
Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Performance at Scale: Scheduling Matters

Yves Robert
Ecole Normale Supérieure de Lyon, France

University of Tennessee Knoxville, USA

HPCS – July 17, 2019
http://graal.ens-lyon.fr/~yrobert/hpcs-dublin.pdf

: yves.robert@inria.fr Scheduling Matters 1/ 122

http://graal.ens-lyon.fr/~yrobert/hpcs-dublin.pdf

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Agenda: some scheduling problems

1© Scheduling checkpoints

2© Scheduling against IO interference

3© Scheduling for replication

4© Scheduling stochastic tasks

: yves.robert@inria.fr Scheduling Matters 2/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scale is the enemy

: yves.robert@inria.fr Scheduling Matters 3/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scale is the enemy

: yves.robert@inria.fr Scheduling Matters 3/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scale is the enemy

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20)...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60)

: yves.robert@inria.fr Scheduling Matters 3/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scale is the enemy

: yves.robert@inria.fr Scheduling Matters 3/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scale is the enemy

: yves.robert@inria.fr Scheduling Matters 3/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scale is the enemy

Need to checkpoint!

But when?
Scheduling matters ,

: yves.robert@inria.fr Scheduling Matters 3/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

IO gap increases

: yves.robert@inria.fr Scheduling Matters 4/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

IO gap increases

Avoid interference!

Many flops, little IO bandwidth
Scheduling matters ,

: yves.robert@inria.fr Scheduling Matters 4/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Replication

p1

p2

p1

p2

p1

p2

p1

p2

Time

Pair1

Pair2

Pair3

Pair4

: yves.robert@inria.fr Scheduling Matters 5/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Replication

p1

p2

p1

p2

p1

p2

p1

p2

Time

Pair1

Pair2

Pair3

Pair4

Replication costly by definition

Minimize extra overhead due to fault protection
Open problem?
Scheduling matters ,

: yves.robert@inria.fr Scheduling Matters 5/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Stochastic tasks

Beta(2, 2) Gamma(2, 0.5) Weibull(2, 1/Γ(1.5)) Inv-Gamma(3, 2)

Beta(0.5, 0.5) Gamma(0.5, 2) Weibull(0.5, 1/Γ(3)) Inv-Gamma(1.5, 0.5)

U(0, 1) Exp(1) |N(0, 1)| Lognormal(0, 1)

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0
0.0

0.2

0.4

0.6

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

0.8
0.9
1.0
1.1
1.2

5

10

15

0.00

0.25

0.50

0.75

1.00

0.50

0.75

1.00

1.25

1.50

2

4

6

8

0.00

0.25

0.50

0.75

1.00

1.00

1.25

1.50

1.75

2.00

2
3
4
5
6

0.0

0.5

1.0

1.5

2.0

Cutting threshold

E
ffi

ci
en

cy
(R

)

: yves.robert@inria.fr Scheduling Matters 6/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Stochastic tasks

Beta(2, 2) Gamma(2, 0.5) Weibull(2, 1/Γ(1.5)) Inv-Gamma(3, 2)

Beta(0.5, 0.5) Gamma(0.5, 2) Weibull(0.5, 1/Γ(3)) Inv-Gamma(1.5, 0.5)

U(0, 1) Exp(1) |N(0, 1)| Lognormal(0, 1)

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0
0.0

0.2

0.4

0.6

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

0.8
0.9
1.0
1.1
1.2

5

10

15

0.00

0.25

0.50

0.75

1.00

0.50

0.75

1.00

1.25

1.50

2

4

6

8

0.00

0.25

0.50

0.75

1.00

1.00

1.25

1.50

1.75

2.00

2
3
4
5
6

0.0

0.5

1.0

1.5

2.0

Cutting threshold

E
ffi

ci
en

cy
(R

)Scheduling in the dark (almost!)

Only know probability distribution of task durations
Should we interrupt long-running tasks?
Scheduling matters ,

: yves.robert@inria.fr Scheduling Matters 6/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 7/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints
Faults and failures
Checkpointing
In-memory checkpointing
Multi-level checkpointing
Silent errors

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 8/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints
Faults and failures
Checkpointing
In-memory checkpointing
Multi-level checkpointing
Silent errors

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 9/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Silent errors (Silent Data Corruptions) addressed later

: yves.robert@inria.fr Scheduling Matters 10/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

Exp(λ): Exponential distribution law of parameter λ:

Pdf: f (t) = λe−λtdt for t ≥ 0

Cdf: F (t) = 1− e−λt

Mean = 1
λ

: yves.robert@inria.fr Scheduling Matters 11/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

X random variable for Exp(λ) failure inter-arrival times:

P(X ≤ t) = 1− e−λtdt (by definition)

Memoryless property: P (X ≥ t + s |X ≥ s) = P(X ≥ t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

Mean Time Between Failures (MTBF) µ = E (X) = 1
λ

: yves.robert@inria.fr Scheduling Matters 11/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

Weibull(k, λ): Weibull distribution law of shape parameter k and
scale parameter λ:

Pdf: f (t) = kλ(tλ)k−1e−(λt)kdt for t ≥ 0

Cdf: F (t) = 1− e−(λt)k

Mean = 1
λΓ(1 + 1

k)

: yves.robert@inria.fr Scheduling Matters 12/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time

: yves.robert@inria.fr Scheduling Matters 12/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Platform MTBF

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions of MTBF µ
⇒ IID only for Exponential

Define µp by

lim
F→+∞

F

n(F)
= µp

n(F) = number of platform failures until time F is exceeded

Time

p1

p2

p3

t

Time

p

t

Theorem: µp =
µ

p
for arbitrary distributions

: yves.robert@inria.fr Scheduling Matters 13/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Values from the literature

MTBF of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)

: yves.robert@inria.fr Scheduling Matters 14/ 122

http://fta.inria.fr
http://institutes.lanl.gov/data/fdata

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Does it matter?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0h 3h 6h 9h 12h 15h 18h 21h 24h

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (hours)

Parallel machine (10
6
 nodes)

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

After infant mortality and before aging,
instantaneous failure rate of computer platforms is almost constant

: yves.robert@inria.fr Scheduling Matters 15/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Summary for the road

MTBF key parameter and µp = µ
p ,

Exponential distribution OK for most purposes ,
Assume failure independence while not (completely) true /

: yves.robert@inria.fr Scheduling Matters 16/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints
Faults and failures
Checkpointing
In-memory checkpointing
Multi-level checkpointing
Silent errors

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 17/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Periodic checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed

: yves.robert@inria.fr Scheduling Matters 18/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Framework

Periodic checkpointing policy of period T = W + C

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors and MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

⇒ platform = single (powerful, unreliable) processor ,

Waste: fraction of time not spent for useful computations

: yves.robert@inria.fr Scheduling Matters 19/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

Waste[FF] =
TimeFF −Timebase

TimeFF
=

C

T

: yves.robert@inria.fr Scheduling Matters 20/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?

