < ar = n of integers such that for every i ≥ 1, ai = aj+ak for some k ≤ j < i.
The minimal length, r, of an addition chain for n is denoted by l(n). As in Knuth [12],
λ(n) = blog2 nc, and ν(n) will denote the number of ones in the binary representation
of n. The function NMC(n) was introduced by the author [19] and denotes the
number of minimal addition chains for n. For n = 29, a minimal addition chain is
1, 2, 4, 8, 9, 13, 16, 29. In base 2, 29 = 111012. Thus, ν(29) = 4, λ(29) = blog2 29c = 4,
l(29) = 7, and, as it turns out, NMC(29) = 132.

As Knuth observed, either λ(ai) = λ(ai−1) or λ(ai) = λ(ai−1) + 1. In the former
case, step i is called a small step and is called a big step otherwise. There are exactly
λ(n) big steps in any chain for n. The number of steps, r, in an addition chain for n
can be expressed as r = λ(n) +N(n), where N(n) denotes the number of small steps
in the chain. It should be noted that N(n) is chain dependent. Minimizing N(n) will
result in a minimal length addition chain for n. If j = i − 1, then step i is called a
star step. An addition chain that consists entirely of star steps is called a star chain.
If j = k = i− 1, then step i is called a doubling.

Theoretically developed lower bounds for l(n) provide starting values from which
to start looking for minimal length addition chains. It is conjectured [12] that l(n) ≥
λ(n) + dlog2 ν(n)e. If ν(n) ≥ 2m + 1, the conjecture states that l(n) ≥ λ(n) +m+ 1.
The conjecture has been established for m = 0, 1, 2, 3 [17], and it is known that
the conjecture holds for all n ≤ 327,678. Schönhage [14] has shown that l(n) ≥
log2 n+ log2 ν(n)− 2.13. Thus, l(n) ≥ dlog2 n+ log2 ν(n)− 2.13e in any event.

3. The search tree. A tree organization for the solution space for finding ad-
dition chains for n is as follows:
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Fig. 3.1.

This tree organization is found in a paper by Chin and Tsai [5] in which they
develop algorithms for finding minimal or near minimal addition chains for integers n.
The tree shall be referred to as the search tree. The algorithm in this paper traverses
the search tree in a fashion similar to that found in [5]. The search is depth first and
considers larger numbers first (i.e., all paths that start 1, 2, 4 are taken before any path
that starts 1, 2, 3). In what follows the emphasis is on developing and establishing the
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validity of pruning bounds used in the branch and bound method to greatly speed up
the search for minimal addition chains.

If n = 1 is at level 0, then 2 is at level 1, 3 and 4 are at level 2, etc. The children of
a given node ai at level i are all numbers ai+1 > ai formed as sums aj +ak, k ≤ j ≤ i
of numbers in the path from 1 to ai. Any addition chain for an integer n can be found
by taking the path from 1 down to the appropriate occurrence of n in the search tree.
The tree grows exponentially as can be seen by the fact that each integer at level k
in the tree has at least k + 1 children. This means that the number of paths to level
k is at least k! To find l(n) and NMC(n) is to find on what level n appears first and
how many times it appears on this level. If 1 = a0, a1, . . . , ai is a partial chain, then
br[ai] is the branch of the search tree that has ai for its root.

4. Algorithm for finding all minimal addition chains. The backtracking
algorithm for finding all minimal addition chains for an integer n starts by setting
r = λ(n) + dlog2 ν(n)e if n ≤ 327,678 or ν(n) ≤ 16. Otherwise, it sets r = dlog2 n +
log2 ν(n)− 2.13e. If no chain of length r is found, then set r to r+ 1 and repeat. The
process is continued until a length is tried for which chains for n exist. This length
will be l(n). By the binary chain method [12], l(n) ≤ λ(n) + ν(n)− 1.

Starting with minimum estimates for l(n) and working up is preferable to over
estimating l(n) and working down since it minimizes the number of small steps in the
addition chains being generated. It is the increase in small steps that adds significantly
to the search time.

In what follows, lb, which stands for lower bound, will be used in place of r. The
search commences with a lower bound lb for l(n) and increases this value incrementally
if necessary. The following algorithm traverses the search tree and develops partial
addition chains 1 = a0, a1, . . . , ai into minimal length addition chains for n. A stack
is maintained which holds the possible children of ai at each stage. The children of
ai constitute a stack segment.

Algorithm find–minimum–chains(n).
begin

if n ≤ 327,678 or ν(n) ≤ 16 then
lb = λ(n) + dlog2 ν(n)e

else
lb = dlog2 n+ log2 ν(n)− 2.13e

end if
a0 = 1, a1 = 2 (first two elements of an addition chain)
loop lb–value

determine pruning bounds
i = 1
loop find–chains

if i < lb then
determine whether to retain ai
if ai is retained then

stack the possibilities for ai+1 in increasing order in next stack
segment (all sums aj + ak > ai, k ≤ j < i+ 1)

increment i by 1
let ai be the element on top of the stack
if ai = n then

chain is found
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back up in the search tree until a node is found that needs further
expanding (i.e., take the next element off the stack that is not
in the stack segment of ai)

end if
else

back up in the search tree until a node is found that needs further
expanding (i.e., take the next element off of the stack)

let ai be the element on top of the stack
end if

else
back up in the search tree until a node is found that needs further

expanding (i.e., take the next element off of the stack that is not
in the stack segment of ai)

let ai be the element on top of the stack
end if

end loop find chains
if no chains found then

increase lb by 1
else

exit loop lb–value
end if

end loop lb–value.

When an element ai is taken off of the top of the stack, it is either n, in which case
a minimal addition chain for n has been found, or it becomes part of a partial chain
1 = a0, a1, . . . , ai provided that it is not pruned from the search tree. The possible
children ai+1 of ai are put on the stack in increasing order. Some pruning can take
place at this point, also. Backing up in the search tree is accomplished by taking
elements off the stack. The stack is popped until an element is found that cannot be
pruned. If, for instance, it is determined that ai is to be pruned and that this exhausts
all possibilities from ai−1, then the next element on the stack is the next child of ai−2

in decreasing order (if children of ai−2 still remain; otherwise, backtrack further). The
next child of ai−2 (the new ai−1) is added to the partial chain 1 = a0, a1, . . . , ai−2

provided that it is not pruned, and its children are added to the stack. When the
algorithm backs up to a1 = 2, it will terminate since the 1, 2, 4 and 1, 2, 3 branches
(br[4] and br[3]) will have been traversed, and these are the only possibilities from
level 2 in the search tree. At this point, either all the minimal addition chains for n
will have been found or none will have been found, in which case lb is increased by 1
and the process is repeated. The algorithm will exit loop find–chains when the stack
is empty. A slight variation of the algorithm will terminate once the first addition
chain for n is found.

