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Intro

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW

Systems 2011 Difference
K computer Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s 0(100)
Power 12.7 MW ~20 MW

System memory 1.6 PB 32-64PB O(10)
Node performance 128 GF 1,2 or 15TF O(10) - O(100)
Node memory BW 64 GB/s 2-4TB/s O(100)
Node concurrency 8 O(1k) or 10k O(100) — O(1000)
Total Node Interconnect BW 20 GB/s 200-400GB/s 0o(10)
System size (nodes) 88,124 O(100,000) or O(1M) O(10) - O(100)
Total concurrency 705,024 Olbillion) O(1,000)
MTTI days o(1 day) -0(10)
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Intro

Exascale platforms (courtesy C. Engelmann & S. Scott)

Toward Exascale Computing (My Roadmap)

Based on proposed DOE roadmap with MTTI adjusted to scale linearly

Systems 2009 2011 2015 2018
System peak 2 Peta 20 Peta 100-200 Peta 1 Exa
System memory 0.3PB 1.6 PB 5PB 10 PB
Node performance 125 GF 200GF 200-400 GF 1-10TF
Node memory BW 25 GB/s 40 GB/s 100 GB/s 200-400 GB/s
Node concurrency 12 32 0(100) 0O(1000)
Interconnect BW 1.5 GB/s 22 GB/s 25 GB/s 50 GB/s

I System size (nodes) 18,700 100,000 500,000 O(million) ]
Total concurrency 225,000 3,200,000 0O(50,000,000) O(billion)
Storage 15PB 30PB 150 PB 300 PB
10 0.2 TB/s 2TB/s 10 TB/s 20 TB/s

[mTTI 4days  19h4min 3h52min 1h56min |
Power 6 MW ~10MW ~10 MW ~20 MW
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Intro
Exascale platforms

@ Hierarchical
e 10° or 10° nodes
e Each node equipped with 10* or 103 cores

o Failure-prone

MTBF — one node | 1 year | 10 years | 120 years
MTBF — platform 30sec 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)
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Intro

Even for today’s platforms (courtesy F. Cappello)

hl?;#f:&ﬂ‘%mwAfso.a’n issue at Petasc AERNA

28\ Fault tolerance becomes critical at Petascale (MTTI <= 1day)
Poor fault tolerance design may lead to huge overhead

Qverhead of checkpoint/restart

| Cost of non optimal checkpoint intervals: |'°*
Ir 710%

Today, 20% or more of the computing capacity in a large high-performance
computing system is wasted due to failures and recoveries.
Dr. E.N. (Mootaz) Elnozahyet al. System Resilience at Extreme Scale,

DARPA
30% \ ’,1 T;;:U L —
\ / 30min ckpt w0 |I0%
20% .

1min ckpt 0%
Smin ckpt
10% e 0%
%
Checkpoint
o 0% Interval (min)
1d 1 10 100 1000 10000
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Intro

Even for today’s platforms (courtesy F. Cappello)

Typical “Balanced Architecture” for PetaScale Computers

Compute nodes

40 to 200 GB/s
Parallel file system

Total memory: (1to 2 PB)

100-200 TB

. 1/0 nodes

A~ P

Without optimization, Checkpoint-Restart needs

__about 1h! (~30 minutes each) i

Systems Perf. Ckpt time Source t .
RoadRunner 1PF ~20 min. Panasas
LLNL BG/L 500 TF >20 min. LLNL LLNL BG/L
LLNL Zeus 11TF 26 min. LLNL =
YYY BG/P 100 TF ~30 min. YYY

[
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Intro
Error sources

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

°
°
@ This includes all hardware faults, and some software ones
o Will use terms fault and failure interchangeably

°

Silent errors (SDC) addressed later in the talk
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Intro

Failure distributions: (1) Exponential

Sequential Machine

Failure Probability

Exp(1/100) ——
0 200 400 600 800 1000
Time (years)

Exp(\): Exponential distribution law of parameter \:
o Pdf: f(t) = Ae dt for t > 0
o Cdf: F(t)=1—e ¢

1
oMean—/\
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Intro

Failure distributions: (1) Exponential

Sequential Machine

Failure Probability
oo
oo
~

Exp(1/100) ——
0 200 400 600 800 1000
Time (years)

X random variable for Exp(\) failure inter-arrival times:
o P(X < t)=1-— e dt (by definition)
e Memoryless property: P(X > t+s|X >s)=P(X > t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