: yves.robert@inria.fr Scheduling Matters 21/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?

: yves.robert@inria.fr Scheduling Matters 21/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

Rationale
⇒ Instants when periods begin and failures strike are independent
⇒ Approximation used for all distribution laws
⇒ Exact for Exponential and uniform distributions

: yves.robert@inria.fr Scheduling Matters 22/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Waste[fail] =
Timefinal −TimeFF

Timefinal
=

1

µ

(
D + R +

T

2

)

: yves.robert@inria.fr Scheduling Matters 23/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

1−Waste = (1−Waste[FF])(1−Waste[fail])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)

: yves.robert@inria.fr Scheduling Matters 24/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Optimal checkpointing interval

: yves.robert@inria.fr Scheduling Matters 25/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C

: yves.robert@inria.fr Scheduling Matters 26/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C

: yves.robert@inria.fr Scheduling Matters 27/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Wrap up

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,

: yves.robert@inria.fr Scheduling Matters 28/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Wasteopt ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%

: yves.robert@inria.fr Scheduling Matters 29/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Wasteopt ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%

Exascale 6= Petascale ×1000
Need more reliable components

Need to checkpoint faster

: yves.robert@inria.fr Scheduling Matters 29/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Wasteopt ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%

Silent errors:

detection latency ⇒ additional problems

: yves.robert@inria.fr Scheduling Matters 29/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Exponential distributions

Compute the expected time E(W) to execute a work of duration
W followed by a checkpoint of duration C .

Recursive Approach

E(W) =

: yves.robert@inria.fr Scheduling Matters 30/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Exponential distributions

Compute the expected time E(W) to execute a work of duration
W followed by a checkpoint of duration C .

Recursive Approach

of success

Probability

Psucc(W + C) (W + C)

E(W) =

: yves.robert@inria.fr Scheduling Matters 30/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Exponential distributions

Compute the expected time E(W) to execute a work of duration
W followed by a checkpoint of duration C .

Recursive Approach
Time needed

the work W and

to compute

checkpoint it

Psucc(W + C) (W + C)

E(W) =

: yves.robert@inria.fr Scheduling Matters 30/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Exponential distributions

Compute the expected time E(W) to execute a work of duration
W followed by a checkpoint of duration C .

Recursive Approach

Probability of failure

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(W))

+

Psucc(W + C) (W + C)

E(W) =

: yves.robert@inria.fr Scheduling Matters 30/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Exponential distributions

Compute the expected time E(W) to execute a work of duration
W followed by a checkpoint of duration C .

Recursive Approach

Time elapsed

before failure

stroke

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(W))

Psucc(W + C) (W + C)

E(W) =

: yves.robert@inria.fr Scheduling Matters 30/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Exponential distributions

Compute the expected time E(W) to execute a work of duration
W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to perform

downtime

and recovery

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(W))

Psucc(W + C) (W + C)

E((W) =

: yves.robert@inria.fr Scheduling Matters 30/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Exponential distributions

Compute the expected time E(W) to execute a work of duration
W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to compute W

anew

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(W))

Psucc(W + C) (W + C)

E(W) =

: yves.robert@inria.fr Scheduling Matters 30/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Computation of E(W)

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(W))

Psucc(W + C) (W + C)

E(W) =

Psuc(W + C) = e−λ(W+C)

E(Tlost(W + C)) =
∫∞

0
xP(X = x |X <W + C)dx = 1

λ −
W+C

eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(W) = eλR
(

1
λ + D

)
(eλ(W+C) − 1)

: yves.robert@inria.fr Scheduling Matters 31/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Optimal checkpointing interval

Minimize expected execution overhead H(W) = E(W)
W − 1

Time

C W C W C

Exact solution:

H(W) =
eλR(1

λ + D)eλ(W+C)

W
− 1, use Lambert function

First-order approximation [Young/Daly]:

Wopt =

√
2C

λ
=
√

2Cµ

Hopt =
√

2λC + Θ(λ)

: yves.robert@inria.fr Scheduling Matters 32/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints
Faults and failures
Checkpointing
In-memory checkpointing
Multi-level checkpointing
Silent errors

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 33/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Double checkpoint algorithm (Kale et al., UIUC)

1

1

d q s

f

f

P

Local checkpoint
done

Remote checkpoint
done

Period
done

Node p

Node p'

Platform nodes partitioned into pairs

Each node in a pair exchanges its checkpoint with its buddy

Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy’s data

: yves.robert@inria.fr Scheduling Matters 34/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Best trade-off between performance and risk?

: yves.robert@inria.fr Scheduling Matters 35/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Application at risk until complete reception of both messages

Best trade-off between performance and risk?

: yves.robert@inria.fr Scheduling Matters 35/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints
Faults and failures
Checkpointing
In-memory checkpointing
Multi-level checkpointing
Silent errors

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 36/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Multi-level checkpointing

Coordinated checkpointing
⇒ Scalability problem for large-scale platforms

Multiple technologies to cope with different failure types:

Local memory/SSD

Partner copy/XOR

Reed-Solomon coding

Parallel file system

Scalable Checkpoint/Restart (SCR) library
Fault Tolerance Interface (FTI)
VeloC (ECP project)

: yves.robert@inria.fr Scheduling Matters 37/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Simplified model

Independent checkpointing:

Time

Time

Time

C3 C3

C2 C2 C2

C1 C1 C1 C1 C1 C1 C1 C1

(level 3: PFS)

(level 2: partner)

(level 1: local)

Synchronized checkpointing:

Time

C1 C2 C3 C1 C1 C2 C1 C1 C1 C2 C3

: yves.robert@inria.fr Scheduling Matters 38/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Two Levels

Easier because pattern repeats (memoryless property)

Time

C1 C2 C1 C1 C2 C1 C1 C2

Exact solution: very complicated (which error type occurs
first?), equal-length chunks, see [1]

First-order approximation:

Hopt =
√

2λ1C1 +
√

2λ2C2 + Θ(λ)

(obtained for some optimal pattern)

[1] S. Di, Y. Robert, F. Vivien, F. Cappello. Toward an optimal online checkpoint
solution under a two-level HPC checkpoint model, IEEE TPDS, 2017.