It should be mentioned that this algorithm is particularly well suited for finding
all the minimal length addition chains for n. If one were interested in finding only
one such chain, other strategies might be employed such as limiting the search to star
chains at first and checking only for nonstar chains if no star chains are found. The
pruning bounds, however, apply to whatever strategy is employed for traversing the
search tree.

Two classes of bounds will be discussed. The first class (class 1 bounds) concerns
bounds for ai, while the second class (class 2 bounds) concerns bounds for ai + ai−1.
Class 1 bounds will be refined to further improve the efficiency of the search. Finally,



GENERATION OF MINIMAL LENGTH ADDITION 1251

the somewhat curious phenomenon will be explored of how class 1 bounds can be
improved for integers not divisible by integers of the form 2i + 1.

5. Pruning bounds (class 1). Since ai ≤ 2ai−1 for 1 ≤ i ≤ r, it follows that
if aj and ai are two members of an addition chain such that ai > 2maj , then it will
require more than m steps to get from aj to ai no matter how the chain is constructed.
This can be used as follows to prune the search tree.

The subscript, i, of an integer ai in an addition chain for n represents the number
of steps that have been taken to reach ai. If a chain of a certain length, lb = i+m, is
being sought for an integer n, and if 2mai < n, then it will be impossible to get to n
from ai in m = lb − i steps. The branch br[ai] of the search tree emanating from ai
can be eliminated. If a chain of length 4 is being sought for n = 16, then the partial
chain 1, 2, 3 cannot lead to a 4-step chain for 16 since 223 < 16. This eliminates br[3]
which cuts out 12 possible paths to level 4 (or roughly half of the 25 paths to this
level).

If lb has been set, then there will be lb − i steps in the chain from ai to n if
such a chain exists. If 2lb−iai < n, then no chain for n which includes ai exists of
length lb, and the branch br[ai] can be pruned from the search tree. It follows that if
ai < n/2lb−i, then br[ai] is pruned from the tree. This eliminates at least lb!/i! paths
to search.

If ai < dn/2lb−ie, there are two cases for the integer ai. If n/2lb−i is an integer,
then ai < n/2lb−i, and if it is not an integer, then ai < dn/2lb−ie implies that
ai ≤ bn/2lb−ic. Since n/2lb−i is not an integer, it follows that ai < n/2lb−i. In any
event, if ai < dn/2lb−ie, then br[ai] can be pruned from the tree. This leads to the
set of class 1 bounds

(A) bi = dn/2lb−ie, i = 0, . . . , lb.

We have the following theorem.
Theorem 1. Let {bi} denote bounding sequence (A) for a positive integer n. If

for some step i in an addition chain for n, ai < bi, then the partial chain a0, a1, . . . , ai
cannot lead to a chain of length lb for n, and br[ai] can be pruned from the search
tree.

For example, suppose n = 39 = 1001112. Then lb = λ(39) + dlog2 ν(39)e =
5+2 = 7. The set of bounds {d39/27−ie} = {1, 1, 2, 3, 5, 10, 20, 39}. The partial chain
1, 2, 3, 5, 8, 9 cannot lead to a chain of length 7 for 39 since a5 = 9 < 10 = b5.

At each stage in an addition chain’s development, the possible choices for the
next element ai+1 after ai are added as a new stack segment. This includes all ai+1

such that ai+1 = aj + ak for 0 ≤ k ≤ j ≤ i and ai < ai+1 ≤ n. In the partial
chain 1, 2, 3, 5, 8, 13 for 39 the possible choices for the next element in the chain are
14, 15, 16, 18, 21, and 26. The bound associated with the sixth step in the chain is 20.
Since 18 < 20, it can be discarded, as can 14, 15, and 16. The numbers 21 and 26 are
added to the stack.

The bounds {dn/2lb−ie} can be found by dividing n by 2 and each successive
result by 2. At each stage the result is rounded up to the nearest integer if necessary.
This follows from the fact that ddn/2lb−ie/2e = dn/2lb−i+1e. If ai ≥ bi = dn/2lb−ie,
br[ai] is retained and all possibilities for ai+1 such that ai < ai+1 ≤ n and ai+1 ≥
bi+1 = dn/2lb−(i+1)e are stored for future consideration.

6. Class 1 bounds refined. If n is not a power of 2, the bounds {dn/2lb−ie}
can be improved by the following considerations. For an odd integer n, the last step
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in an addition chain for n is n = ar = ar−1 + ak for some k < r − 1. The last step
must be a star step in a minimal chain since otherwise, ar−1 could be eliminated,
resulting in a shorter chain. Also, k < r− 1, or else n would be even. Thus, if r = lb,
then n ≤ alb−1 + alb−2, which implies that n ≤ 3alb−2.

It follows that alb−2 cannot lead to a chain of lb steps for n unless alb−2 ≥
dn/3e. alb−2 will not be greater than or equal to dn/3e unless alb−3 ≥ dn/(3 · 2)e,
alb−4 ≥ dn/(3 · 22)e, etc. Thus, br[ai] is retained only when ai ≥ dn/(3 · 2lb−(i+2)e for
i = 0, . . . , lb− 2, and alb−1 ≥ dn/2e. The bounds are

(B) bi =

{ dn/(3 · 2lb−(i+2))e 0 ≤ i ≤ lb− 2,
dn/2lb−ie lb− 1 ≤ i ≤ lb.

For n = 39, the bounds are {1, 1, 2, 4, 7, 13, 20, 39} which is a significant improve-
ment over bounding sequence (A).

Regardless of whether n is even or odd, it can be expressed uniquely as n = 2tm,
where m is odd and t ≥ 0. Bounding sequence (B) generalizes to

(C) bi =

{ dn/(3 · 2lb−(i+2)e 0 ≤ i ≤ lb− t− 2,
dn/2lb−ie lb− t− 1 ≤ i ≤ lb.

This leads to the following theorem.
Theorem 2. 1Let {bi} denote bounding sequence (C) for a positive integer n. If

for some step i in an addition chain for n, ai < bi, then the partial chain a0, a1, . . . , ai
cannot lead to a chain of length lb for n, and br[ai] can be pruned from the search
tree.

Proof. Suppose n = 2tm where m is odd. Bounding sequence (C) can be split
into two parts.