@ Mean Time Between Failures (MTBF) p=E(X) =

>
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Intro

Failure distributions: (2) Weibull

Sequential Machine

0.9
0.8
z o7l
g O 4
2 s /
8
& 05p; ]
2 04
El i
s 03
&
02 / Exp(1/100) ——
0.1 Weibull(0.7, 1/100)
0 Weibull(0.5, 1/100) -
0 200 400 600 800 1000
Time (years)

Weibull(k, X): Weibull distribution law of shape parameter k and
scale parameter \:

o Pdf: f(t) = kA(tA)kLe=(AD)dt for t > 0
o Cdf: F(t)=1— e (0"
@ Mean = %r(l + %)
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Intro

Failure distributions: (2) Weibull

Sequential Machine

09
08
£ o7
£ o
S 06 /
5 7
& o051
° 04
3 i
5 03 f
&
ozl Exp(1/100) ——
o1 Weibull(0.7, 1/100)
o Weibull(0.5, 1/100) -
0 200 400 600 800 1000
Time (years)

X random variable for Weibull(k, \) failure inter-arrival times:

o If k < 1: failure rate decreases with time
"infant mortality”: defective items fail early

o If k =1: Weibull(1,\) = Exp()\) constant failure time
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Intro

Failure distributions: (3) with several processors

o If the MTBF is 1 with one processor,
what is its value with p processors?

@ Processor (or node): any entity subject to failures
= approach agnostic to granularity

@ Platform failure distribution
= superposition of p |ID processor distributions
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Intro

Failure distributions: (3) with several processors

o If th
wha

Too complicated !

@ Processor ( de): any entity subject tOglures

erposition of p IID processor distributions
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Intro

Failure distributions: (3) with several processors

Theorem:

Up = B for arbitrary distributions
p
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Intro
Values from the literature

MTBF of one processor: between 1 and 125 years
Shape parameters for Weibull: k =0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)
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Checkpointing

Outline

e Checkpointing
@ Coordinated checkpointing
@ Young/Daly's approximation
@ Assessing protocols at scale
@ In-memory checkpointing
@ Failure Prediction
@ Replication

ult-tolerance at scale HiPC 2014

es.Robert@ens-lyon.fr




Checkpointing
o

Outline

e Checkpointing

@ Coordinated checkpointing
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Checkpointing
Maintaining redundant information

@ General Purpose Fault Tolerance Techniques: work despite the
application behavior

@ Two adversaries: Failures & Application

@ Use automatically computed redundant information
e At given instants: checkpoints
e At any instant: replication
e Or anything in between: checkpoint + message logging
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Checkpointing
Process checkpointing

Save the current state of the process
e FT Protocols save a possible state of the parallel application

User-level checkpointing

System-level checkpointing

Blocking call

e 6 o6 o

Asynchronous call
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Checkpointing
System-level checkpointing

Blocking checkpointing

Relatively intuitive:  checkpoint (filename)
Cost: no process activity during whole checkpoint operation

o Different implementations: OS syscall; dynamic library;
compiler assisted

@ Create a serial file that can be loaded in a process image.
Usually on same architecture / OS / software environment

e Entirely transparent

@ Preemptive (often needed for library-level checkpointing)

@ Lack of portability

@ Large size of checkpoint (=~ memory footprint)
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Checkpointing
°

Storage

Remote reliable storage

Intuitive. /O intensive. Disk usage.

Memory hierarchy

@ local memory

@ local disk (SSD, HDD)
@ remote disk

e Scalable Checkpoint Restart Library
http://scalablecr.sourceforge.net

Checkpoint is valid when finished on reliable storage

Distributed memory storage

@ In-memory checkpointing

@ Disk-less checkpointing

’
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Checkpointing
Coordinated checkpointing

Definition (Missing Message)

A message is missing if in the current configuration, the sender
sent it, while the receiver did not receive it
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Checkpointing
Coordinated checkpointing

Definition (Orphan Message)

A message is orphan if in the current configuration, the receiver
received it, while the sender did not send it
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Checkpointing
Coordinated checkpointing

®

Create a consistent view of the application (no orphan messages) J

@ Messages belong to a checkpoint wave or another
@ All communication channels must be flushed (all2all)
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Checkpointing

Coordinated checkpointing

@ Silences the network during checkpoint

o Missing messages recorded
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Checkpointing
®00

Outline

e Checkpointing

@ Young/Daly's approximation
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Checkpointing
000

Periodic checkpointing

Time spent working
m——Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk
Processing the first chunk Processing the second chunk

Blocking model: while a checkpoint is taken, no computation can
be performed
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Checkpointing
000

