
appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
75

98
--

FR
+E

N
G

Distributed and High Performance Computing

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Reclaiming the energy of a schedule:
models and algorithms

Guillaume Aupy — Anne Benoit — Fanny Dufossé — Yves Robert

N° 7598

April 2011

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

http://hal.inria.fr/inria-00584944/fr/
http://hal.archives-ouvertes.fr

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Reclaiming the energy of a schedule:
models and algorithms

Guillaume Aupy , Anne Benoit , Fanny Dufossé , Yves Robert

Theme : Distributed and High Performance Computing
Équipe-Projet GRAAL

Rapport de recherche n° 7598 — April 2011 — 21 pages

Abstract: We consider a task graph to be executed on a set of processors. We assume that
the mapping is given, say by an ordered list of tasks to execute on each processor, and we aim
at optimizing the energy consumption while enforcing a prescribed bound on the execution time.
While it is not possible to change the allocation of a task, it is possible to change its speed. Rather
than using a local approach such as backfilling, we consider the problem as a whole and study
the impact of several speed variation models on its complexity. For continuous speeds, we give a
closed-form formula for trees and series-parallel graphs, and we cast the problem into a geometric
programming problem for general directed acyclic graphs. We show that the classical dynamic
voltage and frequency scaling (DVFS) model with discrete modes leads to a NP-complete problem,
even if the modes are regularly distributed (an important particular case in practice, which we
analyze as the incremental model). On the contrary, the VDD-hopping model leads to a polynomial
solution. Finally, we provide an approximation algorithm for the incremental model, which we
extend for the general DVFS model.

Key-words: Energy models, complexity, bi-criteria optimization, algorithms, scheduling.

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Minimisation de l’énergie d’un ordonnancement:
modèles et algorithmes

Résumé : Considérons un graphe de tâches devant être exécutées sur un ensemble de processeurs.
Supposons l’ordonnancement déjà donné, par exemple on peut imaginer une liste de tâches devant
être exécutées sur chaque processeur. Notre but est de minimiser la consommation d’énergie,
sans dépasser une limite de temps. Alors qu’il n’est pas possible de changer le processeur qui
va calculer une tâche, il est possible de changer la vitesse de calcul de ce processeur sur cette
tâche. Plutôt que de considérer une approche locale qui consisterait à boucher les trous, nous
considérons le problème de manière globale et étudions l’impact sur la complexité du problème
de quatre modèles de variation de vitesse. Dans le modèle où toutes les vitesses réelles sont
disponibles (vitesses continues), nous donnnons une formule close pour les arbres et les graphes
série-parallèle, puis nous transformons le problème en un problème de programmation géométrique
dans le cas général des graphes acycliques dirigés. Nous montrons que les modèles classiques de
variation de vitesse avec des modes discrets rendent ce problème NP-complet, même si les modes
sont distribués de manière régulière (un cas très important en pratique que nous analysons sous le
nom de modèle incrémental). Au contraire, le modèle de VDD-hopping est un problème ayant une
solution polynomiale. Pour finir, nous donnons un algorithme d’approximation pour le modèle
incrémental, que nous étendons au cas général de variation de vitesses à modes discrets.

Mots-clés : Modèles énergétiques, complexité, optimisation bi-critère, algorithmes, ordonnance-
ment.

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 3

Contents

1 Introduction 4

2 Related work 5
2.1 DVFS and optimization problems . 5
2.2 Energy models . 6

3 Framework 7
3.1 Optimization problem . 7
3.2 Energy models . 7
3.3 Example . 8

4 The Continuous model 9
4.1 Preliminary lemma . 9
4.2 Special execution graphs . 9

4.2.1 Independent tasks . 9
4.2.2 Linear chain of tasks . 10
4.2.3 Fork and join graphs . 10
4.2.4 Trees . 11
4.2.5 Series-parallel graphs . 12

4.3 General DAGs . 14

5 Discrete models 16
5.1 The Vdd-Hopping model . 16
5.2 NP-completeness results . 17
5.3 Approximation results . 18

6 Conclusion 19

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 4

1 Introduction

The energy consumption of computational platforms has recently become a critical problem, both
for economic and environmental reasons [25]. As an example, the Earth Simulator requires about
12 MW (Mega Watts) of peak power, and PetaFlop systems may require 100 MW of power,
nearly the output of a small power plant (300 MW). At $100 per MW.Hour, peak operation of a
PetaFlop machine may thus cost $10,000 per hour [12]. Current estimates state that cooling costs
$1 to $3 per watt of heat dissipated [31]. This is just one of the many economical reasons why
energy-aware scheduling has proved to be an important issue in the past decade, even without
considering battery-powered systems such as laptops and embedded systems. As an example, the
Green500 list (www.green500.org) provides rankings of the most energy-efficient supercomputers
in the world, therefore raising even more awareness about power consumption.

To help reduce energy dissipation, processors can run at different speeds. Their power con-
sumption is the sum of a static part (the cost for a processor to be turned on) and a dynamic part,
which is a strictly convex function of the processor speed, so that the execution of a given amount
of work costs more power if a processor runs in a higher mode [15]. More precisely, a processor
running at speed s dissipates s3 watts [17, 28, 7, 2, 10] per time-unit, hence consumes s3×d joules
when operated during d units of time. Faster speeds allow for a faster execution, but they also
lead to a much higher (supra-linear) power consumption.

Energy-aware scheduling aims at minimizing the energy consumed during the execution of the
target application. Obviously, it makes sense only if it is coupled with some performance bound
to achieve, otherwise, the optimal solution always is to run each processor at the slowest possible
speed.

In this paper, we investigate energy-aware scheduling strategies for executing a task graph on
a set of processors. The main originality is that we assume that the mapping of the task graph
is given, say by an ordered list of tasks to execute on each processor. There are many situations
in which this problem is important, such as optimizing for legacy applications, or accounting for
affinities between tasks and resources, or even when tasks are pre-allocated [29], for example for
security reasons. In such situations, assume that a list-schedule has been computed for the task
graph, and that its execution time should not exceed a deadline D. We do not have the freedom to
change the assignment of a given task, but we can change its speed to reduce energy consumption,
provided that the deadline D is not exceeded after the speed change. Rather than using a local
approach such as backfilling [32, 27], which only reclaims gaps in the schedule, we consider the
problem as a whole, and we assess the impact of several speed variation models on its complexity.
More precisely, we investigate the following models:

Continuous model. Processors can have arbitrary speeds, and can vary them continuously: this
model is unrealistic (any possible value of the speed, say

√
eπ , cannot be obtained) but it is

theoretically appealing [3]. A maximum speed, smax , cannot be exceeded.