Region 1. n, n/2, n/22, . . . , n/2t−1,m = n/2t, dm/2e.
These are the bounds in reverse order corresponding to steps i such that lb−t−1 ≤

i ≤ lb.
Region 2. dm/3e, dm/(3 · 2)e, . . . , dm/(3 · 2lb−t−(i+2))e = dn/(3 · 2lb−(i+2))e, . . . .
These are the bounds in reverse order corresponding to steps i such that 0 ≤ i ≤

lb− t− 2.
In Region 1, bi = dn/2lb−ie, while in Region 2, bi = dn/(3 · 2lb−(i+2))e. This

latter bound is determined by noting that blb−t−2 = dm/3e, blb−t−3 = dm/(3 · 2)e,
. . . , blb−t−j = dm/(3 · 2j−2)e = dn/(3 · 2t+j−2)e, . . . . If i = lb− t− j, then t+ j − 2 =
lb− (i+ 2).

For Region 1, if ai < dn/2lb−ie, then br[ai] can be pruned from the search tree
by the same reasoning used in Theorem 1.

For Region 2, suppose ai < dm/(3 · 2lb−t−(i+2))e = dn/(3 · 2lb−(i+2))e. Then
ai < n/(3 · 2lb−i−2). Assume n is not a power of two since, if it is a power of two,
Region 2 does not apply. Then every step in a chain for n cannot be a doubling.
Suppose step s is a nondoubling in which case as ≤ as−1 + as−2. If s > i+ 1, then

as ≤ as−1 + as−2 ≤ 2(s−1)−iai + 2(s−2)−iai
= 2(s−2)−i(2ai + ai) = 2(s−2)−i(3ai).

1Note that in this theorem and following theorems, ai will often be replaced by 2ai−1 in a set
of inequalities since ai ≤ 2ai−1. More generally, for j < i, ai will be replaced by 2i−jaj since
ai ≤ 2i−jaj . Additional inequalities such as 4ai + ai−1 ≤ 3(ai + ai−1) also follow from the fact that
ai ≤ 2ai−1. These and other similar inequalities will be used frequently.
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It follows that n = alb ≤ 2lb−sas ≤ 2lb−s2(s−2)−i(3ai) < (2lb−2−i)(3)(n/(3 ·2lb−i−2) =
n. Of course n < n is a contradiction. Thus, there can be no nondoubling step in the
chain after step i + 1. If every step in the chain after step i + 1 is a doubling, then
n = alb = 2lb−(i+1)ai+1. This means that 2lb−i−1 divides n. Since i ≤ lb − t − 2, it
follows that lb− i− 1 ≥ t+ 1. This is a contradiction since t is the highest power of
2 dividing n.

Thus, for any ai in Region 2 which is less than the corresponding bound, br[ai]
can be pruned from the search tree.

7. Pruning bounds (class 2). More can be done by way of pruning the search
tree by considering the sum ai + ai−1. It is often the case that if this sum is less
than bi+1 of bounding sequence (C), then br[ai] can be pruned from the search tree.
Bounding sequences for ai + ai−1 will be called class 2 bounds. (Note: The same
bounding sequence, when used for ai, is called a class 1 bounding sequence and, when
used for ai + ai−1, is called a class 2 bounding sequence.) It is a somewhat curious
fact that if n is a multiple of 5, then bounding sequence (C) must be replaced by
bounding sequence (A) when used as a class 2 bound. First, the case for odd n will
be considered. Bounding sequence (B) is used when n is odd, and n is not a multiple
of 5. It is convenient to split it into three regions.

Region 1. n, dn/2e.
Region 2. dn/3e.
Region 3. dn/(3 · 2)e, . . . , dn/(3 · 2lb−(i+2))e, . . . .
In Region 1, bi+1 is either n or dn/2e; that is, i = lb− 1 or i = lb− 2.
i = lb−1. In this case, ai+ai−1 < bi+1 implies that alb−1+alb−2 < blb = alb = n.

Thus, n must be alb−1 + alb−1 = 2alb−1. This contradicts the fact that n is odd.
i = lb− 2. If alb−2 + alb−3 < blb−1 = dn/2e, then alb−2 + alb−3 < n/2. Since n

is odd, n ≤ alb−1 + alb−2 ≤ 2alb−2 + 2alb−3 < 2(n/2) = n which is a contradiction.
For Region 2, i = lb − 3. If alb−3 + alb−4 < blb−2 = dn/3e, then alb−3 + alb−4 <

n/3. We assume that ai ≥ bi for i = 1, . . . , n, since it has been shown previously
(Theorem 2) that if ai < bi for any i, then a chain of lb steps for n is not possible.
This means that alb−2 ≥ n/3. Since alb−3+alb−4 < n/3, it follows that alb−2 = 2alb−3.
Step lb − 1 must be a star step since step lb − 2 is a doubling. The possibilities for
alb−1 need to be considered. These can be drawn from the set {alb−2 +aj , j ≤ lb−2}.
In what follows, n ≤ alb−1 + alb−2 since n is odd, and alb−2 = 2alb−3.

(i) alb−1 = alb−2 + alb−4:

n = alb ≤ alb−1 + alb−2 = 4alb−3 + alb−4 ≤ 3(alb−3 + alb−4) < 3(n/3) = n.

Clearly, no possibilities alb−2 + aj , j < lb− 4 need be considered.
(ii) alb−1 = alb−2 + alb−3:

Since n is odd and step lb is a star step, the possibilities for step lb can be drawn from
the set {alb−1 + aj , j ≤ lb− 2}.

(iia) If n = alb−1 + alb−2, then n = 5alb−3. Thus, 5 divides n. If n =
95 = 10111112, then λ(95) = 6, and ν(95) = 6. lb = λ(95) + dlog2 ν(95)e = 9. The
bounding sequence {bi} is {1, 1, 1, 2, 4, 8, 16, 32, 48, 95}. An addition chain for 95 is
1, 2, 3, 5, 8, 11, 19, 38, 76, 95. Note that alb−3 + alb−4 = 19 + 11 = 30 < 32 = blb−2.
Thus, when n is divisible by 5, there often exist minimal addition chains for n when
alb−3 + alb−4 < blb−2.

(iib) If n = alb−1 + alb−3, this leads to the contradiction that n < n by
similar reasoning as that used in (i). Again no possibilities n = alb−1 + aj , j < lb− 3
need be considered.
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(iii) alb−1 = alb−2 + alb−2:
If n = alb−1 +alb−2, then n = 3(2alb−3) is even, and if n = alb−1 +aj , j < lb− 3, then
n < n as before. Since lb must be a star step, the only possibility is n = alb−1 + alb−3

in which case n = 5alb−3. n is divisible by 5 and, as in case (iia), minimal chains for
n often exist when alb−3 + alb−4 < blb−2.

For Region 3, i ≤ lb− 4. If ai + ai−1 < bi+1 = dn/(2lb−i−3 · 3)e, then ai + ai−1 <
n/(2lb−i−3 · 3). It follows that

alb−3 + alb−4 < 2(lb−3)−iai + 2(lb−4)−(i−1)ai−1

= 2(lb−3)−i(ai + ai−1) < n/3.