: yves.robert@inria.fr Scheduling Matters 39/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Two Levels

Easier because pattern repeats (memoryless property)

Time

C1 C2 C1 C1 C2 C1 C1 C2

Exact solution: very complicated (which error type occurs
first?), equal-length chunks, see [1]

First-order approximation:

Hopt =
√

2λ1C1 +
√

2λ2C2 + Θ(λ)

(obtained for some optimal pattern)

[1] S. Di, Y. Robert, F. Vivien, F. Cappello. Toward an optimal online checkpoint
solution under a two-level HPC checkpoint model, IEEE TPDS, 2017.

: yves.robert@inria.fr Scheduling Matters 39/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Three Levels

Difficult because sub-patterns may differ

Time

C1 C2 C3 C1 C1 C2 C1 C1 C1 C2 C3

Exact solution: unknown

First-order approximation:

Hopt =
√

2λ1C1 +
√

2λ2C2 +
√

2λ3C3 + Θ(λ)

Choose optimal set of levels:

Level Overhead
1, 2, 3

√
2C1λ1 +

√
2C2λ2 +

√
2C3λ3

1, 3
√

2C1λ1 +
√

2C3(λ2 + λ3)

2, 3
√

2C2(λ1 + λ2) +
√

2C3λ3

3
√

2C3(λ1 + λ2 + λ3)

: yves.robert@inria.fr Scheduling Matters 40/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Three Levels

Difficult because sub-patterns may differ

Time

C1 C2 C3 C1 C1 C2 C1 C1 C1 C2 C3

Exact solution: unknown

First-order approximation:

Hopt =
√

2λ1C1 +
√

2λ2C2 +
√

2λ3C3 + Θ(λ)

Choose optimal set of levels:

Level Overhead
1, 2, 3

√
2C1λ1 +

√
2C2λ2 +

√
2C3λ3

1, 3
√

2C1λ1 +
√

2C3(λ2 + λ3)

2, 3
√

2C2(λ1 + λ2) +
√

2C3λ3

3
√

2C3(λ1 + λ2 + λ3)

: yves.robert@inria.fr Scheduling Matters 40/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Simulations

Set Source Level 1 2 3 4

(A)
Moody C (s) 0.5 4.5 1051 -

et al. [1] MTBF (s) 5.00e6 5.56e5 2.50e6 -

(B)
Balaprakash C (s) 10 20 20 100

et al. [2] MTBF (s) 3.60e4 7.20e4 1.44e5 7.20e5

{3} {3,1} {3,2} {3,2,1}
Checkpoint Levels

0.00

0.02

0.04

0.06

0.08

0.10

O
v
e
rh
e
a
d

Theoretical Lower Bound

Sim. Overhead (Best Rounding)

Corresp. Theoretical Overhead

Sim. Overhead (Worst Rounding)

Corresp. Theoretical Overhead

{4} {4,1} {4,2} {4,3} {4,2,1} {4,3,1} {4,3,2} {4,3,2,1}
Checkpoint Levels

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

O
v
e
rh
e
a
d

Theoretical Lower Bound

Sim. Overhead (Best Rounding)

Corresp. Theoretical Overhead

Sim. Overhead (Worst Rounding)

Corresp. Theoretical Overhead

(A) (B)

[1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski. Design, modeling, and evaluation of a
scalable multi-level checkpointing system. Supercomputing, 2010.

[2] P. Balaprakash, L. A. Bautista-Gomez, M.-S. Bouguerra, S. M. Wild, F. Cappello, and P. D. Hovland.
Analysis of the tradeoffs between energy and run time for multilevel checkpointing. PMBS, 2014.

: yves.robert@inria.fr Scheduling Matters 41/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Takeaway

Explicit formulas for (almost) optimal multi-level checkpointing

Hopt =
k∑
`=1

√
2λ`C` + Θ(λ)

Limitations:

First-order accurate for platform MTBF in hours
⇐⇒ 10,000s of nodes. Beyond?

Independent errors /
Correlated failures across levels?

[1] A. Benoit, A. Cavelan, Y. Robert and H. Sun. Towards optimal multi-level
checkpointing, IEEE TC, 2017.

: yves.robert@inria.fr Scheduling Matters 42/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints
Faults and failures
Checkpointing
In-memory checkpointing
Multi-level checkpointing
Silent errors

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 43/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Definitions

Instantaneous error detection ⇒ fail-stop failures,
e.g. resource crash

Silent errors (data corruption) ⇒ detection latency

Silent error detected only when the corrupt data is activated

Includes some software faults, some hardware errors (soft
errors in L1 cache), double bit flip

Cannot always be corrected by ECC memory

: yves.robert@inria.fr Scheduling Matters 44/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Probability distributions for silent errors

?
Theorem: µp =

µind

p
for arbitrary distributions

: yves.robert@inria.fr Scheduling Matters 45/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Probability distributions for silent errors

?
Theorem: µp =

µind

p
for arbitrary distributions

: yves.robert@inria.fr Scheduling Matters 45/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

General-purpose approach

TimeXe Xd

fault

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Critical failure when all live checkpoints are invalid
 Which checkpoint to roll back to?

: yves.robert@inria.fr Scheduling Matters 46/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

General-purpose approach

TimeXe Xd

fault

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Critical failure when all live checkpoints are invalid
Assume unlimited storage resources

 Which checkpoint to roll back to?
Assume verification mechanism

: yves.robert@inria.fr Scheduling Matters 46/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Limitation of the model

It is not clear how to detect when the error has occurred
(hence to identify the last valid checkpoint) / / /

Need a verification mechanism to check the correctness of the
checkpoints. This has an additional cost!

: yves.robert@inria.fr Scheduling Matters 47/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Coupling checkpointing and verification

Verification mechanism of cost V

Silent errors detected only when verification is executed

Approach agnostic of the nature of verification mechanism
(checksum, error correcting code, coherence tests, etc)

Fully general-purpose
(application-specific information, if available, can always be
used to decrease V)

: yves.robert@inria.fr Scheduling Matters 48/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

On-line ABFT scheme for PCG

Zizhong Chen, PPoPP’13

Iterate PCG
Cost: SpMV, preconditioner
solve, 5 linear kernels

Detect soft errors by checking
orthogonality and residual

Verification every d iterations
Cost: scalar product+SpMV

Checkpoint every c iterations
Cost: three vectors, or two
vectors + SpMV at recovery

Experimental method to
choose c and d

: yves.robert@inria.fr Scheduling Matters 49/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Base pattern (and revisiting Young/Daly)

TimeW W

fault

V C V C V C

Fail-stop (classical) Silent errors

Pattern T = W + C T = W + V + C

Waste[FF] C
T

V+C
T

Waste[fail] 1
µ(D + R + T

2) 1
µ(R + T + V)

Optimal Topt =
√

2Cµ Topt =
√

(V + C)µ

Wasteopt

√
2C
µ 2

√
C+V
µ

: yves.robert@inria.fr Scheduling Matters 50/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