Framework

@ Periodic checkpointing policy of period T

@ Independent and identically distributed failures

@ Applies to a single processor with MTBF 1 = pijng

@ Applies to a platform with p processors and MTBF p = %

e coordinated checkpointing
e tightly-coupled application
e progress < all processors available

= platform = single (powerful, unreliable) processor &

Waste: fraction of time not spent for useful computations J
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Checkpointing
000

Waste in fault-free execution

— @ TIMEp,e: application base time

ﬂ o TIMEfg: with periodic checkpoints
but failure-free

TIMEFr = TIMEpase + #checkpoints x C

(valid for large jobs)

. TIME TIME
#checkpoints = [ base—‘ R~ base

T-C T-C

TIMEgg — TIME C
WASTE[FF] = FTFIMEFF base _ -
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Checkpointing
000

Waste due to failures

@ TIMEpsse: application base time
o TIMEpg: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinal = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tiost: average time lost per failure
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Checkpointing
000

Waste due to failures

@ TIMEpsse: application base time
o TIMEpg: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinal = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tiost: average time lost per failure

TIMEfinal
Nfaults =

7-|05t?
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Checkpointing
©0®0

Computing Tjest

= Time spent working = Time spent checkpointing

—— Downtime —— Recovery time Time

Py /

Py ‘

P2

P

Tox D R T-C C
T
Tost =D+ R+ >

Rationale

= Instants when periods begin and failures strike are independent
= Approximation used for all distribution laws
= Exact for Exponential and uniform distributions
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Checkpointing
000

Waste due to failures

TIMEfinal = TIMEFF 4+ Neauies X Tiost

WASTE(fail] = =—(D+R+ —

TIME¢na — TIMEERE 1 T
TIMEfinal 0 2
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Checkpointing
000

Total waste

[ 7c|d 7c | 7c |d 7 |d 7< |c_

TIMEgg =TIMEgjna (1-WASTE[Fail]) TIMEFha X WASTE[Fail]

TIMEFinal

TIMEfinaI - TIMEbase

WASTE =
TIMEfinal

1 — WASTE = (1 — WASTE[FF])(1 — WASTE[fail])

C C\1 T
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Checkpointing
000

Waste minimization

C c\1 T
——4+(1-=)=(D+R+ =
WASTE T+< T>M< + +2>
u
WASTE:?—FV—FWT

D+Ry , _D+R-C/2 1

! ( Iz % 2p

WASTE minimized for T = \/%

T=2(u—(D+R))C
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Checkpointing
000

Comparison with Young/Daly

[ c|d 7c | 7c |d 7 |d 7< |c_

TIMEgg =TIMEEjna (1-WASTE[Fail]) TIMEFiha X WASTE[Fail]

TIMEFinal

(1 — WASTE[fail]) TIMEfina = TIMEFf
=T= \/2(/L —(D+R))C

Daly: TIMEfina = (1 4+ WASTE[fail]) TIMEF¢
=T =V2u+(D+R)C+C

Young: TIMEfina = (1 + WASTE[fail]) TIMEFr and D =R =0
=T =2uC+C
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Checkpointing
ooe

Validity of the approach

Several failures within same period?

e WasTE[fail] accurate only when two or more faults do not
take place within same period

o Cap period: T < ~vpu, where v is some tuning parameter
e Poisson process of parameter § = %
o Probability of having k > 0 failures : P(X = k) = %e‘e
o Probability of having two or more failures:
T=P(X>2))=1—-(P(X=0)+P(X=1))=1—(1+0)e"
e 7v=0.27 = 7<0.03
= overlapping faults for only 3% of checkpointing segments
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Checkpointing
000

Wrap up

@ Capping periods, and enforcing a lower bound on MTBF
= mandatory for mathematical rigor @

@ Not needed for practical purposes ©
e actual job execution uses optimal value
e account for multiple faults by re-executing work until success

e Approach surprisingly robust ©
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Checkpointing
000

Lesson learnt for fail-stop failures

(Not so) Secret data

e Tsubame 2: 962 failures during last 18 months so = 13 hrs
e Blue Waters: 2-3 node failures per day

e Titan: a few failures per day

e Tianhe 2: wouldn’t say

2C
Topt = V/2uC =  WASTE[opt] = | —
w
Petascale: C=20min pu=24hrs = WASTE[opt] = 17%

Scale by 10:  C=20min p=24hrs = WasTE[opt] =53%
Scale by 100: C =20 min p = 0.24 hrs = WASTE[opt] = 100%
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Checkpointing

000

Lesson learnt for fail-stop failures

Secret data
e Tsuba 02 failures during last 18 months sg
e Blue Waters: 2 “Simele failures per day
e Titan: a few failures p