Discrete model. Processors have a discrete number of predefined speeds (or frequencies), which
correspond to different voltages that the processor can be subjected to [26]. Switching
frequencies is not allowed during the execution of a given task, but two different tasks
scheduled on a same processor can be executed at different frequencies.

Vdd-Hopping model. This model is similar to the Discrete one, except that switching modes
during the execution of a given task is allowed: any rational speed can be simulated, by simply
switching, at the appropriate time during the execution of a task, between two consecutive
modes [24].

Incremental model. In this variant of the Discrete model, we introduce a value δ that corre-
sponds the minimum permissible speed increment, induced by the minimum voltage incre-
ment that can be achieved when controlling the processor CPU. This new model aims at
capturing a realistic version of the Discrete model, where the different modes are spread
regularly instead of arbitrarily chosen.

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

www.green500.org

Reclaiming the energy of a schedule: models and algorithms 5

Our main contributions are the following. For the Continuous model, we give a closed-form
formula for trees and series-parallel graphs, and we cast the problem into a geometric program-
ming problem [6] for general DAGs. For the Vdd-Hopping model, we show that the optimal
solution for general DAGs can be computed in polynomial time, using a (rational) linear program.
Finally, for the Discrete and Incremental models, we show that the problem is NP-complete.
Furthermore, we provide approximation algorithms which rely on the polynomial algorithm for
the Vdd-Hopping model, and we compare their solution with the optimal Continuous solution.

The paper is organized as follows. We start with a survey of related literature in Section 2.
We then provide the formal description of the framework and of the energy models in Section 3,
together with a simple example to illustrate the different models. The next two sections constitute
the heart of the paper: in Section 4, we provide analytical formulas for continuous speeds, and
the formulation into the convex optimization problem. In Section 5, we assess the complexity of
the problem with all the discrete models: Discrete, Vdd-Hopping and Incremental, and we
discuss approximation algorithms. Finally we conclude in Section 6.

2 Related work

Reducing the energy consumption of computational platforms is an important research topic,
and many techniques at the process, circuit design, and micro-architectural levels have been pro-
posed [23, 21, 14]. The dynamic voltage and frequency scaling (DVFS) technique has been exten-
sively studied, since it may lead to efficient energy/performance trade-offs [18, 12, 3, 9, 20, 34, 32].
Current microprocessors (for instance, from AMD [1] and Intel [16]) allow the speed to be set
dynamically. Indeed, by lowering supply voltage, hence processor clock frequency, it is possible to
achieve important reductions in power consumption, without necessarily increasing the execution
time. We first discuss different optimization problems that arise in this context. Then we review
energy models.

2.1 DVFS and optimization problems

When dealing with energy consumption, the most usual optimization function consists in mini-
mizing the energy consumption, while ensuring a deadline on the execution time (i.e., a real-time
constraint), as discussed in the following papers.

In [26], Okuma et al. demonstrate that voltage scaling is far more effective than the shutdown
approach, which simply stops the power supply when the system is inactive. Their target processor
employs just a few discretely variable voltages. De Langen and Juurlink [22] discuss leakage-
aware scheduling heuristics which investigate both DVS and processor shutdown, since static
power consumption due to leakage current is expected to increase significantly. Chen et al. [8]
consider parallel sparse applications, and they show that when scheduling applications modeled
by a directed acyclic graph with a well-identified critical path, it is possible to lower the voltage
during non-critical execution of tasks, with no impact on the execution time. Similarly, Wang
et al. [32] study the slack time for non-critical jobs, they extend their execution time and thus
reduce the energy consumption without increasing the total execution time. Kim et al. [20] provide
power-aware scheduling algorithms for bag-of-tasks applications with deadline constraints, based
on dynamic voltage scaling. Their goal is to minimize power consumption as well as to meet the
deadlines specified by application users.

For real-time embedded systems, slack reclamation techniques are used. Lee and Sakurai [23]
show how to exploit slack time arising from workload variation, thanks to a software feedback
control of supply voltage. Prathipati [27] discusses techniques to take advantage of run-time
variations in the execution time of tasks; it determines the minimum voltage under which each
task can be executed, while guaranteeing the deadlines of each task. Then, experiments are
conducted on the Intel StrongArm SA-1100 processor, which has eleven different frequencies, and
the Intel PXA250 XScale embedded processor with four frequencies. In [33], the goal of Xu et
al. is to schedule a set of independent tasks, given a worst case execution cycle (WCEC) for each

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 6

task, and a global deadline, while accounting for time and energy penalties when the processor
frequency is changing. The frequency of the processor can be lowered when some slack is obtained
dynamically, typically when a task runs faster than its WCEC. Yang and Lin [34] discuss algorithms
with preemption, using DVS techniques; substantial energy can be saved using these algorithms,
which succeed to claim the static and dynamic slack time, with little overhead.

Since an increasing number of systems are powered by batteries, maximizing battery life also
is an important optimization problem. Battery-efficient systems can be obtained with similar
techniques of dynamic voltage and frequency scaling, as described by Lahiri et al. in [21]. An-
other optimization criterion is the energy-delay product, since it accounts for a trade-off between
performance and energy consumption, as for instance discussed by Gonzalez and Horowitz in [13].
We do not discuss further these latter optimization problems, since our goal is to minimize the
energy consumption, with a fixed deadline.

In this paper, the application is a task graph (directed acyclic graph), and we assume that the
mapping, i.e., an ordered list of tasks to execute on each processor, is given. Hence, our problem is
closely related to slack reclamation techniques, but instead on focusing on non-critical tasks as for
instance in [32], we consider the problem as a whole. Our contribution is to perform an exhaustive
complexity study for different energy models. In the next paragraph, we discuss related work on
each energy model.

2.2 Energy models

Several energy models are considered in the literature, and they can all be categorized in one
of the four models investigated in this paper, i.e., Continuous, Discrete, Vdd-Hopping or
Incremental.

The Continuous model is used mainly for theoretical studies. For instance, Yao et al. [35],
followed by Bansal et al. [3], aim at scheduling a collection of tasks (with release time, deadline
and amount of work), and the solution is the time at which each task is scheduled, but also, the
speed at which the task is executed. In these papers, the speed can take any value, hence following
the Continuous model.