With p = 1 checkpoint and q = 3 verifications

Timew w w w w w

fault

V C V V V C V V V C

Base Pattern p = 1, q = 1 Wasteopt = 2
√

C+V
µ

New Pattern p = 1, q = 3 Wasteopt = 2
√

4(C+3V)
6µ

: yves.robert@inria.fr Scheduling Matters 51/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Application-specific methods (1/2)

ABFT: dense matrices / fail-stop, extended to sparse / silent.
Limited to one error detection and/or correction in practice

Asynchronous (chaotic) iterative methods (old work)

Partial differential equations: use lower-order scheme as
verification mechanism (detection only, Benson, Schmit and
Schreiber)

FT-GMRES: inner-outer iterations (Hoemmen and Heroux)

PCG: orthogonalization check every k iterations,
re-orthogonalization if problem detected (Sao and Vuduc)

Algorithm-based focused recovery: use application data-flow
to identify potential error source and corrupted nodes (Fang
and Chien 2014)

: yves.robert@inria.fr Scheduling Matters 52/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Application-specific methods (2/2)

Dynamic monitoring of datasets based on physical laws (e.g.,
temperature/speed limit) and space or temporal proximity
(Bautista-Gomez and Cappello)

Time-series prediction, spatial multivariate interpolation (Di et
al.)

Offline training, online detection based on SDC signature for
convergent iterative applications (Liu and Agrawal)

Spatial regression based on support vector machines (Subasi
et al.)

Many others data-analytics/machine learning approaches

: yves.robert@inria.fr Scheduling Matters 53/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Application-specific detectors

Do you believe it?

• Detectors are not perfect
• High recall is expensive if at all achievable
• With higher error rates, it would be good to correct a few
errors
Replication mandatory at scale? /

: yves.robert@inria.fr Scheduling Matters 54/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Why Is Replication Useful?

Error detection (duplication):

Error correction (triplication):

: yves.robert@inria.fr Scheduling Matters 55/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Why Is Replication Useful?

Error detection (duplication):

Error correction (triplication):

: yves.robert@inria.fr Scheduling Matters 55/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Why Is Replication Useful?

Error detection (duplication):

Error correction (triplication):

: yves.robert@inria.fr Scheduling Matters 55/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Why Is Replication Useful?

Error detection (duplication):

Error correction (triplication):

: yves.robert@inria.fr Scheduling Matters 55/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Why Is Replication Useful?

Error detection (duplication):

Error correction (triplication):

: yves.robert@inria.fr Scheduling Matters 55/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Two Replication Modes

Process Replication:

Group Replication:

: yves.robert@inria.fr Scheduling Matters 56/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Two Replication Modes

Process Replication:

Group Replication:

: yves.robert@inria.fr Scheduling Matters 56/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

A few questions

Silent errors

Error rate? MTBE?

Selective reliability?

New algorithms beyond iterative? matrix-product, FFT, ...

Multi-level patterns for both fail-stop and silent errors

Resilient research on resilience

Models needed to assess techniques at scale
without bias ,

: yves.robert@inria.fr Scheduling Matters 57/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

A few questions

Silent errors

Error rate? MTBE?

Selective reliability?

New algorithms beyond iterative? matrix-product, FFT, ...

Multi-level patterns for both fail-stop and silent errors

Resilient research on resilience

Models needed to assess techniques at scale
without bias ,

: yves.robert@inria.fr Scheduling Matters 57/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints

2 IO Contention
Scheduling strategies
Simulations

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 58/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

IO contention

Space-sharing prevalent in HPC platforms

Application instances:

have dedicated computational nodes
share interconnect links and storage partition (PFS)
checkpoint (to stable storage) independently

⇒ network and storage contention

: yves.robert@inria.fr Scheduling Matters 59/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Checkpointing 101 (revisited)

When do applications checkpoint on HPC systems?

State-of-the-art: Young/Daly period

Standard practice: every hour /

: yves.robert@inria.fr Scheduling Matters 60/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

How long does it take to checkpoint?

C C C C

C’ C’ C’ C’

C CApp 1

App 2

Optimal Period
For App 2

Optimal Period
For App 1

Optimal period computed assuming fixed checkpoint cost

Interferences between checkpointing I/O of App 1 and App 2
change their checkpoint time
⇒ Applications checkpoint too often

When to checkpoint in a shared environment,
since checkpoint cost is not predictable?

: yves.robert@inria.fr Scheduling Matters 61/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Model

Platform

I/O subsystem time-shared (contended)

Linear interference model

Workload

Many applications but only a few classes (sets of applications
with similar sizes, durations, footprints and I/O needs)

Initialization and finalization I/O at max bandwidth;
regular (non-CR) I/O evenly distributed over execution

Job makespans known a priori

Simulations based on APEX workflow / Cielo platform

Checkpoint

Fixed: 1 hour (unless otherwise specified)

Daly: uses Young/Daly application period
√

2Cappµapp

: yves.robert@inria.fr Scheduling Matters 62/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints

2 IO Contention
Scheduling strategies
Simulations

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 63/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

I/O Scheduling Algorithms: standard approaches

Oblivious (Fixed / Daly)
No scheduling of any I/O: when overlapping, interfere linearly

⇒ Risk of I/O Inefficiency

Ordered (Fixed / Daly)
I/O (checkpoint or init/final) served First Come - First Served

If another application is being served, wait in turn

⇒ Risk of delayed I/O and checkpoints, increasing waste

: yves.robert@inria.fr Scheduling Matters 64/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

I/O Scheduling Algorithms: new approaches

Ordered-NB (Fixed / Daly)
I/O (checkpoint or init/final) served First Come - First Served

In case of checkpoints, continue working until served

⇒ Risk of extra re-execution due to delayed checkpoints

Least-Waste
Serve I/O request that minimizes potential waste
⇒ Checkpoints are non-blocking: continue working until they are served

⇒ Daly period embedded in scheduling (prevent from checkpointing too often)

: yves.robert@inria.fr Scheduling Matters 65/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Oblivious

Jobs fill up the system based on processor availability

I/O workloads (including CR activities) not coordinated

Each I/O stream given decrease in bandwidth linearly
proportional to the number of competing operations

Subsequent checkpoint scheduled to start after Pi − Ci

⇒ Resultant checkpoint period may be longer than Pi

: yves.robert@inria.fr Scheduling Matters 66/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Ordered

Blocking FCFS I/O Scheduling

I/O requests performed sequentially, in request arrival order

Jobs with outstanding I/O requests blocked until their
requests are completed

With two jobs simultaneously requesting I/O of volume
V1,V2:

Oblivious: Linear interference (both jobs I/O are slowed down)
until the smallest of (V1,V2) is transferred
Ordered:
- first scheduled job takes V1

βavail

- second job waits V1

βavail
then takes V2

βavail

Resultant checkpoint period may be longer than Pi

: yves.robert@inria.fr Scheduling Matters 67/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Ordered-NB

Non-Blocking FCFS I/O Scheduling

Refactor code to continue computing while awaiting
checkpoint I/O

Previous checkpoint ends at time tnow
⇒ tentative time for next checkpoint treq = tnow + Pi − Ci

At treq, make non-blocking I/O request (I/O token still FCFS)

Job continues until I/O token is available

At this point, job generates its checkpoint data

Use existing APIs in SCR or FTI to regularly poll if a
checkpoint should be taken at this time

Postponed checkpoint ⇒ increased risk exposure

: yves.robert@inria.fr Scheduling Matters 68/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Least-Waste

Non-Blocking least waste I/O Scheduling

When an I/O request completes at time t,
select best candidate from pool:

IO-Candidate CIO
Job Ji , 1 ≤ i ≤ r with an (input, output or recovery) I/O
request of length vi seconds, has qi processors, initiated its I/O
request di seconds ago (idle since)
Ckpt-Candidate CCkpt
Job Ji , r + 1 ≤ i ≤ r + s, with a checkpoint duration of Ci

seconds and qi processors, took its last checkpoint di seconds
ago and keeps executing, with di ≥ PDaly (Ji)

: yves.robert@inria.fr Scheduling Matters 69/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Job selection

Ji ∈ CIO uses the I/O resource for vi seconds

For Jj ∈ CIO , Wi (j) = qj(dj + vi)
For Jj ∈ CCkpt , Wi (j) = vi

µind
q2
j (Rj + dj + vi

2)

Expected waste Wi =
∑

Jj∈CIO ,j 6=i Wi (j) +
∑

Jj∈CCkpt Wi (j)

Ji ∈ CCkpt uses the I/O resource for Ci seconds

Similar equations . . .

Select job Ji ∈ CIO ∪ CCkpt whose waste Wi is minimal

: yves.robert@inria.fr Scheduling Matters 70/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Feasibility of Cooperative Strategies

Ordered, Ordered-NB, Least-Waste require synchronization

Ordered
at filesystem level

Ordered-NB and Least-Waste:
modify apps to continue working until access is granted
⇒ implementation in checkpointing library SCR or FTI

Memory hierarchy:
- checkpoint process memory on unreliable (but fast) media
- upload checkpoints in the background,
while the application proceeds to compute

: yves.robert@inria.fr Scheduling Matters 71/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Steady-state

ni jobs of class Ai , qi nodes, Ci = size i
βavail

Waste of Ji with checkpoint period Pi :

Wi = Wi (Pi) =
Ci

Pi
+

qi
µ

(
Pi

2
+ Ri)

Minimize

W =
∑
i

niqi
N

(
Ci

Pi
+

qi
µ

(
Pi

2
+ Ri)

)
Subject to

F =
∑
i

niCi

Pi
≤ 1

: yves.robert@inria.fr Scheduling Matters 72/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Lower bound

KKT

Pi =

√
2µN
q2
i

(qi
N

+ λ
)
Ci

Choose λ minimal s.t. F ≤ 1 (solve numerically)

λ = 0 ⇒ Young/Daly

I/O constraint not sufficient
⇒ orchestrate checkpoints into periodic repeating pattern
⇒ lower bound of W =

∑
i
niqi
N Wi (Pi)

: yves.robert@inria.fr Scheduling Matters 73/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints

2 IO Contention
Scheduling strategies
Simulations

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 74/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

LANL Workloads from the APEX Workflows report

Workflow EAP LAP Silverton VPIC
Workload percentage 66 5.5 16.5 12
Work time (h) 262.4 64 128 157.2
Number of cores 16384 4096 32768 30000
Initial Input (% of memory) 3 5 70 10
Final Output (% of memory) 105 220 43 270
Checkpoint Size (% of memory) 160 185 350 85

Cielo

1.37 Petaflops capability system at LANL (2010-2016)

143,104 cores, 286 TB main memory

PFS with theoretical maximum capacity 160GB/s

: yves.robert@inria.fr Scheduling Matters 75/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Simulation Framework

Random selection of jobs according to class ratios

Duration uniformly distributed between 0.8w and 1.2w

Generation of node failures with Exponential distributions

First-fit strategy (job characteristics, job priority, resource
availability)

Simulate online scheduling

Restarted jobs set to highest priority

: yves.robert@inria.fr Scheduling Matters 76/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Slowdown of checkpoints

1
1.5

2
2.5

3
3.5

4

0 5 10 15 20 25 30 35 40 45 50 55

A
ve

ra
ge

C
h

ec
kp

oi
n

t
S

lo
w

d
ow

n

I/
O

:
40

G
B

/s

Node MTBF (years)

Oblivious-Fixed
Oblivious-Daly

Ordered-Fixed
Ordered-Daly

1
1.5

2
2.5

3
3.5

4

A
ve

ra
ge

C
h

ec
kp

oi
n

t
S

lo
w

d
ow

n

I/
O

:
80

G
B

/s

Oblivious-Fixed
Oblivious-Daly

Ordered-Fixed
Ordered-Daly

1
1.5

2
2.5

3
3.5

4

A
ve

ra
ge

C
h

ec
kp

oi
n

t
S

lo
w

d
ow

n

I/
O

:
16

0G
B

/s

Oblivious-Fixed
Oblivious-Daly

Ordered-Fixed
Ordered-Daly

: yves.robert@inria.fr Scheduling Matters 77/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Waste as a function of system bandwidth

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

W
as

te
R

at
io

System Aggregated Bandwidth (GB/s)
Oblivious-Fixed
Oblivious-Daly
Ordered-Fixed
Ordered-Daly

Ordered-NB-Daly
Ordered-NB-Fixed

Least-Waste
Theoretical Model

µind = 2years, µ = 1hour

: yves.robert@inria.fr Scheduling Matters 78/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Waste as a function of system MTBF

0

0.2

0.4

0.6

0.8

1

1 10 100

W
as

te
R

at
io

Node MTBF (years)
Oblivious-Fixed
Oblivious-Daly
Ordered-Fixed
Ordered-Daly

Ordered-NB-Fixed
Ordered-NB-Daly

Least-Waste
Theoretical Model

βavail = 40GBs

: yves.robert@inria.fr Scheduling Matters 79/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Prospective system (1/2)