It follows from the same arguments as used for Region 2 that br[ai] will be pruned
from the search tree unless n is a multiple of 5.

These considerations establish the following theorem.
Theorem 3. Let n be odd, n not a multiple of 5, and let {bi} be bounding

sequence (B). If ai + ai−1 < bi+1 for some i, then the partial chain 1 = a0, a1, . . . , ai
cannot lead to a minimal addition chain for n.

Comment. From Theorem 1, it is known that ai ≥ bi if 1 = a0, a1, . . . , ai is to
lead to a minimal chain for n. The following example shows that additional branches
can be pruned from the search tree when ai + ai−1 < bi+1.

For n = 39, {bi} = {1, 1, 2, 4, 7, 13, 20, 39}. A partial chain 1, 2, 3, 5, 7 satisfies the
requirement that ai ≥ bi. However, a4 + a3 = 7 + 5 < 13 = b5. Thus, br[7] = br[a4]
can be pruned from the search tree.

A generalization. Theorem 3 generalizes to the case where n = 2tm and m is
odd. In this case, bounding sequence (C) is used, and it is convenient to split it into
the following regions.

Region 1. n, n/2, n/22, . . . , n/2t−1,m = n/2t, dm/2e.
Region 2. dm/3e.
Region 3. dm/(3 · 2)e, . . . , dm/(3 · 2lb−t−(i+2)e = dn/(3 · 2lb−(i+2))e, . . . .
Theorem 4. Suppose n is not a multiple of 5 and {bi} is bounding sequence (C).

If ai+ai−1 < bi+1 for some i and n 6= 2lb−iai for i in Region 1, then the partial chain
1 = a0, a1, . . . , ai cannot lead to a minimal addition chain for n.

Note. The condition that n 6= 2lb−iai for i in Region 1 is necessary as can be
seen from the following example. 1, 2, 3, 5, 7, 14, 21, 42, 84, 168, 336 is a minimal chain
for n = 336. Bounding sequence (C) for 336 is 1, 1, 2, 4, 7, 11, 21, 42, 84, 168, 336. Even
though a6 + a5 = 21 + 14 < 42 = b7,br[a6] cannot be pruned from the search tree.

The proof of Theorem 4, while tedious, is analogous to the proof of Theorem 3,
with lb − t − i replacing lb − i, i ≥ 0. Also, some step s ≥ lb − t will need to be a
nondoubling or else 2t+1 will divide n, which contradicts the fact that 2t is the highest
power of 2 dividing n. The element as in Theorem 4 plays a role similar to that of n
in Theorem 3 since they are both formed by nondoublings.

Proof.
Region 1. lb− t− 2 ≤ i ≤ lb− 1. Note that if i ≥ lb− t− 2, then i+ 1 ≥ lb− t− 1,

and bi+1 will be in Region 1. If ai + ai−1 < bi+1 = dn/2lb−(i+1)e, then suppose there
exists a step s > i that is not a doubling. Then

as ≤ as−1 + as−2 ≤ 2(s−1)−iai + 2(s−2)−(i−1)ai−1 = 2(s−1)−i(ai + ai−1).

It follows that

n = alb ≤ 2lb−sas ≤ 2lb−s2(s−1)−i(ai + ai−1) < 2(lb−1)−i(n/2(lb−1)−i) = n.
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Thus, every step after step i must be a doubling. This means that n = 2lb−iai if
the partial chain 1 = a0, a1, . . . , ai can be extended to a chain of length lb for n.

Region 2. i = lb− t− 3 for bi+1 = dm/3e.
If alb−t−3 + alb−t−4 < dm/3e = dn/(2t · 3)e, then alb−t−3 + alb−t−4 < n/(2t3).

Since it is assumed that ai ≥ bi for i = 1, . . . , n, then alb−t−2 ≥ blb−t−2 = dn/(2t ·3)e ≥
n/(2t3), and it follows that alb−t−2 = 2alb−t−3. Since step lb−t−2 is a doubling, step
lb− t− 1 must be a star step; that is, alb−t−1 = alb−t−2 + ak for some k ≤ lb− t− 2.
It will be shown that k = lb − t − 2 or k = lb − t − 3. Suppose that k ≤ lb − t − 4
and that there is a nondoubling after step lb − t − 1. Let s be the first such step.
Then alb−t−1 ≤ alb−t−2 + alb−t−4 and by using inequalities as noted in footnote 1 of
Theorem 2, it follows that

as ≤ as−1 + as−2 ≤ 2(s−1)−(lb−t−1)alb−t−1 + 2(s−2)−(lb−t−2)alb−t−2

= 2s−lb+t(alb−t−1 + alb−t−2) ≤ 2s−lb+t(2alb−t−2 + alb−t−4)

< 2s−lb+t3(n/(2t3)) = 2s−lbn.

Thus, n = alb ≤ 2lb−sas < 2lb−s2s−lbn = n. This means that all steps after
step lb− t− 1 are doublings which, as noted, is not possible. Thus, either alb−t−1 =
alb−t−2 + alb−t−3 or alb−t−1 = alb−t−2 + alb−t−2.

So far, if alb−t−3 + alb−t−4 < n/(2t3), then it has been established that:
(1) alb−t−2 = 2alb−t−3; and
(2) alb−t−1 = alb−t−2 + alb−t−3 or alb−t−1 = alb−t−2 + alb−t−2.
Suppose alb−t−1 = alb−t−2 + alb−t−3. Then alb−t−1 = 3alb−t−3. There must

be a step s ≥ lb − t that is a nondoubling or as shown before 2t+1 divides n. Let s
be the first nondoubling after step lb− t− 1. The possibilities for step s that have a
chance can be drawn from the set {as−1 + as−2, as−1 + as−3, 2as−2}.

(i) If as = as−1+as−3, then as ≤ 2(s−1)−(lb−t−1)alb−t−1+2(s−3)−(lb−t−3)alb−t−3.
It follows by inequalities, as noted in footnote 1 that

as ≤ 2s−lb+t(alb−t−1 + alb−t−3) = 2s−lb+t(4alb−t−3)

< 2s−lb+t3(alb−t−3 + alb−t−4) < 2s−lb+t3(n/(2t3)) = 2s−lbn.

Thus, n = alb ≤ 2lb−sas < 2lb−s2s−lbn = n.
(ii) If as = as−1 − as−2, then if s = lb− t, it follows that alb−t = alb−t−1 +

alb−t−2. Since alb−t−1 = alb−t−2 + alb−t−3 and alb−t−2 = 2alb−t−3, this means that
alb−t = 5alb−t−3. If there is a step h > lb−t which is a nondoubling, then by reasoning
similar to that discussed before, it can be shown that n < n. This means that all the
steps after step lb− t must be doublings. Thus

n = alb = 2lb−(lb−t)alb−t = 2t(5alb−t−3).