We believe that the most widely used model is the Discrete one. Indeed, processors have
currently only a few discrete number of possible frequencies [1, 16, 26, 27]. Therefore, most of the
papers discussed above follow this model. Some studies exploit the continuous model to determine
the smallest frequency required to run a task, and then choose the closest upper discrete value, as
for instance [27] and [36].

Recently, a new local dynamic voltage scaling architecture has been developed, based on the
Vdd-Hopping model [24, 4, 5]. It was shown in [23] that significant power can be saved by
using two distinct voltages, and architectures using this principle have been developed (see for
instance [19]). Compared to traditional power converters, a new design with no needs for large
passives or costly technological options has been validated in a STMicroelectronics CMOS 65nm
low-power technology [24].

To the best of our knowledge, this paper introduces the Incremental model for the first
time. The main rationale is that future technologies may well have an increased number of possible
frequencies, and these will follow a regular pattern. For instance, note that the SA-1100 processor,
considered in [27], has eleven frequencies which are equidistant, i.e., they follow the Incremental
model. Lee and Sakurai [23] exploit discrete levels of clock frequency as f , f/2, f/3, ..., where
f is the master (i.e., the higher) system clock frequency. This model is closer to the Discrete
model, although it exhibits a regular pattern similarly to the Incremental model.

Our work is the first attempt to compare these different models: on the one hand, we assess
the impact of the model on the problem complexity (polynomial vs NP-hard), and on the other
hand, we provide approximation algorithms building upon these results. The closest work to ours
is the paper by Zhang et al. [36], in which the authors also consider the mapping of directed acyclic
graphs, and compare the Discrete and the Continuous models. We go beyond their work in
this paper, with an exhaustive complexity study, closed-form formulas for the continuous model,
and the comparison with the Vdd-Hopping and Incremental models.

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 7

3 Framework

First we detail the optimization problem in Section 3.1. Then we describe the four energy models
in Section 3.2. Finally, we illustrate the models and motivate the problem with an example in
Section 3.3.

3.1 Optimization problem

Consider an application task graph G = (V, E), with n = |V | tasks denoted as V = {T1, T2, . . . , Tn},
and where the set E denotes the precedence edges between tasks. Task Ti has a cost wi for
1 ≤ i ≤ n. We assume that the tasks in G have been allocated onto a parallel platform made up
of identical processors. We define the execution graph generated by this allocation as the graph
G = (V,E), with the following augmented set of edges:

• E ⊆ E: if an edge exists in the precedence graph, it also exists in the execution graph;
• if T1 and T2 are executed successively, in this order, on the same processor, then (T1, T2) ∈ E.
The goal is to the minimize the energy consumed during the execution while enforcing a

deadline D on the execution time. We formalize the optimization problem in the simpler case
where each task is executed at constant speed. This strategy is optimal for the Continuous
model (by a convexity argument) and for the Discrete and Incremental models (by definition).
For the Vdd-Hopping model, we reformulate the problem in Section 5.1. Let di be the duration
of the execution of task Ti, ti its completion time, and si the speed at which it is executed. We
obtain the following formulation of the MinEnergy(G,D) problem, given an execution graph
G = (V,E) and a deadline D; the si values are variables, whose values are constrained by the
energy model (see Section 3.2).

Minimize
∑n
i=1 s

3
i × di

subject to (i) wi = si × di for each task Ti ∈ V
(ii) ti + dj ≤ tj for each edge (Ti, Tj) ∈ E
(iii) ti ≤ D for each task Ti ∈ V

(1)

Constraint (i) states that the whole task can be executed in time di using speed si. Constraint
(ii) accounts for all dependencies, and constraint (iii) ensures that the execution time does not
exceed the deadline D. The energy consumed throughout the execution is the objective function.
It is the sum, for each task, of the energy consumed by this task, as we detail in the next section.
Note that di = wi/si, and therefore the objective function can also be expressed as

∑n
i=1 s

2
i ×wi.

3.2 Energy models

In all models, when a processor operates at speed s during d time-units, the corresponding con-
sumed energy is s3×d, which is the dynamic part of the energy consumption, following the classical
models of the literature [17, 28, 7, 2, 10]. Note that we do not take static energy into account,
because all processors are up and alive during the whole execution. We now detail the possible
speed values in each energy model, which should be added as a constraint in Equation (1).

• In the Continuous model, processors can have arbitrary speeds, from 0 to a maximum
value smax , and a processor can change its speed at any time during execution.

• In the Discrete model, processors have a set of possible speed values, or modes, denoted as
s1, ..., sm. There is no assumption on the range and distribution of these modes. The speed
of a processor cannot change during the computation of a task, but it can change from task
to task.

• In the Vdd-Hopping model, a processor can run at different speeds s1, ..., sm, as in the
previous model, but it can also change its speed during a computation. The energy consumed
during the execution of one task is the sum, on each time interval with constant speed s, of
the energy consumed during this interval at speed s.

• In the Incremental model, we introduce a value δ that corresponds to the minimum per-
missible speed (i.e., voltage) increment. That means that possible speed values are obtained

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 8

as s = smin + i × δ, where i is an integer such that 0 ≤ i ≤ smax−smin

δ . Admissible speeds
lie in the interval [smin , smax]. This new model aims at capturing a realistic version of the
Discrete model, where the different modes are spread regularly between s1 = smin and
sm = smax , instead of being arbitrarily chosen. It is intended as the modern counterpart of
a potentiometer knob!

3.3 Example

Consider an application with four tasks of costs w1 = 3, w2 = 2, w3 = 1 and w4 = 2, and
one precedence constraint T1 → T3. We assume that T1 and T2 are allocated, in this order, onto
processor P1, while T3 and T4 are allocated, in this order, on processor P2. The resulting execution
graph G is given in Figure 1, with two precedence constraints added to the initial task graph. The
deadline on the execution time is D = 1.5.