Aurora-like
7PB of main memory and 50,000 compute nodes

Scale APEX workflow
accordingly to Aurora/Celio memory size increase

: yves.robert@inria.fr Scheduling Matters 80/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Prospective system (2/2)

5

10

15

20

25

5 10 15 20 25

M
in

.
b

an
d

w
id

th
to

re
ac

h
80

%
effi

ci
en

cy
(T

B
/s

)

Node MTBF (years)
Oblivious-Fixed
Oblivious-Daly
Ordered-Fixed
Ordered-Daly

Ordered-NB-Fixed
Ordered-NB-Daly

Least-Waste
Theoretical Model

Minimum aggregated filesystem bandwidth to reach 80% efficiency

: yves.robert@inria.fr Scheduling Matters 81/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Burst buffers

Dedicated

Same throughput constraint
Schedule according to priority
Allows for some slack (shift checkpoints)

Shared

Hierarchical system
Same contention problem at subsystem level

See IJNC paper, 2019. Also RR Inria 9109

: yves.robert@inria.fr Scheduling Matters 82/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Takeaway

Checkpoint/restart:
- standard for fault-protection on production platforms
- increases the burden of the already overtaxed I/O subsystem

Cooperative strategies outperform selfish approaches w.r.t.
platform utilization

Trade-off between platform utilization and worst time to
completion of individual applications

: yves.robert@inria.fr Scheduling Matters 83/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 84/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Replication

Full replication: efficiency < 50%

Can replication+checkpointing be more efficient than
checkpointing alone?

Study by Ferreira et al. [SC’2011]: yes

Revisited by Hussain, Znati and Melhme [SC’2018]: yes

: yves.robert@inria.fr Scheduling Matters 85/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Model by Ferreira et al. [SC’ 2011]

Platform with N = 2b processors arranged into b pairs

Parallel application with b processes, each replicated

When a replica is hit by a failure, it is not restarted

Application fails when both replicas in one pair have been hit

: yves.robert@inria.fr Scheduling Matters 86/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Example

p1

p2

p1

p2

p1

p2

p1

p2

Time

Pair1

Pair2

Pair3

Pair4

: yves.robert@inria.fr Scheduling Matters 87/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Mean Time To Interruption

nfail(2b) expected number of failures to interrupt the
applications

MTTI M2b = Mean Time to Interruption
⇒ replaces MTBF from the application perspective

M2b = nfail(2b)× µ2b = nfail(2b)× µ

2b
(1)

Proposition

nfail(2b) = 1 + 4b /

(
2b

b

)
≈
√
πb

: yves.robert@inria.fr Scheduling Matters 88/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Checkpointing

No Replication TYD =
√

2µNC (2)

Full Replication TMTTI =
√

2MNC (3)

: yves.robert@inria.fr Scheduling Matters 89/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

What’s wrong?

TMTTI =
√

2MNC

Just an approximation. How accurate?

Risk is increasing as more and more processors die until
application crash
⇒ Periodic checkpointing (most likely) not optimal /

: yves.robert@inria.fr Scheduling Matters 90/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

With a single processor pair

With one processor: TYD =
√

2µC

With replication: nfail(2) = 3, M2 = 3µ2 , TMTTI =
√

3µC

Magic period: Tmagic =
(

3
4Cµ

2
) 1

3

Three variants:

Periodic with period TMTTI : baseline

NonPeriodic(T1, T2):
- use T1 while both processors are alive
- switch to T2 at checkpoint after first failure

Variant 1: T1 = TMTTI , T2 = TYD

Variant 2: T2 = Tmagic , T2 = TYD

100,000 simulations, each with 10,000 periods

: yves.robert@inria.fr Scheduling Matters 91/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

With a single processor pair

10-1 100

MTBF (days)

0.95

0.96

0.97

0.98

0.99

R
a
ti

o
 t

o
 N

o
R

e
st

a
rt

(T
M
T
T
I
)

Non-Periodic(TMTTI, TYD)

Non-Periodic(Tmagic, TYD)

Ratio of time to solution of two non-periodic strategies
over time-to-solution of periodic approach, with C = 60

µ = 10 hours
⇒ TYD = 34.6mn,TMTTI = 42.4mn,Tmagic = 64.6mn

: yves.robert@inria.fr Scheduling Matters 92/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Takeaway

Opinion is divided about replication

If needed, use it as efficiently as possible

Best checkpoint strategy with many processor pairs?

: yves.robert@inria.fr Scheduling Matters 93/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks
Simple instance
Experiments

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 94/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

A little scheduling problem

Independent tasks, IID execution times with distribution D
Platform: identical processors, unit speed, unit cost

User: limited budget b and execution deadline d

Objective: maximize expected number of tasks completed

Motivation
Imprecise computations: tasks have a mandatory part and optional
part, maximize optional parts with leftover time and budget

: yves.robert@inria.fr Scheduling Matters 95/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

A little scheduling problem (2/2)

Scheduling policy

Decide how many processors to launch & stop at each second

Processors interrupted when deadline or budget is exceeded

Each task can be deleted at any instant before completion

Non-preemptive execution:
• interrupted tasks cannot be relaunched
• time/budget spent until interruption: completely lost

: yves.robert@inria.fr Scheduling Matters 96/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks
Simple instance
Experiments

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 97/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Simple instance

One processor

Unlimited budget, no deadline

Discrete distribution:

Probability Execution time

p1 w1

p2 w2

p3 w3

Objective: maximize success rate per time/budget unit R

: yves.robert@inria.fr Scheduling Matters 98/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Simple instance

One processor

Unlimited budget, no deadline

Discrete distribution:

Probability Execution time

p1 = 0.1 w1 = 3
p2 = 0.7 w2 = 5
p3 = 0.2 w3 = 6

Objective: maximize success rate per time/budget unit R

: yves.robert@inria.fr Scheduling Matters 98/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3 T4

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3 T4 T5

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3 T4

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3 T4 T5

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3 T4 T5 T6

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3 T4 T5 T6 T7

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3 T4 T5 T6 T7 T8

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3 T4

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Illustrating example

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 T2 T3 T4 T5

time
0 deadline

Never interrupt tasks: 4 tasks completed.
Interrupt tasks after w1: 1 task completed.
Interrupt tasks after w2: 4 tasks completed.