This contradicts the fact that n is not a multiple of 5.
Now, suppose s > lb− t. This means that alb−t = 2alb−t−1, since step s is

the first nondoubling after step lb − t − 1. The reasoning used before concerning
nondoubling steps can be combined with the fact that alb−t−3 + alb−t−4 < n/(2t3) to
show that as < 2(s−lb+t)3(n/(2t3)) = 2(s−lb)n, and n = alb ≤ 2lb−sas < n.

(iii) If as = 2as−2, then as ≤ 2(2(s−2)−(lb−t−2)alb−t−2) = 2s−lb+t+1alb−t−2 =
2s−lb+t(4alb−t−3). As in case (i), this results in n < n.

Suppose alb−t−1 = 2alb−t−2. Since alb−t−2 = 2alb−t−3, it follows that alb−t−1 =
4alb−t−3. There must be a first step s ≥ lb − t that is a nondoubling or else 2t+1
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divides n as before. The possibilities for step s are {as−1 + as−2, as−1 + as−3, as−1 +
as−4, 2as−2}. It will become evident that these are the only cases that need to be
considered.

(i) as = as−1 + as−4 ≤ 2(s−1)−(lb−t−1)alb−t−1 + 2(s−4)−(lb−t−4)alb−t−4

= 2s−lb+t(4alb−t−3 + alb−t−4) ≤ 2s−lb+t3(alb−t−3 + alb−t−4)
< 2s−lb+t3(n/(2t3)).

Thus, as < 2s−lbn, and n = alb ≤ 2lb−sas < 2lb−s2s−lbn = n.
(ii) as = 2as−2 leads to n < n as in (iii) of the case where alb−t−1 = alb−t−2 +

alb−t−3.
(iii) as = as−1 + as−2. This is the most difficult case, since this is the largest

possible value of as for the nondoubling step which must occur somewhere between
steps lb − t and lb. In what follows, alb−t−1 = 2alb−t−2 and alb−t−2 = 2alb−t−3.
Suppose s = lb− t. Then alb−t = alb−t−1 +alb−t−2 = 6alb−t−3. If there are no more
nondoublings in the chain after step lb− t, then n = alb = 2lb−(lb−t)alb−t = 2t6alb−t−3

which means 2t+1 divides n. Thus, there must be a first nondoubling step h > s. The
possibilities for ah are drawn from the set {ah−1 + ah−2, ah−1 + ah−3, 2ah−2}.

(iiia) ah = ah−1 + ah−3 ≤ 2(h−1)−(lb−t)alb−t + 2(h−3)−(lb−t−2)alb−t−2

= 2h−1−lb+t6alb−t−3 + 2h−1−lb+t2alb−t−3 = 2h−lb+t4alb−t−3.
From this it follows, as in prior cases, that n < n.

(iiib) ah = 2ah−2 ≤ 2(2(h−2)−(lb−t−1)alb−t−1 = 2h−lb+t4alb−t−3 which leads
to n < n.

(iiic) ah = ah−1 + ah−2:

ah = ah−1 + ah−2 ≤ 2(h−1)−(lb−t)alb−t + 2(h−2)−(lb−t−1)alb−t−1

= 2h−1−lb+t6alb−t−3 + 2h−1−lb+t4alb−t−3 = 2h−lb+t5alb−t−3.

The 5 in the bound is not sufficient to conclude that n < n. If there is another step l >
h which is a nondoubling, then, as before, it can be shown that al ≤ 2l−lb+t4alb−t−3

from which it follows that n < n. It follows that n = alb = 2lb−hah = 2lb−h(ah−1 +
ah−2). If h > lb− t+ 1, then

n = 2lb−h(ah−1 + ah−2) ≤ 2lb−h(2(h−1)−(lb−t)alb−t + 2(h−2)−(lb−t)alb−t)
= 2lb−h(2h−1−lb+t6alb−t−3 + 2h−2−lb+t6alb−t−3)

= 2t−19alb−t−3 ≤ 2t−16(alb−t−3 + alb−t−4) < 2t3(n/(2t3)) = n.

If h = lb− t+ 1, then n = 2lb−(lb−t+1)(alb−t + alb−t−1) = 2t−110alb−t−3.
From this it follows that 5 divides n.
Now we continue with the case alb−t−1 = 2alb−t−2, where step s is the first

nondoubling after step lb − t − 1 and as = as−1 + as−2. Suppose s > lb− t; then
step s− 1 is a doubling. If there are no more nondoublings after step s, then

n = 2lb−sas = 2lb−2(as−1 + as−2) = slb−s(3as−2)

= 2lb−s3(2(s−2)−(lb−t−1)alb−t−1) = 2t−13alb−t−1 = 2t−13(4alb−t−3).

This implies that 2t+1 divides n, which is a contradiction. As in the previous case,
let step h be the first nondoubling step after step s. The only possibility for ah
that does not lead to n < n is ah = ah−1 + ah−2. As in case (iiic), it can be
shown that there can be no more nondoublings after step h or else n < n. Thus,
n = 2lb−hah = 2lb−h(ah−1 + ah−2). The cases h = s + 1 and h > s + 1 are handled
separately.
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Since s > lb− t, step lb− t is a doubling, and alb−t = 8alb−t−3.
If h = s + 1, it can be shown by reasoning similar to that used before that

n = 2t5alb−t−3, which means that 5 divides n while if h > s+ 1; then

n = 2lb−hah = 2lb−h(ah−1 + ah−2) = 2lb−h(2h−1−sas + 2h−2−sas)
= 2lb−h2h−2−s(3as) = 2lb−2−s3(as−1 + as−2)

= 2lb−2−s3(2(s−1)−(lb−t)alb−t + 2(s−2)−(lb−t−1)alb−t−1)

= 3(2t−312alb−t−3) ≤ 3(2t−38(alb−t−3 + alb−t−4)) < 2t3(n/(2t3)) = n.

(iv) as = as−1 + as−3. As before, it can be shown that if there is a step h > s
that is a nondoubling, then n < n. Thus, n = 2lb−sas = 2lb−s(as−1 + as−3). The
cases s = lb− t, s = lb− t+ 1, s = lb− t+ 2, and s ≥ lb− t+ 3 must be considered. In
all cases it can be shown that 5 divides n. It is important to note that s is the first
step after lb− t− 1 that is a nondoubling. For instance, if s = lb− t+ 2, then

n = 2lb−s(as−1 + as−3) = 2lb−(lb−t+2)(alb−t+1 + alb−t−1)

= 2t−2(16alb−t−3 + 4alb−t−3) = 2t(5alb−t−3).