We set the maximum speed to smax = 6 for the Continuous model. For the Discrete and

Vdd-Hopping models, we use the set of speeds s
(d)
1 = 2, s

(d)
2 = 5 and s

(d)
3 = 6. Finally, for the

Incremental model, we set δ = 2, smin = 2 and smax = 6, so that possible speeds are s
(i)
1 = 2,

s
(i)
2 = 4 and s

(i)
3 = 6. We aim at finding the optimal execution speed si for each task Ti (1 ≤ i ≤ 4),

i.e., the values of si which minimize the energy consumption.
With the Continuous model, the optimal speeds are non rational values, and we obtain

s1 =
2

3
(3 + 351/3) ' 4.18; s2 = s1 ×

2

351/3
' 2.56; s3 = s4 = s1 ×

3

351/3
' 3.83.

Note that all speeds are lower than the maximum smax . These values are obtained thanks

to the formulas derived in Section 4. The energy consumption is then E
(c)
opt =

∑4
i=1 wi × s2i =

3.s21 + 2.s22 + 3.s23 ' 109.6. The execution time is w1

s1
+ max

(
w2

s2
, w3+w4

s3

)
, and with this solution, it

is equal to the deadline D (actually, both processors reach the deadline, otherwise we could slow
down the execution of one task).

For the Discrete model, if we execute all tasks at speed s
(d)
2 = 5, we obtain an energy

E = 8 × 52 = 200. A better solution is obtained with s1 = s
(d)
3 = 6, s2 = s3 = s

(d)
1 = 2 and

s4 = s
(d)
2 = 5, which turns out to be optimal: E

(d)
opt = 3 × 36 + (2 + 1) × 4 + 2 × 25 = 170.

Note that E
(d)
opt > E

(c)
opt, i.e., the optimal energy consumption with the Discrete model is much

higher than the one achieved with the Continuous model. Indeed, in this case, even though the
first processor executes during 3/6 + 2/2 = D time units, the second processor remains idle since
3/6 + 1/2 + 2/5 = 1.4 < D. The problem turns out to be NP-hard (see Section 5.2), and the
solution has been found by performing an exhaustive search.

With the Vdd-Hopping model, we set s1 = s
(d)
2 = 5; for the other tasks, we run part of the

time at speed s
(d)
2 = 5, and part of the time at speed s

(d)
1 = 2 in order to use the idle time and

lower the energy consumption. T2 is executed at speed s
(d)
1 during time 5

6 and at speed s
(d)
2 during

time 2
30 (i.e., the first processor executes during time 3/5 + 5/6 + 2/30 = 1.5 = D, and all the

p1 T1 T2

p2 T3 T4

Figure 1: Execution graph for the example.

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 9

work for T2 is done: 2× 5/6 + 5× 2/30 = 2 = w2). T3 is executed at speed s
(d)
2 (during time 1/5),

and finally T4 is executed at speed s
(d)
1 during time 0.5 and at speed s

(d)
2 during time 1/5 (i.e., the

second processor executes during time 3/5 + 1/5 + 0.5 + 1/5 = 1.5 = D, and all the work for T4
is done: 2 × 0.5 + 5 × 1/5 = 2 = w4). This set of speeds turns out to be optimal (i.e., it is the
optimal solution of the linear program introduced in Section 5.1), with an energy consumption

E
(v)
opt = (3/5 + 2/30 + 1/5 + 1/5)× 53 + (5/6 + 0.5)× 23 = 144. As expected, E

(c)
opt ≤ E

(v)
opt ≤ E

(d)
opt,

i.e., the Vdd-Hopping solution stands between the optimal Continuous solution, and the more
constrained Discrete solution.

For the Incremental model, the reasoning is similar to the Discrete case, and the optimal

solution is obtained by an exhaustive search: all tasks should be executed at speed s
(i)
2 = 4, with

an energy consumption E
(i)
opt = 8× 42 = 128 > E

(c)
opt. It turns out to be better than Discrete and

Vdd-Hopping, since it has different discrete values of energy which are more appropriate for this
example.

4 The Continuous model

With the Continuous model, processor speeds can take any value between 0 and smax . First we
prove that, with this model, the processors do not change their speed during the execution of a
task (Section 4.1). Then, we derive in Section 4.2 the optimal speed values for special execution
graph structures, expressed as closed form algebraic formulas, and we show that these values may
be irrational (as already illustrated in the example in Section 3.3). Finally, we formulate the
problem for general DAGs as a convex optimization program in Section 4.3.

4.1 Preliminary lemma

Lemma 1 (constant speed per task) With the Continuous model, each task is executed at
constant speed, i.e., a processor does not change its speed during the execution of a task.

Proof. Suppose that in the optimal solution, there is a task whose speed changes during the
execution. Consider the first time-step at which the change occurs: the computation begins at
speed s from time t to time t′, and then continues at speed s′ until time t′′. The total energy
consumption for this task in the time interval [t; t′′] is E = (t′− t)×s3 +(t′′− t′)×(s′)3. Moreover,
the amount of work done for this task is W = (t′ − t)× s+ (t′′ − t′)× s′.

If we run the task during the whole interval [t; t′′] at constant speed W/(t′′ − t), the same
amount of work is done within the same time. However, the energy consumption during this
interval of time is now E′ = (t′′ − t) × (W/(t′′ − t))3. By convexity of the function x 7→ x3, we
obtain E′ < E since t < t′ < t′′. This contradicts the hypothesis of optimality of the first solution,
which concludes the proof. ut

4.2 Special execution graphs

4.2.1 Independent tasks

Consider the problem of minimizing the energy of n independent tasks (i.e., each task is mapped
onto a distinct processor, and there are no precedence constraints in the execution graph), while
enforcing a deadline D.

Proposition 1 (independent tasks) When G is composed of independent tasks {T1, . . . , Tn},
the optimal solution to MinEnergy(G,D) is obtained when each task Ti (1 ≤ i ≤ n) is computed
at speed si = wi

D . If there is a task Ti such that si > smax , then the problem has no solution.

Proof. For task Ti, the speed si corresponds to the slowest speed at which the processor can
execute the task, so that the deadline is not exceeded. If si > smax , the corresponding processor
will never be able to complete its execution before the deadline, therefore there is no solution. To

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 10

conclude the proof, we note that any other solution would have higher values of si because of the
deadline constraint, and hence a higher energy consumption. Therefore, this solution is optimal.

ut

4.2.2 Linear chain of tasks

This case corresponds for instance to n independent tasks {T1, . . . , Tn} executed onto a single
processor. The execution graph is then a linear chain (order of execution of the tasks), with
Ti → Ti+1, for 1 ≤ i < n.

Proposition 2 (linear chain) When G is a linear chain of tasks, the optimal solution to
MinEnergy(G,D) is obtained when each task is executed at speed s = W

D , with W =
∑n
i=1 wi.

If s > smax , then there is no solution.

Proof. Suppose that in the optimal solution, tasks Ti and Tj are such that si < sj . The total
energy consumption is Eopt. We define s such that the execution of both tasks running at speed s
takes the same amount of time than in the optimal solution, i.e., (wi + wj)/s = wi/si + wj/sj :

s =
(wi+wj)
wisj+wjsi

×sisj . Note that si < s < sj (it is the barycenter of two points with positive mass).

We consider a solution such that the speed of task Tk, for 1 ≤ k ≤ n, with k 6= i and k 6= j,
is the same as in the optimal solution, and the speed of tasks Ti and Tj is s. By definition of s,
the execution time has not been modified. The energy consumption of this solution is E, where
Eopt − E = wis

2
i + wjs

2
j − (wi + wj)s

2, i.e., the difference of energy with the optimal solution is
only impacted by tasks Ti and Tj , for which the speed has been modified. By convexity of the
function x 7→ x2, we obtain Eopt > E, which contradicts its optimality. Therefore, in the optimal
solution, all tasks have the same execution speed. Moreover, the energy consumption is minimized
when the speed is as low as possible, while the deadline is not exceeded. Therefore, the execution
speed of all tasks is s = W/D. ut

Corollary 1 A linear chain with n tasks is equivalent to a single task of cost W =
∑n
i=1 wi.

Indeed, in the optimal solution, the n tasks are executed at the same speed, and they can be
replaced by a single task of cost W , which is executed at the same speed and consumes the same
amount of energy.

4.2.3 Fork and join graphs

Let V ={T1, . . . , Tn}. We consider either a fork graph G = (V ∪{T0}, E), with E = {(T0, Ti), Ti ∈
V }, or a join graph G = (V ∪ {T0}, E), with E = {(Ti, T0), Ti ∈ V }. T0 is either the source of the
fork or the sink of the join.

Theorem 1 (fork and join graphs) When G is a fork (resp. join) execution graph with n+ 1
tasks T0, T1, . . . , Tn, the optimal solution to MinEnergy(G,D) is the following:

• the execution speed of the source (resp. sink) T0 is s0 =

(∑n
i=1 w

3
i

) 1
3 + w0

D
;

• for the other tasks Ti, 1 ≤ i ≤ n, we have si = s0 ×
wi

(
∑n
i=1 w

3
i)

1
3

if s0 ≤ smax .

Otherwise, T0 should be executed at speed s0 = smax , and the other speeds are si = wi
D′ , with

D′ = D − w0

smax
, if they do not exceed smax (Proposition 1 for independent tasks). Otherwise there

is no solution.
If no speed exceeds smax , the corresponding energy consumption is

minE(G,D) =

(
(
∑n
i=1 w

3
i)

1
3 + w0

)3
D2

.

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 11

Proof. Let t0 = w0

s0
. Then, the source or the sink requires a time t0 for execution. For 1 ≤ i ≤ n,

task Ti must be executed within a time D − t0 so that the deadline is respected. Given t0,
we can compute the speed si for task Ti using Theorem 1, since the tasks are independent:
si = wi

D−t0 = wi · s0
s0D−w0

. The objective is therefore to minimize
∑n
i=0 wis

2
i , which is a function

of s0:

n∑
i=0

wis
2
i = w0s

2
0 +

n∑
i=1

w3
i ·

s20
(s0D − w0)2

= s20

(
w0 +

∑n
i=1 w

3
i

(s0D − w0)2

)
= f(s0).

Let W3 =
∑n
i=1 w

3
i . In order to find the value of s0 which minimizes this function, we study the

function f(x), for x > 0. f ′(x) = 2x
(
w0 + W3

(xD−w0)2

)
−2D ·x2 · W3

(xD−w0)3
, and therefore f ′(x) = 0

for x = (W
1
3
3 + w0)/D. We conclude that the optimal speed for task T0 is s0 =

(
∑n
i=1 w

3
i)

1
3 +w0

D ,
if s0 ≤ smax . Otherwise, T0 should be executed at the maximum speed s0 = smax , since it is the
bottleneck task. In any case, for 1 ≤ i ≤ n, the optimal speed for task Ti is si = wi

s0
s0D−w0

.
Finally, we compute the exact expression of minE(G,D) = f(s0), when s0 ≤ smax :

f(s0) = s20

(
w0 +

W3

(s0D − w0)2

)
=

(
W

1
3
3 + w0

D

)2(
W3

W
2/3
3

+ w0

)
=

(
W

1
3
3 + w0

)3
D2

,

which concludes the proof. ut

Corollary 2 (equivalent tasks for speed) Consider a fork or join graph with tasks Ti, 0 ≤ i ≤
n, and a deadline D, and assume that the speeds in the optimal solution to MinEnergy(G,D) do
not exceed smax . Then, these speeds are the same as in the optimal solution for n+ 1 independent

tasks T ′0, T
′
1, . . . , T

′
n, where w′0 =

(∑n
i=1 w

3
i

) 1
3 + w0, and, for 1 ≤ i ≤ n, w′i = w′0 · wi

(
∑n
i=1 w

3
i)

1
3

.

Corollary 3 (equivalent task for energy) Consider a fork or join graph G and a deadline D,
and assume that the speeds in the optimal solution to MinEnergy(G,D) do not exceed smax . We

say that the graph G is equivalent to the graph G(eq), consisting of a single task T
(eq)
0 of weight

w
(eq)
0 =

(∑n
i=1 w

3
i

) 1
3 +w0, because the minimum energy consumption of both graphs are identical:

minE(G,D)=minE(G(eq), D).

4.2.4 Trees

We extend the results on a fork graph for a tree G = (V,E) with |V | = n+ 1 tasks. Let T0 be the
root of the tree; it has k children tasks, which are each themselves the root of a tree. A tree can
therefore be seen as a fork graph, where the tasks of the fork are trees.