: yves.robert@inria.fr Scheduling Matters 99/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scheduling strategies

Probability Execution time

p1 = 0.1 w1 = 3
p2 = 0.7 w2 = 5
p3 = 0.2 w3 = 6

Stop all tasks after w1: R1 = p1
w1

= 1
30

: yves.robert@inria.fr Scheduling Matters 100/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scheduling strategies

Probability Execution time

p1 = 0.1 w1 = 3
p2 = 0.7 w2 = 5
p3 = 0.2 w3 = 6

Stop all tasks after w1: R1 = p1
w1

= 1
30

Stop all tasks after w2: R2 = p1+p2

p1w1+(1−p1)w2
= 1

6

: yves.robert@inria.fr Scheduling Matters 100/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scheduling strategies

Probability Execution time

p1 = 0.1 w1 = 3
p2 = 0.7 w2 = 5
p3 = 0.2 w3 = 6

Stop all tasks after w1: R1 = p1
w1

= 1
30

Stop all tasks after w2: R2 = p1+p2

p1w1+(1−p1)w2
= 1

6

Stop half unsuccessful tasks after w1 and one-third after w2:
R =?

: yves.robert@inria.fr Scheduling Matters 100/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Optimal strategy

Theorem
Best strategy is to stop all tasks at some threshold

Strategy
Find i maximizing

Ri
def
=

∑i
j=1 pj∑i

j=1 pjwj + (1−
∑i

j=1 pj)wi

If ties, pick smallest index

: yves.robert@inria.fr Scheduling Matters 101/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scheduling strategies

Probability Execution time

p1 = 0.1 w1 = 3
p2 = 0.7 w2 = 5
p3 = 0.2 w3 = 6

Stop all tasks after w1: R1 = p1
w1

= 1
30

Stop all tasks after w2: R2 = p1+p2

p1w1+(1−p1)w2
= 1

6

Stop all tasks after w3: R3 = 1
p1w1+p2w2+p3w3

= 1
5

: yves.robert@inria.fr Scheduling Matters 102/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scheduling strategies

Probability Execution time

p1 = 0.1 w1 = 3
p2 = 0.7 w2 = 5
p3 = 0.2 w3 = 6

Stop all tasks after w1: R1 = p1
w1

= 1
30

Stop all tasks after w2: R2 = p1+p2

p1w1+(1−p1)w2
= 1

6

Stop all tasks after w3: R3 = 1
p1w1+p2w2+p3w3

= 1
5

Question?

So in the end you should not interrupt anything, right?
Pfhhh these scheduling guys /

: yves.robert@inria.fr Scheduling Matters 102/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Scheduling strategies

Probability Execution time

p1 = 0.1 w1 = 3
p2 = 0.7 w2 = 5
p3 = 0.2 w3 = 101

Stop all tasks after w1: R1 = p1
w1

= 1
30

Stop all tasks after w2: R2 = p1+p2

p1w1+(1−p1)w2
= 1

6

Stop all tasks after w3: R3 = 1
p1w1+p2w2+p3w3

= 1
24

: yves.robert@inria.fr Scheduling Matters 103/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

From discrete to continuous distributions

f (x) probability density, F (x) cumulative distribution

Expected value µD , variance, σ2
D

arg max
i
Ri

def
=

∑i
j=1 pj∑i

j=1 pjwj + (1−
∑i

j=1 pj)wi

arg max
l
R(l)

def
=

F (l)∫ l
0 xf (x)dx + (1− F (l))l

No more a theorem, but hopefully a good heuristic . . .

: yves.robert@inria.fr Scheduling Matters 104/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Best cutting threshold

D = Exp(λ)

: yves.robert@inria.fr Scheduling Matters 105/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Best cutting threshold

D = Exp(λ)
Interrupt at any instant (Rl constant)

D = Uniform[a, b]

: yves.robert@inria.fr Scheduling Matters 105/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Best cutting threshold

D = Exp(λ)
Interrupt at any instant (Rl constant)

D = Uniform[a, b]
Never interrupt (Rl maximal for l = b)

: yves.robert@inria.fr Scheduling Matters 105/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Best cutting threshold

D = Exp(λ)
Interrupt at any instant (Rl constant)

D = Uniform[a, b]
Never interrupt (Rl maximal for l = b)

Question?

Well, do you know any important distribution
for which it is really worth interrupting tasks?
Pfhhh these scheduling guys /

: yves.robert@inria.fr Scheduling Matters 105/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

A few distributions . . .

Name PDF Density

Uniform 1
b−a

Exponential λe−λx

Half-normal
√

2
θ
√
π
e−

x2

2θ2

Lognormal 1
xβ
√

2π
e
− (log(x)−α)2

2β2

Beta xα−1(1−x)β−1

B(α,β)

Gamma 1
Γ(k)θk

xk−1e−
x
θ

Weibull k
θk
xk−1e−(x

θ
)k

Inverse-gamma θk

Γ(k)x
−k−1e−

θ
x

: yves.robert@inria.fr Scheduling Matters 106/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

. . . and their optimal cutting threshold

Beta(2, 2) Gamma(2, 0.5) Weibull(2, 1/Γ(1.5)) Inv-Gamma(3, 2)

Beta(0.5, 0.5) Gamma(0.5, 2) Weibull(0.5, 1/Γ(3)) Inv-Gamma(1.5, 0.5)

U(0, 1) Exp(1) |N(0, 1)| Lognormal(0, 1)

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0
0.0

0.2

0.4

0.6

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

0.8
0.9
1.0
1.1
1.2

5

10

15

0.00

0.25

0.50

0.75

1.00

0.50

0.75

1.00

1.25

1.50

2

4

6

8

0.00

0.25

0.50

0.75

1.00

1.00

1.25

1.50

1.75

2.00

2
3
4
5
6

0.0

0.5

1.0

1.5

2.0

Cutting threshold

E
ffi

ci
en

cy
(R

)

: yves.robert@inria.fr Scheduling Matters 107/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks
Simple instance
Experiments

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 108/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Heuristics with 1 processor

MeanVariance(x): kill a task as time µD + xσD , with x
some constant

Quantile(x): kill a task when execution time reaches the
x-quantile of D, with 0 ≤ x ≤ 1

OptRatio: optimal cutting threshold

: yves.robert@inria.fr Scheduling Matters 109/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Heuristics with many processors

With budget b and deadline d , enroll d bd e processors

Run previous heuristics in parallel

: yves.robert@inria.fr Scheduling Matters 110/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Experiments

Lognormal Uniform Exponential

0 100 200 0 30 60 90 0 25 50 75 100 125

OR
MV(0.3)

MV(0)
MV(-0.3)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)

Successful tasks

H
eu

ri
st

ic
s Methods

Quantile (Q)

MeanVariance (MV)

OptRatio (OR)

Normalized for µ = 1, budget and deadline b = d = 100
Exponential: λ = 1, lopt = 2 (arbitrarily)
Uniform: a = 0, b = 2, lopt = 2
Lognormal: α ≈ −1.15, β ≈ 1.52, µ = 1, σ = 3, lopt ≈ 0.1