Exascale # Petascale x1000
Need more reliable components
Need to checkpoint faster

C=20min p=24hrs =
C=20min pu=24hrs = WA
C=20min p=0.24hrs = WAST

E[opt] = 17%
opt] = 53%
t] = 100%
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Checkpointing
000

Outline

e Checkpointing

@ Assessing protocols at scale
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Checkpointing
000

Hierarchical checkpointing

@ Clusters of processes Po —O /

@ Coordinated checkpointing

protocol within clusters L R e S -
. ma ms3 mxy
@ Message logging protocols <€

between clusters Po 2 My e f - -
@ Only processors from failed group my

need to roll back

@ Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

© Faster re-execution with logged messages
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Checkpointing
®00

Which checkpointing protocol to use?

Coordinated checkpointing
© No risk of cascading rollbacks
© No need to log messages
® All processors need to roll back

® Rumor: May not scale to very large platforms

Hierarchical checkpointing

® Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

Only processors from failed group need to roll back

Faster re-execution with logged messages

© OO

Rumor: Should scale to very large platforms
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Checkpointing
000

Blocking vs. non-blocking

—Time spent working

Time spent checkpointing

Time

Computing the first chunk Checkpointing
fthe first chunk

Processing the first chunk Processing the second chunk

Blocking model: checkpointing blocks all computations
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Checkpointing
000

Blocking vs. non-blocking

—Time spent working

Time spent checkpointing
Time

Computing the first chunk Checkpointing
fthe first chunk

Processing the first chunk

Processing the second chunk

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to

disk)
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Checkpointing
000

Blocking vs. non-blocking

—Time spent working

Time spent checkpointing

=== ===== Time spent working with slowdown Time

Computing the first chunk Checkpointing
fthe first chunk

Processing the first chunk

General model: checkpointing slows computations down: during
a checkpoint of duration C, the same amount of computation is
done as during a time aC without checkpointing (0 < o < 1)
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Checkpointing
000

Hierarchical checkpointing

=== Time spent working === Time spent checkpointing === Time spent working with slowdown

== Downtime === Recovery time == Re-executing slowed-down work Time
Gl -----------------------
Gi timmmmmaaa- S — o meeeeee

]
Gy i mmmmmmm ——————————————— -
G4 -----------------------
S e — e I [ S Rty ——

Tex D R ‘( Tios I 6.C
a(G—g+1)C T—G.C—Trst
T

@ Processors partitioned into G groups
@ Each group includes g processors
@ Inside each group: coordinated checkpointing in time C(q)

@ Inter-group messages are logged
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Checkpointing
000

Accounting for message logging: Impact on work

o ® Logging messages slows down execution:
= WORK becomes A\WORK, where 0 < A <1
Typical value: A ~ 0.98

o © Re-execution after a failure is faster:
= RE-EXEC becomes @ where p € [1..2]
Typical value: p~ 1.5

T —
WASTE[FF] — M
T
1 RE-E
WaASTE[fail] = " <D(q) + R(q) + EPXEC>
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Checkpointing
000

Accounting for message logging: Impact on checkpoint size

@ Inter-groups messages logged continuously

@ Checkpoint size increases with amount of work executed
before a checkpoint ®

@ Co(q): Checkpoint size of a group without message logging

C(q) — Go(q)

C(q) = Co(q)(]. + BWORK) & [ = Co(q)VVORK

WOoRK = \(T — (1 — a)GC(q))

~ Go(q)(1+BAT)
¢la) =17 GGCo(q)BA(1 — )
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Checkpointing
0®0

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory 1/0 Network Bandwidth (bj,) 1/0 Bandwidth (bport)
cores PrOCesSors proal | per processor | per processor |  Read Write Read/Write per processor
Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 B 16GB 150GB/s 96GB/s 20GB/s
Exascale-Slim | 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s
Name Scenario G (C(q)) 3 for 3 for
2D-STENCIL | MATRIX-PRODUCT
COORD-10 1 (2,048s) / /
Titan HIERARCH-IO 136 (15s) 0.0001098 0.0004280
HIERARCH-PORT 1,246 (1.6s) 0.0002196 0.0008561
CoORD-1O 1 (14,688s)
K-Computer HIERARCH-1O 296 (50s) 0.0002858 0.001113
HIERARCH-PORT | 17,626 (0.83s) 0.0005716 0.002227
COORD-IO 1 (64,000s)
Exascale-Slim HIERARCH-IO 1,000 (64s) 0.0002599 0.001013
HIERARCH-PORT | 200,0000 (0.32s) 0.0005199 0.002026
COORD-10 1 (64,000s)
Exascale-Fat HIERARCH-IO 316 (217s) 0.00008220 0.0003203
HIERARCH-PORT | 33,3333 (1.92s) 0.00016440 0.0006407
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Checkpointing
000