The previous results for fork graphs naturally lead to an algorithm that peels off branches of the
tree, starting with the leaves, and replaces each fork subgraph in the tree, composed of a root T0
and k children, by one task (as in Corollary 3) which becomes the unique child of T0’s parent in the
tree. We say that this task is equivalent to the fork graph, since the optimal energy consumption
will be the same. The computation of the equivalent cost of this task is done thanks to a call
to the eq procedure, while the tree procedure computes the solution to MinEnergy(G,D) (see
Algorithm 1). Note that the algorithm computes the minimum energy for a tree, but it does not
return the speeds at which each task must be executed. However, the algorithm returns the speed
of the root task, and it is then straightforward to compute the speed of each children of the root
task, and so on.

Theorem 2 (tree graphs) When G is a tree rooted in T0 (T0 ∈ V , where V is the set of tasks),
the optimal solution to MinEnergy(G,D) can be computed in polynomial time O(|V |2).

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 12

Proof. Let G be a tree graph rooted in T0. The optimal solution to MinEnergy(G,D) is
obtained with a call to tree (G,T0, D), and we prove its optimality recursively on the depth of the
tree. Similarly to the case of the fork graphs, we reduce the tree to an equivalent task which, if
executed alone within a deadline D, consumes exactly the same amount of energy. The procedure
eq is the procedure which reduces a tree to its equivalent task (see Algorithm 1).

If the tree has depth 0, then it is a single task, eq (G,T0) returns the equivalent cost w0, and
the optimal execution speed is w0

D (see Proposition 1). There is a solution if and only if this speed

is not greater than smax , and then the corresponding energy consumption is
w3

0

D2 , as returned by
the algorithm.

Assume now that for any tree of depth i < p, eq computes its equivalent cost, and tree returns
its optimal energy consumption. We consider a tree G of depth p rooted in T0: G = T0 ∪ {Gi},
where each subgraph Gi is a tree, rooted in Ti, of maximum depth p− 1. As in the case of forks,
we know that each subtree Gi has a deadline D − x, where x = w0

s0
, and s0 is the speed at which

task T0 is executed. By induction hypothesis, we suppose that each graph Gi is equivalent to
a single task, T ′i , of cost w′i (as computed by the procedure eq). We can then use the results

obtained on forks to compute w
(eq)
0 (see proof of Theorem 1):

w
(eq)
0 =

(∑
i

(w′i)
3

) 1
3

+ w0.

Finally the tree is equivalent to one task of cost w
(eq)
0 , and if

w
(eq)
0

D ≤ smax , the energy con-

sumption is

(
w

(eq)
0

)3

D2 , and no speed exceeds smax .
Note that the speed of a task is always greater than the speed of its successors. Therefore,

if
w

(eq)
0

D > smax , we execute the root of the tree at speed smax and then process each subtree Gi
independently. Of course, there is no solution if w0

smax
> D, and otherwise we perform the recursive

calls to tree to process each subtree independently. Their deadline is then D − w0

smax
.

To study the time complexity of this algorithm, first note that when calling tree (G,T0, D),
there might be at most |V | recursive calls to tree, once at each node of the tree. Without
accounting for the recursive calls, the tree procedure performs one call to the eq procedure,
which computes the cost of the equivalent task. This eq procedure takes a time O(|V |), since we
have to consider the |V | tasks, and we add the costs one by one. Therefore, the overall complexity
is in O(|V |2). ut

4.2.5 Series-parallel graphs

We can further generalize our results to series-parallel graphs (SPGs), which are built from a
sequence of compositions (parallel or series) of smaller-size SPGs. The smallest SPG consists of
two nodes connected by an edge (such a graph is called an elementary SPG). The first node is
the source, while the second one is the sink of the SPG. When composing two SGPs in series, we
merge the sink of the first SPG with the source of the second one. For a parallel composition, the
two sources are merged, as well as the two sinks, as illustrated in Figure 2.

We can extend the results for tree graphs to SPGs, by replacing step by step the SPGs by an
equivalent task (procedure cost in Algorithm 2): we can compute the equivalent cost for a series
or parallel composition.

However, since it is no longer true that the speed of a task is always larger than the speed of
its successor (as was the case in a tree), we have not been able to find a recursive property on
the tasks that should be set to smax , when one of the speeds obtained with the previous method
exceeds smax . The problem of computing a closed form for a SPG with a finite value of smax

remains open. Still, we have the following result when smax = +∞:

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 13

Algorithm 1: Solution to MinEnergy(G,D) for trees.

procedure tree (tree G, root T0, deadline D)
begin

Let w=eq (tree G, root T0);
if w

D ≤ smax then

return w3

D2 ;
else

if w0

smax
> D then

return Error:No Solution;
else

/* T0 is executed at speed smax */

return w0 × s2max +
∑

Gi subtree rooted in Ti∈children(T0)

tree

(
Gi, Ti, D −

w0

smax

)
;

end

end

end

procedure eq (tree G, root T0)
begin

if children(T0)=∅ then
return w0;

else

return

 ∑
Gi subtree rooted in Ti∈children(T0)

(eq(Gi, Ti))
3

 1
3

+ w0;

end

end

Tsrc A Tsnk T ′src B T ′snk

(a) Two SPGs before composition.

A

(Tsrc;T
′
src) (Tsnk;T ′snk)

B

(b) Parallel composition.

Tsrc A (Tsnk;T ′src) B T ′snk

(c) Series composition.

Figure 2: Composition of series-parallel graphs (SPGs).

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 14

Theorem 3 (series-parallel graphs) When G is a SPG, it is possible to compute recursively a
closed form expression of the optimal solution of MinEnergy(G,D), assuming smax = +∞, in
polynomial time O(|V |), where V is the set of tasks.

Proof. Let G be a series-parallel graph. The optimal solution to MinEnergy(G,D) is obtained
with a call to SPG (G,D), and we prove its optimality recursively. Similarly to trees, the main
idea is to peel the graph off, and to transform it until there remains only a single equivalent task
which, if executed alone within a deadline D, would consume exactly the same amount of energy.
The procedure cost is the procedure which reduces a tree to its equivalent task (see Algorithm 2).

The proof is done by induction on the number of compositions required to build the graph G, p.
If p = 0, G is an elementary SPG consisting in two tasks, the source T0 and the sink T1. It is
therefore a linear chain, and therefore equivalent to a single task whose cost is the sum of both
costs, w0 +w1 (see Corollary 1 for linear chains). The procedure cost returns therefore the correct
equivalent cost, and SPG returns the minimum energy consumption.