Region 3. i < lb− t− 3.
For this region, the bound ai + ai−1 < bi+1 translates into ai + ai−1 < dm/(3 ·

2lb−t−(i+3)e = dn/(3 · 2lb−(i+3))e which implies ai + ai−1 < n/(2lb−i−33). It follows
that

alb−t−3 + alb−t−4 < 2(lb−t−3)−iai + 2(lb−t−4)−(i−1)ai−1

= 2(lb−t−3)−i(ai + ai−1) < 2(lb−t−3)−in/(2lb−i−33) = n/(2t3).

It follows from the same arguments as used for Region 2 that br[ai] will be pruned
from the search tree unless n is a multiple of 5.

It has been shown that if n = 2tm, m odd, {bi} is bounding sequence (C), and
ai < bi for some i, then br[ai] can be pruned from the search tree and, furthermore,
if n is not a multiple of 5, and ai + ai−1 < bi+1, then br[ai] can be pruned from the
search tree provided that n 6= 2lb−iai for some step i in Region 1. If n is a multiple of
5 and if {bi} is bounding sequence (A), then if ai+ai−1 < bi+1 = n/2lb−(i+1) for some
i, br[ai] can be pruned from the search tree if there exists a step s > i that is not a
doubling since as ≤ as−1 +as−2 ≤ 2(s−1)−iai + 2(s−2)−(i−1)ai−1 = 2(s−1)−i(ai +ai−1)
from which it follows that n < n. Thus, when n is a multiple of 5, Theorem 4 holds
for n provided that bounding sequence (C) is replaced by bounding sequence (A).

8. Pruning bounds applied. When the sequence {bi} is used as a class 1
bounding sequence, it will be called a vertical bounding sequence, and when it is used
as a class 2 bounding sequence, it will be called a slant bounding sequence. If n is
not a multiple of 5, then bounding sequence (C) can be used for both the vertical
and slant bounds. The algorithm for generating addition chains checks to see: (1) if
ai ≥ bi; if this condition is satisfied, it next checks: (2) to see that if n 6= 2lb−iai for
i in Region 1; then is ai + ai−1 ≥ bi+1. If these conditions are met, then the partial
chain 1 = a0, a1, . . . , ai is not rejected and candidates for ai+1 are considered. If (1)
fails, then br[ai] is pruned from the search tree, and if (1) passes but (2) fails, br[ai]
is pruned from the search tree.

If n is a multiple of 5, the same strategy is employed; however, bounding sequence
(C) is used for the vertical bounds while bounding sequence (A) is used for the slant
bounds.
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Table 1

Value of n

Test 23 127 191 568 607 1,0152

no bds 293 1,890,353 24,383,588
time: 20.9 time: 327.4

V (A) 193 330,791 2,805,121 1,632,557 63,548,562 5,901,139
time: 1.6 time: 15.1 time: 8.57 time: 372.4 time: 32.0

V (C) 153 208,318 1,789,703 1,587,969 31,649,325 2,146,835
time: 1.0 time: 9.8 time: 8.18 time: 192.1 time: 12.1

V/S (A) 155 241,396 2,025,178 964,319 40,847,534 3,218,491
time: 1.0 time: 9.6 time: 4.39 time: 203.3 time: 14.6

V/S (C) 137 174,788 1,482,328 954,573 24,823,053 1,900,148
time: 0.82 time: 7.5 time: 4.28 time: 139.8 time: 9.9

The effect of these pruning bounds can be measured in terms of time required to
search for chains as well as in terms of the number of “pops” off the stack. In the
latter case, what is being popped off the stack for a given step i is the next candidate
for ai. The pruning bounds eliminate certain branches of the search tree, and the
number of “pops” will diminish as the pruning bounds are put into effect. Several
cases are considered for given values of n. The first case (no bds) has no pruning
bounds. Case V (A) implements vertical pruning bounds using bounding sequence
(A) while case V (C) implements vertical bounds using bounding sequence (C), etc.
Case V/S (A) shows the effect of using bounding sequence (A) for both vertical and
slant bounds. Case V/S (C) uses bounding sequence (C) for both vertical and slant
bounds and when n ≡ 0 (mod 5) replaces bounding sequence (C) with bounding
sequence (A) for the slant bounds. Table 1 shows results for n = 23, 127, 191, 568,
607, and 1,015. These are interesting numbers from the standpoint of not giving
trivial values yet not requiring so much time as to be unreasonable. The times, of
course, are relative to the computer being used and are significant primarily in how
they relate to each other as opposed to their actual values. It should be noted that
when n is odd, bounding sequence (C) reduces to bounding sequence (B).

Table 1 records the number of “pops” that occur in an algorithm that finds all
addition chains of minimal length for the given values of n. Also recorded is the time
in seconds taken by each search. The times for n = 23 are too small to be significant.

A good check that the bounding sequences do not cut too much from the search
tree is the observation that NMC(n) remains the same in all cases. As can be seen,
there is significant improvement in going from V(A) to V/S(C).

9. Pruning bounds (class 1 further refined); the 2i + 1 phenomenon.
For n odd, bounding sequence (B) can be improved as a vertical (class 1) bounding
sequence depending on the multiplicative nature of n. If n is not a multiple of an
integer of the form 2i + 1, then the following sequence can be used for the vertical
bounding sequence.

(D) bi =

{ dn/(2lb−i−1 + 1)e 0 ≤ i ≤ lb− 1,
n i = lb.

Suppose ai < dn/(2lb−i−1 + 1)e. Then ai < n/(2lb−i−1 + 1). The cases i = lb− 1
and i = lb − 2 have been established previously. Let i = lb − k for some k such that

2For n = 1,015, in the V/S (C) case bounding sequence (A) is used for the slant bounds since n
is divisible by 5.
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3 ≤ k ≤ lb.
k = 3. alb−3 < n/5. Since n is odd, step lb is not doubling. Yet it must be a

star step. If n = alb = alb−1 + alb−3, then n ≤ 5alb−3 < n. If n = alb = alb−1 + alb−2,
then if alb−1 = 2alb−2, it follows that 3 divides n, and if alb−1 = alb−2 + alb−3, then
n = alb = 2alb−2 + alb−3 ≤ 5alb−3 < n.

k ≥ 4. alb−k < n/(2k−1 + 1). If n = alb = alb−1 + alb−k, then

n = alb = alb−1 + alb−k ≤ 2(lb−1)−(lb−k)alb−k + alb−k = (2k−1 + 1)alb−k < n.

Suppose n = alb = alb−1 + alb−j for some j, 2 ≤ j < k. If alb−1 = 2j−1alb−j ,
then 2j−1 + 1 divides n. If alb−1 6= 2j−1alb−j , then let s be the first integer greater
than or equal to 1 such that step lb − s is a nondoubling. Then 1 ≤ s < j and
n = alb = alb−1 + alb−j = 2s−1alb−s + alb−j . This implies that

n = 2s−1alb−s + alb−j ≤ 2s−1(alb−s−1 + alb−s−2) + 2lb−j−(lb−k)alb−k
≤ 2s−1(2k−s−1alb−k + 2k−s−2alb−k) + 2k−jalb−k
= (2k−2 + 2k−3 + 2k−j)alb−k. (Note: s+ 2 ≤ k).

If j ≥ 3, then 2k−2 + 2k−3 + 2k−j < 2k−1 + 1, and n < n. The only possibility is
j = 2.

Consider n = alb = alb−1 + alb−2. Since 1 ≤ s < 2, it follows that s = 1, and
alb−1 ≤ alb−2 + alb−3. There are two cases for step lb− 1.

(i) alb−1 = alb−2 + alb−h. (Note: h < k. If h = k, then n < n.)
If h = 2, then 3 divides n. Thus, alb = alb−1 + alb−2 = 2alb−2 + alb−h, where h ≥ 3.
Suppose there is a nondoubling between step lb − h and step lb − 2. Suppose lb − p
is the first nondoubling going back in the chain from step lb− 2. Then 2 ≤ p < h.

alb = alb−1 + alb−2 = 2alb−2 + alb−h = 2(2p−2alb−p) + alb−h
≤ 2(2p−2(alb−p−1 + alb−p−2)) + alb−h·
≤ 2p−1(2k−p−1alb−k + 2k−p−2alb−k) + 2k−halb−k
= (2k−2alb−k + 2k−3alb−k) + 2k−halb−k
= (2k−2 + 2k−3 + 2k−h)alb−k < n since h ≥ 3.

Thus, alb−2 = 2h−2alb−h and alb = alb−1 + alb−2 = 2alb−2 + alb−h = 2(2h−2alb−h) +
alb−h = (2h−1 + 1)alb−h. This implies that 2h−1 + 1 divides n.

(ii) alb−1 = 2alb−3. n = alb = alb−1 + alb−2 = alb−2 + 2alb−3.
Then n = alb−2 + 2alb−3 ≤ 2k−2alb−k + 2(2k−3alb−k) = 2k−1alb−k < 2k−1(n/(2k−1 +
1)) < n.

This establishes the result that if n is not divisible by an integer of the form 2i +
1, i ≥ 0, then the sequence (D) is a valid class 1 bounding sequence when generating
addition chains for an integer n.

Theorem 5. If 2j+1, j ≥ 0 does not divide n and {bi} denotes bounding sequence
(D), then if ai < bi for some i,br[ai] can be pruned from the search tree.

It appears that this result can generalized for n = 2tm (m odd) using the following
bounding sequence.

(E) bi =

{ dn/2t(2lb−t−(i+1) + 1)e 0 ≤ i ≤ lb− t− 2,
dn/2lb−ie lb− t− 1 ≤ i ≤ lb.

Theorem 5 then would be restated substituting j > 0 for j ≥ 0 and bounding
sequence (E) for bounding sequence (D).
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Table 2

Value of n

Test 23 127 191 568 607 10153

no bds 293 1,890,353 24,383,588
time: 20.9 time: 327.4

V (A) 193 330,791 2,805,121 1,632,557 63,548,562 5,901,139
time: 1.6 time: 15.1 time: 8.57 time: 372.4 time: 32.0

V (C) 153 208,318 1,789,703 1,587,696 31,649,325 2,146,835
time: 1.0 time: 9.8 time: 8.18 time: 192.1 time: 12.1

V (D) 153 186,506 1,566,167 25,381,280
time: 0.9 time: 8.95 time: 164.4

VBEST 94 170,294 1,440,524 1,245,559 23,316,309 1,216,206
time: 0.9 time: 8.84 time: 8.29 time: 162.1 time: 8.24

V/S (A) 155 241,396 2,025,178 964,319 40,847,534 3,218,491
time: 1.0 time: 9.6 time: 4.39 time: 203.3 time: 14.6

V/S (C) 137 174,788 1,482,328 954,573 24,823,053 1,900,148
time: 0.82 time: 7.5 time: 4.28 time: 139.8 time: 9.9

V(D)/S (C) 137 166,120 1,384,000 22,486,525
time: 0.82 time: 7.36 time: 134.4

VBEST/S (C) 92 150,522 1,262,492 792,751 20,485,705 1,087,144
time: 0.82 time: 7.09 time: 4.28 time: 130.4 time: 6.9

The numbers 23, 127, 191, and 607 in Table 1 satisfy the hypothesis of Theorem 5.
Table 2 shows results of using bounding sequence (D) for the vertical bounding se-
quence. Certain rows of the table use what is called VBEST for the vertical bounding
sequence and bounding sequence (C) for slant bounds. VBEST is a bounding sequence
that is obtained à posteriori by running the program and generating all minimal addi-
tion chains for n. For each i, bi is the minimal ai found among all the minimal addition
chains for n. It is the best possible vertical bounding sequence, since lowering any bi
will cut out some of the minimal chains for n. In practice it is not a good bounding
sequence since it cannot be determined until all the minimal addition chains have
been found, but it is a good measure by which to judge the other vertical bounding
sequences. As previously noted, bounding sequence (C) reduces to bounding sequence
(B) when n is odd.

The V(D)/S (C) bounding sequence compares favorably with the VBEST/S (C)
bounding sequence, and in all cases there is significant improvement over using just
V(A) which is the obvious bounding sequence to try first.

While vertical bounding sequence (D) leads to a significant improvement in prun-
ing the search tree, this sequence can only be used when n is not a multiple of an
integer of the form 2i + 1. In other words, if n is a multiple of an integer of the form
2i+1, then less aggressive pruning bounds must be used. More branches on the search
tree must be explored. The search for minimal addition chains for such numbers is,
in a sense, less efficient. Primes, on the other hand, (unless they are Fermat primes)
can use bounding sequence (D) which results in a more efficient search.

A summary of the bounding sequences is included in Table 3.

10. Some test results. Algorithms for generating minimal length addition
chains are significant from the standpoint of what their implementation in a com-
puter program and the subsequent generation of data reveal about the addition chain

3For n = 1015, in the V/S (C) and VBEST/S(C) cases bounding sequence (A) is used for the
slant bounds since n is divisible by 5. Also, sequence (D) cannot be used for vertical bounds since n
is a multiple of 5.
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Table 3

Bounding
sequence Sequence Comments

A bi = dn/2lb−ie, i = 0, . . . , lb vertical/slant bounds

B bi =

{
dn/(3 · 2lb−(i+2))e, 0 ≤ i ≤ lb− 2
dn/2lb−ie, lb− 1 ≤ i ≤ lb

n odd, vertical bounds,
slant bounds for n 6= 5k

C bi =

{
dn/(3 · 2lb−(i+2))e, 0 ≤ i ≤ lb− t− 2
dn/2lb−ie, lb− t− 1 ≤ i ≤ lb

n = 2tm, m odd, vertical
bounds, slant bounds if
n 6= 5k and n 6= 2lb−iai
for i ≥ lb− t− 2

D bi =

{
dn/(2lb−i−1 + 1)e, 0 ≤ i ≤ lb− 1
n, i = lb

n odd, vertical
bounds n 6= (2j + 1)k,
j ≥ 0

E bi =

{
dn/2t(2lb−t−(i+1) + 1)e, 0 ≤ i ≤ lb− t− 2
dn/2lb−ie, lb− t− 1 ≤ i ≤ lb

n = 2tm, m odd, vertical
bounds n 6= (2j + 1)k,
j > 0

problem. Knuth [12] found that l(191) = l(382). He found other integers as well for
which l(2n) = l(n). This was a somewhat surprising discovery. Utz [20] had asked if
l(n) < l(2n) for all n > 0, and it had supposedly been proved earlier by Jonquières
[11] that l(2n) = l(n) + 1. Subsequently, it has been proved [17, 18] that there are in-
finite classes of integers for which l(2n) = l(n). If h(x) denotes the number of integers
n ≤ x for which l(2n) = l(n), then computer generated data suggest the possibility
that h(x) is bounded below by some constant times x.

While Hansen [10] proved that there exist integers that do not admit star chains
among their minimal addition chains, Knuth’s computer calculations revealed n =
12,509 as the first number that does not admit a star chain among its minimal chains.
It is very likely that {2m(81) + 17,m ≥ 8} is an infinite class of such integers.

The addition chain problem is exponential in nature [8]. Improving pruning algo-
rithms enables one to generate the next level of data which can reveal properties that
had not previously been observed. For example, n = 49,593 and n = 49,594 are adja-
cent integers, neither of which has a star chain among its minimal chains. n = 13,818
and n = 27,578 are even numbers for which l(2n) = l(n). If n = 2k, this is an exam-
ple of an integer for which l(4k) = l(2k). Are there integers for which l(8k) = l(4k)?
The pairs n = 22,453, n = 22,455 and n = 25,019, n = 25,021 have the property
that l(2n) = l(n). Are there consecutive integers with this property? n = 29,479 is
an integer, all of whose minimal chains start with 1, 2, 3 which verifies a conjecture
of Chin and Tsai [5]. Such integers appear very rarely. The first integer with over
1,000,000 minimal addition chains is 15,126. In fact, NMC(15, 126) = 1, 047, 580.

Knuth found c(r), the first integer for which l(n) = r, for 1 ≤ r ≤ 18. The
algorithms discussed in the paper were instrumental in determining that c(19) =
18,287, c(20) = 34,303, c(21) = 65,131. Flammenkamp and Bleichenbacher have ex-
tended this sequence to c(22) = 110,591, c(23) = 196,591, c(24) = 357,887, c(25) =
685, 951, c(26) = 1, 176, 431, and c(27) = 2, 211, 837. See [12] and the online version
of [15]. n = 65,131 is the first integer that requires six small steps in a minimal
addition chain. The increase in the required number of small steps in an addition
chain greatly increases the computing time. Table 4 shows how the computing time
increases with the number of small steps while λ(n) is held constant. It also shows
how the computing time increases with λ(n) while holding the number of small steps
constant.
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Table 4

number of small pops
n binary n λ(n) steps in chain time

10,241 10100000000001 13 2 4,300
0.00 secs.

10,247 10100000000111 13 3 1,212,209
7.14 secs.

10,271 10100000011111 13 4 220,689,095
1441.00 secs.

20,487 101000000000111 14 3 1,682,449
10.33 secs.

20,494 101000000001110 14 3 2,886,936
15.60 secs.

40,967 1010000000000111 15 3 2,279,240
14.50 secs.

40,988 1010000000011100 15 3 5,286,601
28.23 secs.

81,927 10100000000000111 16 3 3,024,682
19.99 secs.

81,976 10100000000111000 16 3 8,593,425
46.20 secs.

Holding λ(n) constant for odd n, while increasing the number of small steps,
greatly increases the computing time. As the number of ones in the binary represen-
tation of n increases, the number of small steps increases in minimal addition chains
for n. In fact N(n), the number of small steps, appears to be bounded below by
dlog2 ν(n)e. As can be seen, computation time is influenced much more strongly by
the size of ν(n) than by the size of n. The minimal addition chains for n = 1,048,577
can be found much more quickly than the minimal addition chains for n = 191.

Increasing λ(n), while holding the number of small steps constant, increases the
computation time relatively slowly. Numbers of the form n = 2tm for m odd and
t ≥ 1 have longer computation times than odd integers with the same values of λ(n)
and N(n). As t increases with λ(n) and N(n) held constant, the computing time
increases. An examination of pruning bounds (C) shows that the bounds are less
severe for integers with a large value of t.

The pruning bounds operate the best on odd integers not divisible by 5 and, in
particular, on odd integers not divisible by integers of the form 2i + 1, i ≥ 1.

Data generated by this algorithm have suggested theorems concerning NMC(n),
some of which have been established in [19]. These mathematical proofs indirectly
confirm the validity of the programs that generated the data that suggested the the-
orems.

11. Conclusion. The pruning bounds that have been developed significantly
improve the efficiency of the search for minimal length addition chains for an integer.
It is of interest to note that, for multiples of 2i + 1, the pruning bounds cannot be as
tight. As can be seen, the best general vertical bounds compare favorably with the
VBEST vertical bounds for the examples cited in Table 2.

Introducing slant bounds (bounds for ai + ai−1) increases the efficiency of the
search. This class of bounds can be extended to bounds for ai + ai−2 and ai−1 + ai−1

and perhaps other sums. It appears likely, however, that improvements in efficiency
are slight and are negated by the time needed to run all the checks on the additional
bounds.

The most famous unsolved problem in addition chains is the Scholz–Brauer con-
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jecture which states that l(2n−1) ≤ n+l(n)−1. Brauer [4] proved that the conjecture
is true when n includes a star chain among its minimal chains. Hansen [10] devel-
oped the concept of l0-chains of which star chains are a proper subset. He proved
that the Scholz–Brauer conjecture is true if n includes an l0-chain among its minimal
chains. It remains an open question as to whether every integer includes an l0-chain
among its minimal chains. Computer searches may prove useful in helping to settle
this question.
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