Checkpoint time

Name C
K-Computer | 14,688s
Exascale-Slim | 64,000
Exascale-Fat | 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms
a=03,A2=09and p=1.5
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Checkpointing
000

Plotting formulas — Platform: Titan

Stencil 2D Matrix produc Stencil 3D

Part

o 20 S0 oo T 3 3 T 20 S0 100 T 3 3 o 20 S0 oo

Waste as a function of processor MTBF pjng
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Checkpointing
000

Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

T 3 3 o 20 S0 oo T 3 3 T 20 S0 100 T 3 3 o 20 S0 oo

Waste as a function of processor MTBF pjng
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Checkpointing
000

Plotting formulas — Platform: Exascale

WASTE = 1 for all scenarios!!! J
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Checkpointing
000

Plotting formulas — Platform: Exascale

Goodbye Exascale?!
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Checkpointing
ooe

Plotting formulas — Platform: Exascale with C = 1,000

Stencil 2D

Matrix product

Stencil 3D

£ : : :
a 05 05
1
<L os
(V)] 0.7 07 0.7
j oo 06
0s os 0s
\ I \
5. \ \
L 08 \ os \
ql) \ \
07 \ o7 \
= \
o] \
] o o
@ \ A\
X 0.4 04
0 0
0o o 0o
3 TN % T e L TN % w e 3 % s o

Waste as a function of processor MTBF g, C = 1,000
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Checkpointing
000

Plotting formulas — Platform: Exascale with C = 100

Stencil 2D

Matrix product

Stencil 3D

n

@

[0}

O

0n

m 3

X

L o2
— —

- \ oo\

© .\

Lo

1 0.7

@

] o5

O

0 04

Q 03

W - s

.

50

100

1 2 s o 20 50100

Waste as a function of processor MTBF p,4, C = 100
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Checkpointing

[e]e]e]

Simulations — Platform: Titan

Stencil 2D

Coordinated ——
Coordinated BestPer --------

Matrix product
Hierarchical ———
Hierarchical BestPer -------

Hierarchical Port

Hierarchical Port BestPer

T (e — 4 T U —
Coodinated — Coortined —
v Curdied BesPer
rehicsl — erachieal —
s Hierachical BestPer
Hierrical Pot —— Hiearical Pt ——
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Simulations — Platform: Exascale with C = 1,000

Exascale-Slim

Exascale-Fat

Checkpointing
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Checkpointing
000

Simulations — Platform: Exascale with C = 100
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Checkpointing
°

Outline

e Checkpointing

@ In-memory checkpointing
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Checkpointing
o

Motivation

@ Checkpoint transfer and storage
= critical issues of rollback/recovery protocols

@ Stable storage: high cost

@ Distributed in-memory storage:

e Store checkpoints in local memory = no centralized storage
© Much better scalability

o Replicate checkpoints = application survives single failure
® Still, risk of fatal failure in some (unlikely) scenarios
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Checkpointing

Double checkpooint algorithm (Kale et al., UIUC)

Local checkpoint Remote checkpoint Period
done done done
Node p | 1 |
Node p' | 1 |
->
) 0 o
P

@ Platform nodes partitioned into pairs
@ Each node in a pair exchanges its checkpoint with its buddy
@ Each node saves two checkpoints:

- one locally: storing its own data
- one remotely: receiving and storing its buddy's data
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Checkpointing
o

Failures

Risk Period
Node p' 1 1

- - — Checkpoint of Checkpoint of
3 0 G 3 G} tost P P
P \ \
-— -—
D R 0 tiost

@ After failure: downtime D and recovery from buddy node

@ Two checkpoint files lost, must be re-sent to faulty processor
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Checkpointing
o

Failures

Risk Pej
Node p' 1 [ 1
L 1§
- - - Checkpoint of Checkpoint of
3 0 c 3 0 tost ? P

Node to replace p

o After failure: downtime D and recovery from buddy node
@ Two checkpoint files lost, must be re-sent to faulty processor

@ Application at risk until complete reception of both messages

Best trade-off between performance and risk? |
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Checkpointing
o

Outline

e Checkpointing

@ Failure Prediction
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Checkpointing
Framework

Predictor
e Exact prediction dates (at least C seconds in advance)
@ Recall r: fraction of faults that are predicted

