Algorithms for coping with silent errors

Yves Robert

ENS Lyon & Institut Universitaire de France University of Tennessee Knoxville

yves.robert@ens-lyon.fr

http://graal.ens-lyon.fr/~yrobert/argonne.pdf

ANL - May 30, 2014

Yves.Robert@ens-lye	on.fr
---------------------	-------

Checkpointing for silent errors
 Exponential distribution
 Arbitrary distribution
 Limited resources

Checkpointing and verification

Yves.Robert@ens-lyon.fr

イロト イ団ト イヨト イヨト

Outline

Introduction

Checkpointing for silent errors
 Exponential distribution
 Arbitrary distribution

Limited resources

Checkpointing and verification

Yves.Robert@ens-lyon.fr

<ロ> (日) (日) (日) (日) (日)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = = のへの

Exascale platforms

Hierarchical

- $\bullet~10^5~{\rm or}~10^6~{\rm nodes}$
- Each node equipped with 10^4 or 10^3 cores

• Failure-prone

MTBF – one node	10 years	120 years
MTBF – platform	5mn	1h
of 10 ⁶ nodes		

More nodes \Rightarrow Shorter MTBF (Mean Time Between Failures)

Yves.Robert@ens-Iyon.fr	Silent errors	4/ 46

Checkpointing for silent errors

Checkpointing and verification

Error sources (courtesy Franck Cappello)

Sources of failures

- Analysis of error and failure logs
- In 2005 (Ph. D. of CHARNG-DA LU): "Software halts account for the most number of outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware problems, albeit rarer, need 6.3-100.7 hours to solve."

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered

Yves.Robert@ens-Iyon.fr	Silent errors	5/46

Definitions

- Instantaneous error detection \Rightarrow fail-stop failures,
 - e.g. resource crash
- Silent errors (data corruption) \Rightarrow detection latency

Silent error detected only when the corrupt data is activated

- Includes some software faults, some hardware errors (soft errors in L1 cache), double bit flip
- Cannot always be corrected by ECC memory

- Soft Error: An unintended change in the state of an electronic device that alters the information that it stores without destroying its functionality, e.g. a bit flip caused by a cosmic-ray-induced neutron. (Hengartner et al., 2008)
- SDC occurs when incorrect data is delivered by a computing system to the user without any error being logged (Cristian Constantinescu, AMD)
- Silent errors are the black swan of errors (Marc Snir)

Should we be afraid? (courtesy AI Geist)

Fear of the Unknown

Hard errors – permanent component failure either HW or SW (hung or crash)

Transient errors -a blip or short term failure of either HW or SW

Silent errors – undetected errors either hard or soft, due to lack of detectors for a component or inability to detect (transient effect too short). Real danger is that answer may be incorrect but the user wouldn't know.

Checkpointing for silent errors

Checkpointing and verification

Failure distributions: (1) Exponential

 $Exp(\lambda)$: Exponential distribution law of parameter λ :

• Pdf: $f(t) = \lambda e^{-\lambda t} dt$ for $t \ge 0$

• Cdf:
$$F(t) = 1 - e^{-\lambda t}$$

• Mean $= \frac{1}{\lambda}$

3

A B F A B F

Checkpointing for silent errors

Checkpointing and verification

Failure distributions: (1) Exponential

X random variable for $Exp(\lambda)$ failure inter-arrival times:

- $\mathbb{P}(X \leq t) = 1 e^{-\lambda t} dt$ (by definition)
- Memoryless property: $\mathbb{P}(X \ge t + s | X \ge s) = \mathbb{P}(X \ge t)$ at any instant, time to next failure does not depend upon time elapsed since last failure
- Mean Time Between Failures (MTBF) $\mu = \mathbb{E}(X) = \frac{1}{\lambda}$

જીવ

Checkpointing for silent errors

Checkpointing and verification

Failure distributions: (2) Weibull

Weibull (k, λ) : Weibull distribution law of shape parameter k and scale parameter λ :

- Pdf: $f(t) = k\lambda(t\lambda)^{k-1}e^{-(\lambda t)^k}dt$ for $t \ge 0$
- Cdf: $F(t) = 1 e^{-(\lambda t)^k}$
- Mean $= \frac{1}{\lambda} \Gamma(1 + \frac{1}{k})$

• • = • • = •

Checkpointing for silent errors

Checkpointing and verification

Failure distributions: (2) Weibull

X random variable for $Weibull(k, \lambda)$ failure inter-arrival times:

- If k < 1: failure rate decreases with time "infant mortality": defective items fail early
- If k = 1: Weibull $(1, \lambda) = Exp(\lambda)$ constant failure time

3 🕨 🖌 3

Failure distributions: with several processors

Processor (or node): any entity subject to failures
 ⇒ approach agnostic to granularity

 If the MTBF is μ_{ind} with one processor, what is its value μ_p with p processors?

• Well, it depends 🔅

Failure distributions: with several processors

Processor (or node): any entity subject to failures
 ⇒ approach agnostic to granularity

 If the MTBF is μ_{ind} with one processor, what is its value μ_p with p processors?

• Well, it depends 🙂

With rejuvenation

- Rebooting all p processors after a failure
- Platform failure distribution
 - \Rightarrow minimum of *p* IID processor distributions
- With *p* distributions $Exp(\lambda)$:

$$\min_{1..p} (Exp(\lambda)) = Exp(p\lambda)$$

• With *p* distributions $Weibull(k, \lambda)$:

$$\min_{1..p} (Weibull(k, \lambda)) = Weibull(k, p^{1/k}\lambda)$$

Checkpointing for silent errors

Without rejuvenation (= real life)

- Rebooting only faulty processor
- Platform failure distribution
 - \Rightarrow superposition of p IID processor distributions

Theorem:
$$\mu_p = \frac{\mu_{\text{ind}}}{p}$$
 for arbitrary distributions

Lesson learnt for fail-stop failures

(Not so) Secret data

- Tsubame 2: 962 failures during last 18 months so $\mu = 13$ hrs
- Blue Waters: 2-3 node failures per day
- Titan: a few failures per day
- Tianhe 2: wouldn't say

$$T_{\rm opt} = \sqrt{2\mu C} \quad \Rightarrow \quad \text{WASTE}_{\rm opt} \approx \sqrt{\frac{2C}{\mu}}$$

- - E + - E +

Checkpointing for silent errors

Checkpointing and verification

Lesson learnt for fail-stop failures

Lesson learnt for fail-stop failures

(Not so) Secret data

- Tsubame 2: 962 failures during last 18 months so $\mu = 13$ hrs
- Blue Waters: 2-3 node failures per day
- Titan: a few failures per day
- Tianhe 2: wouldn't say

```
Silent errors:

detection latency \Rightarrow additional problems

Petascale: C = 20 \text{ min } \mu = 24 \text{ hrs } \Rightarrow \text{WASTE}_{opt} = 17\%

Scale by 10: C = 20 \text{ min } \mu = 2.4 \text{ hrs } \Rightarrow \text{WASTE}_{opt} = 53\%
```

• • = • • = •

Application-specific methods

- ABFT: dense matrices / fail-stop, extended to sparse / silent. Limited to one error detection and/or correction in practice
- Asynchronous (chaotic) iterative methods (old work)
- Partial differential equations: use lower-order scheme as verification mechanism (detection only, Benson, Schmit and Schreiber)
- FT-GMRES: inner-outer iterations (Hoemmen and Heroux)
- PCG: orthogonalization check every k iterations, re-orthogonalization if problem detected (Sao and Vuduc)
- ... Many others

Checkpointing for silent errors
 Exponential distribution
 Arbitrary distribution
 Limited resources

Checkpointing and verification

Yves.Robert@ens-lyon.fr

イロト イヨト イヨト イヨト

16/46

Checkpointing for silent errors

Checkpointing and verification

- 4 緑 ト - 4 三 ト - 4 三 ト

General-purpose approach

Error and detection latency

- Last checkpoint may have saved an already corrupted state
- Saving k checkpoints (Lu, Zheng and Chien):
 - 1 Which checkpoint to roll back to?
 - ² Critical failure when all live checkpoints are invalid

ves.Robert@ens-Iyon.fr	Silent errors	17/46
------------------------	---------------	-------

Checkpointing for silent errors

Optimal period?

- X_e inter arrival time between errors; mean time μ_e
- X_d error detection time; mean time μ_d
- Assume X_d and X_e independent

18/46

- C checkpointing time
- R recovery time
- W total work
- w some piece of work

э

▶ ∢ ≣

Checkpointing and verification

Yves.Robert@ens-lyon.fr

イロト イヨト イヨト イヨト

When X_e follows an Exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w + C, we need:

• Probability of execution without error

$$\mathbb{E}(T(w)) = e^{-\lambda_e(w+C)} (w+C) + (1-e^{-\lambda_e(w+C)}) (\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(w)))$$

• Probability of error during w + C

Execution time with an error

3

伺下 イヨト イヨト

When X_e follows an Exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w + C, we need:

• Probability of execution without error

$$\mathbb{E}(T(w)) = e^{-\lambda_e(w+C)}(w+C)$$

+ $(1 - e^{-\lambda_e(w+C)})$ $(\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(w)))$

- Probability of error during w + C
- Execution time with an error

21/46

When X_e follows an Exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w + C, we need:

Probability of execution without error

$$\mathbb{E}(T(w)) = e^{-\lambda_e(w+C)} (w+C)$$

+ $(1 - e^{-\lambda_e(w+C)})$ $(\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(w)))$

- Probability of error during w + C
- Execution time with an error

When X_e follows an Exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w + C, we need:

Probability of execution without error

$$\mathbb{E}(T(w)) = e^{-\lambda_e(w+C)} (w+C)$$

+ $(1 - e^{-\lambda_e(w+C)})$ $(\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(w)))$ • Probability of error during w + C

Execution time with an error

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

This is the time elapsed between the completion of last checkpoint and the error

$$\mathbb{E}(T_{lost}) = \int_0^\infty x \mathbb{P}(X = x | X < w + C) dx$$
$$= \frac{1}{\mathbb{P}(X < w + C)} \int_0^{w+C} x \lambda_e e^{-\lambda_e x} dx$$
$$= \frac{1}{\lambda_e} - \frac{w+C}{e^{\lambda_e (w+C)} - 1}$$

э

∃ ▶ ∢ ∃

This is the time needed for error detection, $\mathbb{E}(X_d) = \mu_d$

3

문어 소문

This is the time to recover from the error (there can be a fault durnig recovery):

$$\begin{split} \mathbb{E}(T_{rec}) &= e^{-\lambda_e R} R \\ &+ (1 - e^{-\lambda_e R})(\mathbb{E}(R_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})) \end{split}$$

3

(B)

This is the time to recover from the error (there can be a fault durnig recovery):

$$\begin{split} \mathbb{E}(\mathcal{T}_{rec}) &= e^{-\lambda_e R} R \\ &+ (1 - e^{-\lambda_e R}) (\mathbb{E}(R_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(\mathcal{T}_{rec})) \end{split}$$

Similarly to $\mathbb{E}(T_{lost})$, we have: $\mathbb{E}(R_{lost}) = \frac{1}{\lambda_e} - \frac{R}{e^{\lambda_e R} - 1}$.

This is the time to recover from the error (there can be a fault durnig recovery):

$$egin{aligned} \mathbb{E}(\mathcal{T}_{rec}) &= e^{-\lambda_e R} R \ &+ (1-e^{-\lambda_e R})(\mathbb{E}(\mathcal{R}_{lost}) + \mathbb{E}(\mathcal{X}_d) + \mathbb{E}(\mathcal{T}_{rec})) \end{aligned}$$

Similarly to $\mathbb{E}(T_{lost})$, we have: $\mathbb{E}(R_{lost}) = \frac{1}{\lambda_e} - \frac{R}{e^{\lambda_e R} - 1}$.

So finally, $\mathbb{E}(T_{rec}) = (e^{\lambda_e R} - 1)(\mu_e + \mu_d)$

At the end of the day,

$$\mathbb{E}(T(w)) = e^{\lambda_e R} \left(\mu_e + \mu_d \right) \left(e^{\lambda_e (w+C)} - 1 \right)$$

This is the exact solution!

• • • • •

æ

∃ → (∃ →

Checkpointing for silent errors

Checkpointing and verification

For multiple chunks

Using *n* chunks of size w_i (with $\sum_{i=1}^n w_i = W$), we have:

$$\mathbb{E}(T(W)) = K \sum_{i=1}^{n} (e^{\lambda_e(w_i+C)} - 1)$$

with K constant.

Independent of $\mu_d!$

Minimum when all the w_i 's are equal to w = W/n.

For multiple chunks

Using *n* chunks of size w_i (with $\sum_{i=1}^{n} w_i = W$), we have:

$$\mathbb{E}(T(W)) = K \sum_{i=1}^{n} (e^{\lambda_e(w_i+C)} - 1)$$

with K constant.

Independent of $\mu_d!$

Minimum when all the w_i 's are equal to w = W/n. Optimal *n* can be found by differentiation A good approximation is $w = \sqrt{2\mu_e C}$ (Young's formula)

Outline

Yves.Robert@ens-lyon.fr

Silent errors

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

24/46

Checkpointing for silent errors $_{\odot OOO \odot}$

Checkpointing and verification

Arbitrary distributions

Extend results when X_e follows an arbitrary distribution of mean μ_e

э

Framework

Waste: fraction of time not spent for useful computations

Yves.Robert@ens-lyon.fr

Silent errors

< 4 P→ -

26/46

э

3 → 4 3

Waste

- $TIME_{base}$: application base time
- TIME_{FF}: with periodic checkpoints but failure-free
- TIME_{Final}: expectation of time with failures

$$(1 - \text{Waste}_{FF})\text{Time}_{FF} = \text{Time}_{base}$$

$$(1 - \text{WASTE}_{\mathsf{Fail}})$$
TIME_{Final} = TIME_{FF}

$$WASTE = \frac{TIME_{Final} - TIME_{base}}{TIME_{Final}}$$

 $\mathrm{WASTE} = 1 - (1 - \mathrm{WASTE}_{\mathsf{FF}})(1 - \mathrm{WASTE}_{\mathsf{Fail}})$

< ≣ ► 27/46

Back to our model

We can show that $\mathrm{WASTE}_{\mathsf{FF}} = \frac{C}{T}$ $\mathrm{WASTE}_{\mathsf{Fail}} = \frac{\frac{T}{2}+R+\mu_d}{\mu_e}$

Only valid if $\frac{T}{2} + R + \mu_d \ll \mu_e$.

Then the waste is minimized for $T_{\rm opt} = \sqrt{2(\mu_e - (R + \mu_d))C)} \approx \sqrt{2\mu_e C}$

28/46

/□ ▶ 《 ⋽ ▶ 《 ⋽

Back to our model

We can show that $\mathrm{WASTE}_{\mathsf{FF}} = \frac{C}{T}$ $\mathrm{WASTE}_{\mathsf{Fail}} = \frac{\frac{T}{2}+R+\mu_d}{\mu_e}$

Only valid if $\frac{T}{2} + R + \mu_d \ll \mu_e$.

Then the waste is minimized for $T_{\rm opt} = \sqrt{2(\mu_e - (R + \mu_d))C)} \approx \sqrt{2\mu_e C}$

· · · · · · ·

Back to our model

We can show that $\mathrm{WASTE}_{\mathsf{FF}} = \frac{C}{T}$ $\mathrm{WASTE}_{\mathsf{Fail}} = \frac{\frac{T}{2}+R+\mu_d}{\mu_e}$

Only valid if $\frac{T}{2} + R + \mu_d \ll \mu_e$.

Then the waste is minimized for $T_{\rm opt} = \sqrt{2(\mu_e - (R + \mu_d))C)} \approx \sqrt{2\mu_e C}$

Summary

Theorem

- Best period is $T_{opt} \approx \sqrt{2\mu_e C}$
- Independent of X_d

3

▲圖▶ ▲臣▶ ▲臣

Limitation of this model

Analytical optimal solutions, valid for arbitrary distributions, without any knowledge on X_d except its mean

However, if X_d can be arbitrary large:

- Do not know how far to roll back in time
- Need to store all checkpoints taken during execution

Checkpointing and verification

Yves.Robert@ens-lyon.fr

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Checkpointing for silent errors 00000

Checkpointing and verification

The case with limited resources

Assume that we can only save the last k checkpoints

Definition (Critical failure)

Error detected when all checkpoints contain corrupted data. Happens with probability $\mathbb{P}_{\mathsf{risk}}$ during whole execution.

The case with limited resources

 \mathbb{P}_{risk} decreases when T increases (when X_d is fixed). Hence, $\mathbb{P}_{risk} \leq \varepsilon$ leads to a lower bound T_{min} on T

We have derived an analytical form for \mathbb{P}_{risk} when X_d follows an Exponential law. We use it as a good(?) approximation for arbitrary laws

Checkpointing for silent errors $\circ \circ \circ \circ \circ$

Limitation of the model

It is not clear how to detect when the error has occurred (hence to identify the last valid checkpoint) \bigcirc \bigcirc \bigcirc

Need a verification mechanism to check the correctness of the checkpoints. This has an additional cost!

Outline

Introduction

Checkpointing for silent errors
 Exponential distribution
 Arbitrary distribution

Limited resources

Checkpointing and verification

Yves.Robert@ens-lyon.fr

Silent errors

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

34/46

Coupling checkpointing and verification

- Verification mechanism of cost V
- Silent errors detected only when verification is executed
- Approach agnostic of the nature of verification mechanism (checksum, error correcting code, coherence tests, etc)
- Fully general-purpose (application-specific information, if available, can always be used to decrease V)

Checkpointing for silent errors

Checkpointing and verification

Base pattern (and revisiting Young/Daly)

	Fail-stop (classical)	Silent errors
Pattern	T = W + C	S = W + V + C
WASTE_{FF}	$\frac{C}{T}$	$\frac{V+C}{S}$
WASTE_{fail}	$\frac{1}{\mu}(D+R+\frac{W}{2})$	$\frac{1}{\mu}(R+W+V)$
Optimal	$T_{ m opt} = \sqrt{2C\mu}$	$S_{ m opt} = \sqrt{(C+V)\mu}$
WASTE_{opt}	$\sqrt{\frac{2C}{\mu}}$	$2\sqrt{\frac{C+V}{\mu}}$

Checkpointing for silent errors

Checkpointing and verification

With p = 1 checkpoint and q = 3 verifications

Base Pattern
$$\begin{vmatrix} p = 1, q = 1 \end{vmatrix}$$
 WASTE_{opt} $= 2\sqrt{\frac{C+V}{\mu}}$
New Pattern $\begin{vmatrix} p = 1, q = 3 \end{vmatrix}$ WASTE_{opt} $= 2\sqrt{\frac{4(C+3V)}{6\mu}}$

æ

BALANCEDALGORITHM

• p checkpoints and q verifications, $p \leq q$

•
$$p = 2, q = 5, S = 2C + 5V + W$$

- W = 10w, six chunks of size w or 2w
- May store invalid checkpoint (error during third chunk)
- After successful verification in fourth chunk, preceding checkpoint is valid
- Keep only two checkpoints in memory and avoid any fatal failure

38/46

Checkpointing and verification

BALANCEDALGORITHM

① (proba
$$2w/W$$
) $T_{lost} = R + 2w + V$

2 (proba
$$2w/W$$
) $T_{lost} = R + 4w + 2V$

$$($$
 proba $w/W)$ $T_{\text{lost}} = 2R + 6w + C + 4V$

④ (proba
$$w/W$$
) $T_{lost} = R + w + 2V$

(proba
$$2w/W$$
) $T_{lost} = R + 3w + 2V$

6 (proba
$$2w/W$$
) $T_{lost} = R + 5w + 3V$

$$WASTE_{opt} \approx 2\sqrt{\frac{7(2C+5V)}{20\mu}}$$

イロト イヨト イヨト イヨト

Analysis

•
$$S = pC + qV + pqw \ll \mu$$

• WASTE_{FF} =
$$\frac{o_{\rm ff}}{S}$$
, where $o_{\rm ff} = pC + qV$

• WASTEFail =
$$\frac{T_{\text{lost}}}{\mu}$$
, where $T_{\text{lost}} = f_{\text{re}}S + \beta$

- *f*_{re}: *fraction* of work that is *re-executed*
- β : constant, linear combination of C, V and R

•
$$f_{\rm re} = \frac{7}{20}$$
 when $p = 2, q = 5$

$$S_{
m opt} = \sqrt{rac{o_{
m ff}}{f_{
m re}}} imes \sqrt{\mu} + o(\sqrt{\mu})$$
 ${
m Waste}_{
m opt} = 2\sqrt{o_{
m ff}f_{
m re}}\sqrt{rac{1}{\mu}} + o(\sqrt{rac{1}{\mu}})$

3 🕨 🖌 3

Checkpointing for silent errors

Checkpointing and verification

Computing f_{re} when p = 1

Theorem

The minimal value of $f_{re}(1, q)$ is obtained for same-size chunks

•
$$f_{\rm re}(1,q) = \sum_{i=1}^{q} \left(\alpha_i \sum_{j=1}^{i} \alpha_j \right)$$

• Minimal when $\alpha_i = 1/q$

• In that case,
$$\mathit{f}_{\mathsf{re}}(1,q) = rac{q+1}{2q}$$

Checkpointing for silent errors

Checkpointing and verification

Computing f_{re} when $p \ge 1$

Theorem

 $f_{re}(p,q) \geq \frac{p+q}{2pq}$, bound is matched by BALANCEDALGORITHM.

• Assess gain due to the p-1 intermediate checkpoints

•
$$f_{\rm re}^{(1)} - f_{\rm re}^{(p)} = \sum_{i=1}^{p} \left(\alpha_i \sum_{j=1}^{i-1} \alpha_j \right)$$

- Maximal when $\alpha_i = 1/p$ for all i
- In that case, $f_{
 m re}^{(1)}-f_{
 m re}^{(p)}=(p-1)/p^2$
- Now best with equipartition of verifications too

• In that case,
$$f_{\rm re}^{(1)} = \frac{q+1}{2q}$$
 and $f_{\rm re}^{(p)} = \frac{q+1}{2q} - \frac{p-1}{2p} = \frac{q+p}{2pq}$

Choosing optimal pattern

- Let $V = \gamma C$, where $0 < \gamma \leq 1$
- $o_{\rm ff} f_{\rm re} = \frac{p+q}{2pq} (pC + qV) = C \times \frac{p+q}{2} \left(\frac{1}{q} + \frac{\gamma}{p} \right)$
- Given γ , minimize $\frac{p+q}{2}\left(\frac{1}{q}+\frac{\gamma}{p}\right)$ with $1 \le p \le q$, and p, q taking integer values

• Let
$$p=\lambda imes q$$
. Then $\lambda_{opt}=\sqrt{\gamma}=\sqrt{rac{V}{C}}$

Summary

- BALANCEDALGORITHM optimal when $C, R, V \ll \mu$
- Keep only 2 checkpoints in memory/storage
- Closed-form formula for WASTEopt
- Given C and V, choose optimal pattern
- Gain of up to 20% over base pattern

Conclusion

- Soft errors difficult to cope with, even for divisible workloads
- Investigate graphs of computational tasks
- Combine checkpointing and application-specific techniques (ABFT)
- Multi-criteria soptimization problem execution time/energy/reliability best resource usage (performance trade-offs)

Several challenging algorithmic/scheduling problems ③

Thanks

INRIA & ENS Lyon

- Anne Benoit
- Frédéric Vivien
- PhD students (Guillaume Aupy, Dounia Zaidouni)

Univ. Tennessee Knoxville

- George Bosilca
- Aurélien Bouteiller
- Jack Dongarra
- Thomas Hérault

Others

- Franck Cappello, Argonne National Lab.
- Henri Casanova, Univ. Hawai'i
- Saurabh K. Raina, Jaypee IIT, Noida, India