Let us assume that the procedures return the correct equivalent cost and minimum energy
consumption for any SPG consisting of i < p compositions. We consider a SPG G, with p
compositions. By definition, G is a composition of two smaller-size SPGs, G1 and G2, and both of
these SPGs have strictly fewer than p compositions. We consider G′1 and G′2, which are identical
to G1 and G2, except that the cost of their source and sink tasks are set to 0 (these costs are
handled separately), and we can reduce both of these SPGs to an equivalent task, of respective
costs w′1 and w′2, by induction hypothesis. There are two cases:

• If G is a series composition, then after the reduction of G′1 and G′2, we have a linear chain
in which we consider the source T0 of G1, the sink T1 of G1 (which is also the source of G2),
and the sink T2 of G2. The equivalent cost is therefore w0 + w′1 + w1 + w′2 + w2, thanks to
Corollary 1 for linear chains.

• If G is a parallel composition, the resulting graph is a fork-join graph, and we can use
Corollaries 1 and 3 to compute the cost of the equivalent task, accounting for the source T0

and the sink T1: w0 +
(
(w′1)3 + (w′2)3

) 1
3 + w1.

Once the cost of the equivalent task of the SPG has been computed with the call to cost (G),

the optimal energy consumption is (cost(G))3

D2 .

Contrarily to the case of tree graphs, since we never need to call the SPG procedure again
because there is no constraint on smax , the time complexity of the algorithm is the complexity
of the cost procedure. There is exactly one call to cost for each composition, and the number
of compositions in the SPG is in O(|V |). All operations in cost can be done in O(1), hence a
complexity in O(|V |). ut

4.3 General DAGs

For arbitrary execution graphs, we can rewrite the MinEnergy(G,D) problem as follows:

Minimize
∑n
i=1 u

−2
i × wi

subject to (i) ti + wj × uj ≤ tj for each edge (Ti, Tj) ∈ E
(ii) ti ≤ D for each task Ti ∈ V
(iii) ui ≥ 1

smax
for each task Ti ∈ V

(2)

Here, ui = 1/si is the inverse of the speed to execute task Ti. We now have a convex op-
timization problem to solve, with linear constraints in the non-negative variables ui and ti. In
fact, the objective function is a posynomial, so we have a geometric programming problem (see [6,
Section 4.5]) for which efficient numerical schemes exist. However, as illustrated on simple fork
graphs, the optimal speeds are not expected to be rational numbers but instead arbitrarily com-
plex expressions (we have the cubic root of the sum of cubes for forks, and nested expressions
of this form for trees). From a computational complexity point of view, we do not know how to
encode such numbers in polynomial size of the input (the rational task weights and the execution

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 15

Algorithm 2: Solution to MinEnergy(G,D) for series-parallel graphs.

procedure SPG (series-parallel graph G, deadline D)
begin

return
(cost(G))

3

D2 ;
end
procedure cost (series-parallel graph G)
begin

Let T0 be the source of G and T1 its sink;
if G is composed of only two tasks, T0 and T1 then

return w0 + w1;
else

/* G is a composition of two SPGs G1 and G2. */
For i = 1, 2, let G′i = Gi where the cost of source and sink tasks is set to 0;
w′1 = cost(G′1); w′2 = cost(G′2);
if G is a series composition then

Let T0 be the source of G1, T1 be its sink, and T2 be the sink of G2;
return w0 + w′1 + w1 + w′2 + w2;

else
/* It is a parallel composition. */
Let T0 be the source of G, and T1 be its sink;

return w0 +
(
(w′1)3 + (w′2)3

) 1
3 + w1;

end

end

end

deadline). Still, we can always solve the problem numerically and get fixed-size numbers which
are good approximations of the optimal values.

In the following, we show that the total power consumption of any optimal schedule is constant
throughout execution. While this important property does not help to design an optimal solution,
it shows that a schedule with large variations in its power consumption is likely to waste a lot of
energy.

We need a few notations before stating the result. Consider a schedule for a graph G = (V,E)
with n tasks. Task Ti is executed at constant speed si (see Lemma 1) and during interval [bi, ci]:
Ti begins its execution at time bi and completes it at time ci. The total power consumption P (t)
of the schedule at time t is defined as the sum of the power consumed by all tasks executing at
time t:

P (t) =
∑

1≤i≤n, t∈[bi,ci]

s3i .

Theorem 4 Consider an instance of Continuous, and an optimal schedule for this instance,
such that no speed is equal to smax . Then the total power consumption of the schedule throughout
execution is constant.

Proof. We prove this theorem by induction on the number of tasks of the graph. First we prove
a preliminary result:

Lemma 2 Consider a graph G = (V,E) with n ≥ 2 tasks, and any optimal schedule of deadline D.
Let t1 be the earliest completion time of a task in the schedule. Similarly, let t2 be the latest
starting time of a task in the schedule. Then, either G is composed of independent tasks, or
0 < t1 ≤ t2 < D.

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 16

Proof. Task Ti is executed at speed si and during interval [bi, ci]. We have t1 = min1≤i≤n ci and
t2 = max1≤i≤n bi. Clearly, 0 ≤ t1, t2 ≤ D by definition of the schedule. Suppose that t2 < t1. Let
T1 be a task that ends at time t1, and T2 one that starts at time t2. Then:

• @T ∈ V, (T1, T) ∈ E (otherwise, T would start after t2), therefore, t1 = D;
• @T ∈ V, (T, T2) ∈ E (otherwise, T would finish before t1); therefore t2 = 0.

This also means that all tasks start at time 0 and end at time D. Therefore, G is only composed
of independent tasks. ut

Back to the proof of the theorem, we consider first the case of a graph with only one task. In
an optimal schedule, the task is executed in time D, and at constant speed (Lemma 1), hence with
constant power consumption.

Suppose now that the property is true for all DAGs with at most n − 1 tasks. Let G be a
DAG with n tasks. If G is exactly composed of n independent tasks, then we know that the power
consumption of G is constant (because all task speeds are constant). Otherwise, let t1 be the
earliest completion time, and t2 the latest starting time of a task in the optimal schedule. Thanks
to Lemma 2, we have 0 < t1 ≤ t2 < D.

Suppose first that t1 = t2 = t0. There are three kinds of tasks: those beginning at time 0 and
ending at time t0 (set S1), those beginning at time t0 and ending at time D (set S2), and finally
those beginning at time 0 and ending at time D (set S3). Tasks in S3 execute during the whole
schedule duration, at constant speed, hence their contribution to the total power consumption
P (t) is the same at each time-step t. Therefore, we can suppress them from the schedule without
loss of generality. Next we determine the value of t0. Let A1 =

∑
Ti∈S1

w3
i , and A2 =

∑
Ti∈S2

w3
i .