@ Precision p: fraction of fault predictions that are correct

Events
@ true positive: predicted faults

@ false positive: fault predictions that did not materialize as
actual faults

o false negative: unpredicted faults
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Checkpointing
Algorithm

© While no fault prediction is available:
e checkpoints taken periodically with period T
@ When a fault is predicted at time t:
e take a checkpoint ALAP (completion right at time t)
e after the checkpoint, complete the execution of the period
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Checkpointing
Computing the waste

O Fault-free execution: WASTE[FF] = %

————— Time

. .1 T
© Unpredicted faults: [D+ R+ %]

Error

<] ] [ ]

T-C T-C Tiost T-C Time
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Checkpointing
Computing the waste

@ Predictions: ,U»% [P(C+D+R)+(1—p)C]

Error
[] [ BRI [ []
T-C Wieg T-Wieg-C T-C Time

with actual fault (true positive)

<] G [{ [ ]

T-C Wieg T-Wieg-C T-C T-C Time

no actual fault (false negative)

2uC

fail] = e
WASTE(fail| T,

-
(1—r)+D+R+;C] = Topt &

1
W 2
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Checkpointing

With prediction windows

(Regu

(Prediction

(Predictio

Error
lar mode)
[<] [] [c] | [c]
Tr-C Tr-C Tiost Tr-C Time
without failure) 1
] [ B ECECE [
7—R'C Wreg TP‘Cp TP‘Cp TP‘CP TR‘C Time
Regular mode Proactive mode Wieg
n with failure) y Errer
<] [ @l ECE [
Tr-C Wieg| |Tp-Cp  Tp-Cp Tr-C Time
Regular mode Proactive mode “Wieg
Gets too complicated! @
HiPC 2014
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Checkpointing
o

Outline

e Checkpointing

@ Replication
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Checkpointing
Replication

@ Systematic replication: efficiency < 50%

@ Can replication+checkpointing be more efficient than
checkpointing alone?

@ Study by Ferreira et al. [SC'2011]: yes
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Checkpointing

Model by Ferreira et al. [SC’ 2011]

Parallel application comprising N processes

Platform with piotay = 2N processors

o

o

@ Each process replicated — N replica-groups

@ When a replica is hit by a failure, it is not restarted
o

Application fails when both replicas in one replica-group have
been hit by failures
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The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday 7

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

+oo
Birthday(N) = 1 +/ e (14 x/N)N=1dx
0

The analogy

Two people with same birthday

Two failures hitting same replica-group
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Correct analogy
O 0O O O
1 2 3 4 n

i

00000600000 .
N = n,g bins, red and blue balls
Mean Number of Failures to Interruption (bring down application)

MNFTI = expected number of balls to throw
until one bin gets one ball of each color
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Checkpointing
o

Failure distribution

— BEsTPE — BESTPERIOD-g = 1
= BestPeriong - 2 | = BestPeriong - 2
T T T T T T T T T T T T T T
2 6 7 0 210 ™ o 2 16 ey e 2 Q:D o

number of processors number of processors

(a) Exponential (b) Weibull, k =0.7

Crossover point for replication when g = 125 years
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Outline

e ABFT for dense linear algebra kernels
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ABFT
Forward-Recovery

Backward Recovery

@ Rollback / Backward Recovery: returns in the history to
recover from failures.

@ Spends time to re-execute computations

@ Rebuilds states already reached

@ Typical: checkpointing techniques

Yves.Robert@ens-lyon.fr Fault-tolerance at scale HiPC 2014



ABFT
Forward-Recovery

Forward Recovery

@ Forward Recovery: proceeds without returning.

Pays additional costs during (failure-free) computation to
maintain consistent redundancy

Or pays additional computations when failures happen

General technique: Replication

Application-Specific techniques: Iterative algorithms with
fixed point convergence, ABFT, ...
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Tiled LU factorization

Failure of rank 2

w(24/0[2[4]0[2] ol 4ofll4]o]
i8(5(13[5[1]3 i8/5/113]5[1]3
l4fo]2]4]0]2] 4 [0 Il 4 (0]
MEIHNE > b (3]5]1/3
124102 an

@ 2D Block Cyclic Distribution (here 2 x 3)

@ A single failure = many data lost
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Algorithm Based Fault Tolerant LU decomposition

PSS

GETF2 GEMM

@ Checksum: invertible operation on row/column data

o Key idea of ABFT: applying the operation on data and
checksum preserves the checksum properties
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Performance

Relative Overhead (%)

35

28

21

Overhead: FT-PDGETRF (w/1 recovery) ==
Overhead: FT-PDGETRF (no error) =m=
FT-PDGETRF (w/1 recovery) sss

L FT-PDGETRF (no error) ez=
ScalAPACK PDGETRF mmm

0
o0 'I—“\(\')_y\\'l'. A“\(f)_,;y\'l_‘\‘y %0\‘:3)@%‘. \Eﬁ\éw\%.' 30 A% padk

92
#Processors (PxQ grid); Matrix size (N)

MPI-Next ULFM Performance

50

40

30

20

Performance (TFlop/s)

@ Open MPI with ULFM; Kraken supercomputer;

Yves.Robert@ens-lyon.fr

Fault-tolerance at scale

HiPC 2014



Silent Errors

Outline

o Silent errors
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Silent Errors
Definitions

@ Instantaneous error detection = fail-stop failures,
e.g. resource crash

o Silent errors (data corruption) = detection latency
Silent error detected only when the corrupt data is activated

@ Includes some software faults, some hardware errors (soft
errors in L1 cache), double bit flip

e Cannot always be corrected by ECC memory
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Silent Errors
Quotes

@ Soft Error: An unintended change in the state of an electronic
device that alters the information that it stores without
destroying its functionality, e.g. a bit flip caused by a
cosmic-ray-induced neutron. (Hengartner et al., 2008)

@ SDC occurs when incorrect data is delivered by a computing
system to the user without any error being logged (Cristian
Constantinescu, AMD)

e Silent errors are the black swan of errors (Marc Snir)
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Silent Errors

Should we be afraid? (courtesy Al Geist)

Fear of the Unknown

Hard errors — permanent component failure either HW or SW
(hung or crash)

Transient errors —a blip or short term failure of either HW or SW

Silent errors — undetected errors either hard or soft, due to lack of
detectors for a component or inability to detect (transient effect

too short). Real danger is that answer may be incorrect but the
user wouldn’t know.

Statistically, silent error rates are increasing.
Are they really? Its fear of the unknown

Are silent errors really a problem
or just monsters under our bed? /
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Silent Errors
Probability distributions for silent errors
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Silent Errors
Probability distributions for silent errors

Theorem: i, = Hind ¢or arbitrary distributions
p
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Silent Errors
General-purpose approach
Error; ; Detection

X Xy Time

Error and detection latency

@ Last checkpoint may have saved an already corrupted state

@ Saving k checkpoints (Lu, Zheng and Chien):

@ Critical failure when all live checkpoints are invalid
@ Which checkpoint to roll back to?
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Silent Errors
General-purpose approach

Error; ; Detection

< Xe Xy Time

Error and detection latency

@ Last checkpoint may have saved an already corrupted state

@ Saving k checkpoints (Lu, Zheng and Chien):
@ Critical failure when all live checkpoints are invalid
Assume unlimited storage resources
@ Which checkpoint to roll back to?
Assume verification mechanism
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Silent Errors
Limitation of the model

It is not clear how to detect when the error has occurred
(hence to identify the last valid checkpoint) @ ® ®

Need a verification mechanism to check the correctness of the
checkpoints. This has an additional cost!
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Silent Errors

Coupling checkpointing and verification

@ Verification mechanism of cost V
@ Silent errors detected only when verification is executed

@ Approach agnostic of the nature of verification mechanism
(checksum, error correcting code, coherence tests, etc)

o Fully general-purpose
(application-specific information, if available, can always be
used to decrease V)
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Silent Errors

On-line ABFT scheme for PCG

1 : Compute Pl = p— A2 00 = ] f_l'r‘m,'p{[]" = 201,
o o
and pp = (@ 2(°) for some initial guess =(") . s
2 : checkpoint: A, M, and b ZIZhOﬂg Chen, PPoPP’'13
3 : for i=0,1,...
4 if ( (i>0) and (i%d=0) ) @ lterate PCG
5 : if ¢ 2TV 10 Cost: SpMV, preconditioner
or U bl o, 1g-10 y solve, 5 linear kernels
6 : recover: A, M, b, i, pi, @ Detect soft errors by checking
pht, x'\t, and PV . .
7. else 1f ( i%(cd) 5 ) orthogonality and residual
8 : checkpoint: ¢, p;, pli), and «(i)
9: endif
10: endif @ Verification every d iterations
. i = e
1: A Cost: scalar product+SpMV
12: g = p e/P“ 9”’
13: g1 = £l L gl @ Checkpoint every c iterations
14 r() = — ”‘-qm Cost: three vectors, or two
15: solve Mzt = plit1)  ghere M = M7 : !
16: piyy = r+DT 64D vectors + SpMV at recovery
17: Bi = pis1/pi
10: pli+1) = 2(i+1) 4 g.p(3) .
19: check convergence; continue if necessary ] Experlmental method to
20: end choose ¢ and d
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Silent Errors