: yves.robert@inria.fr Scheduling Matters 111/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Focus on LogNormal

d = 1 d = 10 d = 100

b = 30 b = 100 b = 300

σ = 1 σ = 2 σ = 3

0 100 200 0 100 200 0 100 200

0 25 50 75 0 100 200 0 200 400 600 800

0 25 50 75 100 125 0 50 100 150 0 100 200

OR
MV(0.3)

MV(0)
MV(-0.3)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)

OR
MV(0.3)

MV(0)
MV(-0.3)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)

OR
MV(0.3)

MV(0)
MV(-0.3)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)

Successful tasks

H
eu

ri
st

ic
s Methods

Quantile (Q)

MeanVariance (MV)

OptRatio (OR)

Lognormal: α ≈ −1.15, β ≈ 1.52, µ = 1, σ = 3, lopt ≈ 0.1
First row b = d = 100, second row b = d , third row b = 100
(hence d bd e processors)

: yves.robert@inria.fr Scheduling Matters 112/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

With small deadlines

0

100

200

0.01 0.10 1.00

Deadline

S
u

cc
es

sf
u

l
ta

sk
s

Budget b = 100, varying deadline (hence number of processors)
Lognormal: α ≈ −1.15, β ≈ 1.52, µ = 1, σ = 3, lopt ≈ 0.1

: yves.robert@inria.fr Scheduling Matters 113/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Cut them short

Beta(0.5,0.5) Gamma(0.5,2)

0 200 400 600 0 250 500 750

OR(0.01)
MV(0.3)

MV(0)
MV(-0.3)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)

Successful tasks

H
eu

ri
st

ic
s Methods

Quantile (Q)

MeanVariance (MV)

OptRatio (OR)

µ = 0.5 for Beta, µ = 1 for Gamma
cutting threshold is 0.01 for OR in both plots
b = d = 100

: yves.robert@inria.fr Scheduling Matters 114/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Zoom on threshold impact

Beta(0.5,0.5) Gamma(0.5,2)

0 500 1000 1500 2000 0 1000 2000

OR(0.1)

OR(0.05)

OR(0.02)

OR(0.01)

OR(0.005)

OR(0.002)

OR(0.001)

Successful tasks

H
eu

ri
st

ic
s

µ = 0.5 for Beta, µ = 1 for Gamma
b = d = 100

: yves.robert@inria.fr Scheduling Matters 115/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Nice little (albeit technical) example

Probability Execution time

p1 = 0.4 w1 = 2
p2 = 0.15 w2 = 3
p3 = 0.45 w3 = 7

Budget b = 6, no deadline (say d = 6)

: yves.robert@inria.fr Scheduling Matters 116/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Optimal schedule with 1 processor

Probability Execution time
p1 = 0.40 w1 = 2
p2 = 0.15 w2 = 3

E(1) = 0, E(2) = p1 = 0.4

E(3) = (p1 + p2) = 0.55 (pointless to kill an unsuccessful task at time 2)

E(4) = max{p1 +E(2), p1(1 +E(2)) +p2(1 +E(1)) +p3(0 +E(1))} = 0.8
Either kill the first task (if not completed) at time 2
or continue up to time 3 (if not completed) and then kill

E(6) = max{p1 + E(4), p1(1 + E(4)) + p2(1 + E(3))} = 1.2

: yves.robert@inria.fr Scheduling Matters 117/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

An efficient schedule with 2 processors

Probability Execution time
p1 = 0.40 w1 = 2
p2 = 0.15 w2 = 3

Two processors, each starting a task in parallel

If none completes by time 2, let them run up to time 3

Otherwise, kill at time 2 any not-yet completed task and start a new task

Processor 1

Processor 2

w1 w2 w3
w1 2 + p1 1 + p1 1 + p1
w2 1 + p1 2 1
w3 1 + p1 1 0

With probability p1p2, 1st task completes, 2nd task is killed, 2 units remain for the newnone,
expected number of completed tasks in this configuration is 1 + p1

E// = p2
1 (2 + p1) + 2p1(p2 + p3)(1 + p1) + 2p2

2 + 2p2p3 = 1.236

: yves.robert@inria.fr Scheduling Matters 118/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

An efficient schedule with 2 processors

Probability Execution time
p1 = 0.40 w1 = 2
p2 = 0.15 w2 = 3

Two processors, each starting a task in parallel

If none completes by time 2, let them run up to time 3

Otherwise, kill at time 2 any not-yet completed task and start a new task

Processor 1

Processor 2

w1 w2 w3
w1 2 + p1 1 + p1 1 + p1
w2 1 + p1 2 1
w3 1 + p1 1 0

With probability p1p2, 1st task completes, 2nd task is killed, 2 units remain for the newnone,
expected number of completed tasks in this configuration is 1 + p1

E// = p2
1 (2 + p1) + 2p1(p2 + p3)(1 + p1) + 2p2

2 + 2p2p3 = 1.236

Question?

No kidding? You win 0.036 tasks in the end
and you are proud of you?!
Time to finish your talk!
Pfhhh these scheduling guys /

: yves.robert@inria.fr Scheduling Matters 118/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Outline

1 Scheduling checkpoints

2 IO Contention

3 Replication for fail-stop failures

4 Scheduling Stochastic Tasks

5 Conclusion

: yves.robert@inria.fr Scheduling Matters 119/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Conclusion

This talk
A few (simple) scheduling problems

: yves.robert@inria.fr Scheduling Matters 120/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Conclusion

This talk
A few (simple) scheduling problems

Future work
Multi-criteria scheduling problems
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Several challenging algorithmic/scheduling problems ,

: yves.robert@inria.fr Scheduling Matters 120/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Bibliography

First chapter = comprehensive survey, freely available
LAWN 289 (LApack Working Note)

: yves.robert@inria.fr Scheduling Matters 121/ 122

Checkpoints IO Contention Replication Scheduling Stochastic Tasks Conclusion

Thanks

Lyon: Anne Benoit, Louis-Claude Canon, Aurélien Cavelan,
Aurélie Kong Win Chang, Valentin Le Fèvre, Frédéric Vivien

Knoxville: George Bosilca, Aurélien Bouteiller, Jack Dongarra,
Thomas Herault

And: Dorian Arnold (Emory), Franck Cappello (Argonne),
Kurt Ferreira (Sandia), Hongyang Sun (Vanderbilt)

: yves.robert@inria.fr Scheduling Matters 122/ 122

	Scheduling checkpoints
	Faults and failures
	Checkpointing
	In-memory checkpointing
	Multi-level checkpointing
	Silent errors

	IO Contention
	Scheduling strategies
	Simulations

	Replication for fail-stop failures
	Scheduling Stochastic Tasks
	Simple instance
	Experiments

	Conclusion

	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:

