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Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 10 years 120 years
MTBF – platform 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)
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Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs 

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of 
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware 
problems, albeit rarer, need 6.3-100.7 hours to solve.” 

•  In 2007 (Garth Gibson, ICPP Keynote): 

•  In 2008 (Oliner and J. Stearley, DSN Conf.): 
50% 

Hardware 

Conclusion: Both Hardware and Software failures have to be considered 

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. 

Hardware errors, Disks, processors, memory, network   
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Definitions

Instantaneous error detection ⇒ fail-stop failures,
e.g. resource crash

Silent errors (data corruption) ⇒ detection latency

Silent error detected only when the corrupt data is activated

Includes some software faults, some hardware errors (soft
errors in L1 cache), double bit flip

Cannot always be corrected by ECC memory
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Quotes

Soft Error: An unintended change in the state of an electronic
device that alters the information that it stores without
destroying its functionality, e.g. a bit flip caused by a
cosmic-ray-induced neutron. (Hengartner et al., 2008)

SDC occurs when incorrect data is delivered by a computing
system to the user without any error being logged (Cristian
Constantinescu, AMD)

Silent errors are the black swan of errors (Marc Snir)
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Should we be afraid? (courtesy Al Geist)
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Failure distributions: (1) Exponential
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Exp(λ): Exponential distribution law of parameter λ:

Pdf: f (t) = λe−λtdt for t ≥ 0

Cdf: F (t) = 1− e−λt

Mean = 1
λ
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X random variable for Exp(λ) failure inter-arrival times:

P (X ≤ t) = 1− e−λtdt (by definition)

Memoryless property: P (X ≥ t + s |X ≥ s ) = P (X ≥ t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

Mean Time Between Failures (MTBF) µ = E (X ) = 1
λ
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Failure distributions: (2) Weibull
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Weibull(k, λ): Weibull distribution law of shape parameter k and
scale parameter λ:

Pdf: f (t) = kλ(tλ)k−1e−(λt)kdt for t ≥ 0

Cdf: F (t) = 1− e−(λt)k

Mean = 1
λΓ(1 + 1

k )
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Failure distributions: (2) Weibull
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X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time

Yves.Robert@ens-lyon.fr Silent errors 10/ 46



Introduction Checkpointing for silent errors Checkpointing and verification

Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µind with one processor,
what is its value µp with p processors?

Well, it depends /
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With rejuvenation

Rebooting all p processors after a failure

Platform failure distribution
⇒ minimum of p IID processor distributions

With p distributions Exp(λ):

min
1..p

(
Exp(λ)

)
= Exp(pλ)

With p distributions Weibull(k, λ):

min
1..p

(
Weibull(k , λ)

)
= Weibull(k , p1/kλ)
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Without rejuvenation (= real life)

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions

Theorem: µp =
µind

p
for arbitrary distributions
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Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Wasteopt ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%
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• Tianhe 2: wouldn’t say
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√
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√
2C
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Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%

Exascale 6= Petascale ×1000
Need more reliable components

Need to checkpoint faster
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Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Wasteopt ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%

Silent errors:

detection latency ⇒ additional problems
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Application-specific methods

ABFT: dense matrices / fail-stop, extended to sparse / silent.
Limited to one error detection and/or correction in practice

Asynchronous (chaotic) iterative methods (old work)

Partial differential equations: use lower-order scheme as
verification mechanism (detection only, Benson, Schmit and
Schreiber)

FT-GMRES: inner-outer iterations (Hoemmen and Heroux)

PCG: orthogonalization check every k iterations,
re-orthogonalization if problem detected (Sao and Vuduc)

. . . Many others
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General-purpose approach

TimeXe Xd

Error
Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Which checkpoint to roll back to?
 Critical failure when all live checkpoints are invalid
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Optimal period?

TimeXe Xd

Error
Detection

Error and detection latency

Xe inter arrival time between errors; mean time µe

Xd error detection time; mean time µd

Assume Xd and Xe independent
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Notations

C checkpointing time

R recovery time

W total work

w some piece of work
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For one chunk

When Xe follows an Exponential law of parameter λe = 1
µe

, in
order to execute a total work of w + C , we need:

Probability of execution without error

E(T (w)) = e−λe(w+C) (w + C )

+ (1− e−λe(w+C)) (E(Tlost) + E(Xd) + E(Trec) + E(T (w)))

Probability of error during w + C

Execution time with an error
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This is the time elapsed between the completion of last checkpoint
and the error

E(Tlost) =

∫ ∞
0

xP(X = x |X < w + C )dx

=
1

P(X < w + C )

∫ w+C

0
xλee

−λexdx

=
1

λe
− w + C

eλe(w+C) − 1
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This is the time needed for error detection, E(Xd) = µd
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Focus on time lost due to an error:
E(Tlost) + E(Xd) + E(Trec)
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This is the time to recover from the error (there can be a fault
durnig recovery):

E(Trec) = e−λeRR

+ (1− e−λeR)(E(Rlost) + E(Xd) + E(Trec))

Similarly to E(Tlost), we have: E(Rlost) = 1
λe
− R

eλeR−1
.

So finally, E(Trec) = (eλeR − 1)(µe + µd)
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At the end of the day,

E(T (w)) = eλeR (µe + µd) (eλe(w+C) − 1)

This is the exact solution!
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For multiple chunks

Using n chunks of size wi (with
∑n

i=1 wi = W ), we have:

E(T (W )) = K
n∑

i=1

(eλe(wi+C) − 1)

with K constant.

Independent of µd !

Minimum when all the wi ’s are equal to w = W /n.

Optimal n can be found by differentiation
A good approximation is w =

√
2µeC (Young’s formula)
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Arbitrary distributions

Extend results when Xe follows an arbitrary distribution of mean µe
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Framework

Waste: fraction of time not spent for useful computations
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Waste

Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFinal: expectation of time
with failures

Timebase

TimeFF

TimeFinal

TimeFF × WasteFF

TimeFinal × WasteFail

(1−WasteFF)TimeFF = Timebase

(1−WasteFail)TimeFinal = TimeFF

Waste = TimeFinal−Timebase
TimeFinal

Waste = 1− (1−WasteFF)(1−WasteFail)
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Back to our model

We can show that

WasteFF =
C

T

WasteFail =
T
2 + R + µd

µe

Only valid if T
2 + R + µd � µe .

Then the waste is minimized for
Topt =

√
2(µe − (R + µd))C ) ≈

√
2µeC
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Summary

Theorem

Best period is Topt ≈
√

2µeC

Independent of Xd
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Limitation of this model

Analytical optimal solutions, valid for arbitrary distributions,
without any knowledge on Xd except its mean

However, if Xd can be arbitrary large:

Do not know how far to roll back in time

Need to store all checkpoints taken during execution
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The case with limited resources

Assume that we can only save the last k checkpoints

Definition (Critical failure)

Error detected when all checkpoints contain corrupted data.
Happens with probability Prisk during whole execution.
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The case with limited resources

Prisk decreases when T increases (when Xd is fixed).
Hence, Prisk ≤ ε leads to a lower bound Tmin on T

We have derived an analytical form for Prisk when Xd follows an
Exponential law. We use it as a good(?) approximation for
arbitrary laws
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Limitation of the model

It is not clear how to detect when the error has occurred
(hence to identify the last valid checkpoint) / / /

Need a verification mechanism to check the correctness of the
checkpoints. This has an additional cost!
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Coupling checkpointing and verification

Verification mechanism of cost V

Silent errors detected only when verification is executed

Approach agnostic of the nature of verification mechanism
(checksum, error correcting code, coherence tests, etc)

Fully general-purpose
(application-specific information, if available, can always be
used to decrease V )
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Base pattern (and revisiting Young/Daly)

TimeW W

Error Detection

V C V C V C

Fail-stop (classical) Silent errors

Pattern T = W + C S = W + V + C

WasteFF
C
T

V+C
S

Wastefail
1
µ(D + R + W

2 ) 1
µ(R + W + V )

Optimal Topt =
√

2Cµ Sopt =
√

(C + V )µ

Wasteopt

√
2C
µ 2

√
C+V
µ
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With p = 1 checkpoint and q = 3 verifications

Timew w w w w w

Error Detection

V C V V V C V V V C

Base Pattern p = 1, q = 1 Wasteopt = 2
√

C+V
µ

New Pattern p = 1, q = 3 Wasteopt = 2
√

4(C+3V )
6µ
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BalancedAlgorithm

Time2w 2w w w 2w 2w

V C V V C V V V C

p checkpoints and q verifications, p ≤ q

p = 2, q = 5, S = 2C + 5V + W

W = 10w , six chunks of size w or 2w

May store invalid checkpoint (error during third chunk)

After successful verification in fourth chunk, preceding
checkpoint is valid

Keep only two checkpoints in memory and avoid any fatal
failure
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BalancedAlgorithm

Time2w 2w w w 2w 2w

V C V V C V V V C

¬ ( proba 2w/W ) Tlost = R + 2w + V

 ( proba 2w/W ) Tlost = R + 4w + 2V

® ( proba w/W ) Tlost = 2R + 6w + C + 4V

¯ ( proba w/W ) Tlost = R + w + 2V

° ( proba 2w/W ) Tlost = R + 3w + 2V

± ( proba 2w/W ) Tlost = R + 5w + 3V

Wasteopt ≈ 2

√
7(2C + 5V )

20µ
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Analysis

S = pC + qV + pqw � µ

WasteFF = off
S , where off = pC + qV

WasteFail = Tlost
µ , where Tlost = freS + β

fre: fraction of work that is re-executed
β: constant, linear combination of C , V and R
fre = 7

20 when p = 2, q = 5

Sopt =

√
off

fre
×√µ+ o(

√
µ)

Wasteopt = 2
√
offfre

√
1

µ
+ o(

√
1

µ
)
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Computing fre when p = 1

Timeα1W α2W α3W

V C V V V C

Theorem

The minimal value of fre(1, q) is obtained for same-size chunks

fre(1, q) =
∑q

i=1

(
αi
∑i

j=1 αj

)
Minimal when αi = 1/q

In that case, fre(1, q) = q+1
2q
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Computing fre when p ≥ 1

Timeα1W α2W α3W

V C C C V C

Theorem

fre(p, q) ≥ p+q
2pq , bound is matched by BalancedAlgorithm.

Assess gain due to the p − 1 intermediate checkpoints

f
(1)

re − f
(p)

re =
∑p

i=1

(
αi
∑i−1

j=1 αj

)
Maximal when αi = 1/p for all i

In that case, f
(1)

re − f
(p)

re = (p − 1)/p2

Now best with equipartition of verifications too

In that case, f
(1)

re = q+1
2q and f

(p)
re = q+1

2q −
p−1
2p = q+p

2pq
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Choosing optimal pattern

Let V = γC , where 0 < γ ≤ 1

offfre = p+q
2pq (pC + qV ) = C × p+q

2

(
1
q + γ

p

)
Given γ, minimize p+q

2

(
1
q + γ

p

)
with 1 ≤ p ≤ q, and p, q

taking integer values

Let p = λ× q. Then λopt =
√
γ =

√
V
C
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Summary

Time2w 2w w w 2w 2w

V C V V C V V V C

BalancedAlgorithm optimal when C ,R,V � µ

Keep only 2 checkpoints in memory/storage

Closed-form formula for Wasteopt

Given C and V , choose optimal pattern

Gain of up to 20% over base pattern
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Conclusion

Soft errors difficult to cope with, even for divisible workloads

Investigate graphs of computational tasks

Combine checkpointing and application-specific techniques
(ABFT)

Multi-criteria soptimization problem
execution time/energy/reliability
best resource usage (performance trade-offs)

Several challenging algorithmic/scheduling problems ,
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