Base pattern (and revisiting Young/Daly)

Detection
Error
V| C ; V| C V| C

w w Time

Fail-stop (classical) | Silent errors

Pattern T=W+C S=W+V+C
WASTE[FF] | & vIe

WastTE[fail] | (D + R+ %) LR+ W+V)
Optimal Topt = V2Cpt Sopt =V (C+ V)
WasTE[opt] | /25 2,/ &Y
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With p = 1 checkpoint and g = 3 verifications

Detection
Error
v] ¢ M; v [v] c [v] [v] v]c

w w w w w w Time

Base Pattern | p=1,q9 =1 | WASTE[opt] = 2 %
New Pattern | p=1,9 =3 | WASTE[opt] = 2 4(Cg;3v)
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Silent Errors
BALANCEDALGORITHM

el [ [ [ [ [ [T

A ow ow Time

2w 2w

p checkpoints and g verifications, p < g
p=2,9g=5S5S=2C+5V+ W
W = 10w, six chunks of size w or 2w

May store invalid checkpoint (error during third chunk)

After successful verification in fourth chunk, preceding
checkpoint is valid

@ Keep only two checkpoints in memory and avoid any fatal
failure
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Silent Errors
BALANCEDALGORITHM

el M MM [ [

A ow ow Time

2w 2w

@ ( proba 2w/W) Tiost = R+ 2w + V

@ ( proba 2w/W) Tiost = R+ 4w + 2V

@ ( proba w/W) Tiost =2R+6w + C +4V

@ ( proba w/W) Tiost = R+ w +2V

® ( proba 2w/W) Tiost = R + 3w + 2V

® ( proba 2w/W) Tiost = R+ 5w + 3V
WASTE[opt] = 2 12C +5Y)

20p
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Silent Errors
Results

el M MM [ [

A ow ow Time

2w 2w

BALANCEDALGORITHM optimal when C, R,V < 1
Keep only 2 checkpoints in memory/storage
Closed-form formula for WASTE[opt]

Given C and V, choose optimal pattern

Gain of up to 20% over base pattern
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Silent Errors
Application-specific methods

e ABFT: dense matrices / fail-stop, extended to sparse / silent.
Limited to one error detection and/or correction in practice

@ Asynchronous (chaotic) iterative methods (old work)

o Partial differential equations: use lower-order scheme as
verification mechanism (detection only, Benson, Schmit and
Schreiber)

e FT-GMRES: inner-outer iterations (Hoemmen and Heroux)

@ PCG: orthogonalization check every k iterations,
re-orthogonalization if problem detected (Sao and Vuduc)

@ ... Many others
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Silent Errors

Dynamic programming for linear chains of tasks

@ {T1,Ta,..., Ty} : linear chain of n tasks
e Each task T; fully parametrized:

e w; computational weight

o G, R;,V; : checkpoint, recovery, verification
@ Error rates:

o A rate of fail-stop errors
o \° rate of silent errors
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Silent Errors
VC-ONLY

vCc vc

Timee< (i, k — 1) Te(i+1,))

min Timeg<(n, k)
0<k<n

Time£<(j, k) = kmln {TimeF (i, k — 1) + TEF(i +1,j)}
<i<j
T2 (i,j) = Pl (Tiost,; + Rim1 + TEE(i.)))
(1) (S we+ V45 (R + TEGLD) + (1 65) G)
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Silent Errors
Extensions

VC-onNLY and VC+V
Different speeds with DVFS, different error rates
Different execution modes

Optimize for time or for energy consumption

Current research
@ Use verification to correct some errors (ABFT)

e Imprecise verifications (a.k.a. recall and prediction)
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Conclusion

Outline

e Conclusion
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Conclusion
A few questions

Silent errors
@ Error rate? MTBE?
@ Selective reliability?

@ New algorithms beyond iterative? matrix-product, FFT, ...
Resilient research on resilience

Models needed to assess techniques at scale
without bias ©
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Conclusion
Conclusion

General Purpose Fault Tolerance

@ Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

@ Multi-criteria scheduling problem
execution time/energy /reliability
add replication
best resource usage (performance trade-offs)

@ Need combine all these approaches!

Several challenging algorithmic/scheduling problems @ J

Extended version of this talk: see SC’14 tutorial. Available at
http://graal.ens-1lyon.fr/~yrobert/
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