The energy consumption between 0 and t0 is A1

t20
, and between t0 and D, it is A2

(D−t0)2 . The

optimal energy consumption is obtained with t0 =
A

1
3
1

A
1
3
1 +A

1
3
2

. Then, the total power consumption

of the optimal schedule is the same in both intervals, hence at each time-step: we derive that

P (t) =

(
A

1
3
1 +A

1
3
2

D

)3

, which is constant.

Suppose now that t1 < t2. For each task Ti, let w′i be the number of operations executed
before t1, and w′′i the number of operations executed after t1 (with w′i +w′′i = wi). Let G′ be the
DAG G with execution costs w′i, and G′′ be the DAG G with execution costs w′′i . The tasks with
a cost equal to 0 are removed from the DAGs. Then, both G′ and G′′ have strictly fewer than
n tasks. We can therefore apply the induction hypothesis. We derive that the power consumption
in both DAGs is constant. Since we did not change the speeds of the tasks, the total power
consumption P (t) in G is the same as in G′ if t < t1, hence a constant. Similarly, the total power
consumption P (t) in G is the same as in G′′ if t > t1, hence a constant. Considering the same
partitioning with t2 instead of t1, we show that the total power consumption P (t) is a constant
before t2, and also a constant after t2. But t1 < t2, and the intervals [0, t2] and [t1, D] overlap.
Altogether, the total power consumption is the same constant throughout [0, D], which concludes
the proof. ut

5 Discrete models

In this section, we present complexity results on the three energy models with a finite number
of possible speeds. The only polynomial instance is for the Vdd-Hopping model, for which we
write a linear program in Section 5.1. Then, we give NP-completeness results in Section 5.2, and
approximation results in Section 5.3, for the Discrete and Incremental models.

5.1 The Vdd-Hopping model

Theorem 5 With the Vdd-Hopping model, MinEnergy(G,D) can be solved in polynomial
time.

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 17

Proof. Let G be the execution graph of an application with n tasks, and D a deadline. Let
s1, ..., sm be the set of possible processor speeds. We use the following rational variables: for
1 ≤ i ≤ n and 1 ≤ j ≤ m, bi is the starting time of the execution of task Ti, and α(i,j) is the time
spent at speed sj for executing task Ti. There are n + n ×m = n(m + 1) such variables. Note
that the total execution time of task Ti is

∑m
j=1 α(i,j). The constraints are:

• ∀1 ≤ i ≤ n, bi ≥ 0: starting times of all tasks are non-negative numbers;
• ∀1 ≤ i ≤ n, bi +

∑m
j=1 α(i,j) ≤ D: the deadline is not exceeded by any task;

• ∀1 ≤ i, i′ ≤ n such that Ti → Ti′ , ti +
∑m
j=1 α(i,j) ≤ ti′ : a task cannot start before its

predecessor has completed its execution;
• ∀1 ≤ i ≤ n,

∑m
j=1 α(i,j) × sj ≥ wi: task Ti is completely executed.

The objective function is then min
(∑n

i=1

∑m
j=1 α(i,j)s

3
j

)
.

The size of this linear program is clearly polynomial in the size of the instance, all n(m + 1)
variables are rational, and therefore it can be solved in polynomial time [30]. ut

5.2 NP-completeness results

Theorem 6 With the Incremental model (and hence the Discrete model),
MinEnergy(G,D) is NP-complete.

Proof. We consider the associated decision problem: given an execution graph, a deadline, and
a bound on the energy consumption, can we find an execution speed for each task such that
the deadline and the bound on energy are respected? The problem is clearly in NP: given the
execution speed of each task, computing the execution time and the energy consumption can be
done in polynomial time.

To establish the completeness, we use a reduction from 2-Partition [11]. We consider an
instance I1 of 2-Partition: given n strictly positive integers a1, . . . , an, does there exist a subset I
of {1, . . . , n} such that

∑
i∈I ai =

∑
i/∈I ai? Let T = 1

2

∑n
i=1 ai.

We build the following instance I2 of our problem: the execution graph is a linear chain with
n tasks, where:

• task Ti has size wi = ai;
• the processor can run at m = 2 different speeds;
• s1 = 1 and s2 = 2, (i.e., smin = 1, smax = 2, δ = 1);
• L = 3T/2;
• E = 5T .

Clearly, the size of I2 is polynomial in the size of I1.

Suppose first that instance I1 has a solution I. For all i ∈ I, Ti is executed at speed 1, otherwise
it is executed at speed 2. The execution time is then

∑
i∈I ai +

∑
i/∈I ai/2 = 3

2T = D, and the
energy consumption is E =

∑
i∈I ai +

∑
i/∈I ai × 22 = 5T = E. Both bounds are respected, and

therefore the execution speeds are a solution to I2.

Suppose now that I2 has a solution. Since we consider the Discrete and Incremental
models, each task run either at speed 1, or at speed 2. Let I = {i | Ti is executed at speed 1}.
Note that we have

∑
i/∈I ai = 2T −

∑
i∈I ai.

The execution time is D′ =
∑
i∈I ai +

∑
i/∈I ai/2 = T + (

∑
i∈I ai)/2. Since the deadline is not

exceeded, D′ ≤ D = 3T/2, and therefore
∑
i∈I ai ≤ T .

For the energy consumption of the solution of I2, we have E′ =
∑
i∈I ai +

∑
i/∈I ai × 22 =

2T + 3
∑
i/∈I ai. Since E′ ≤ E = 5T , we obtain 3

∑
i/∈I ai ≤ 3T , and hence

∑
i/∈I ai ≤ T .

Since
∑
i∈I ai +

∑
i/∈I ai = 2T , we conclude that

∑
i∈I ai =

∑
i/∈I ai = T , and therefore I1 has

a solution. This concludes the proof. ut

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 18

5.3 Approximation results

Here we explain, for the Incremental and Discrete models, how the solution to the NP-hard
problem can be approximated. Note that, given an execution graph and a deadline, the optimal
energy consumption with the Continuous model is always lower than that with the other models,
which are more constrained.

Theorem 7 With the Incremental model, for any integer K > 0, the MinEnergy(G,D)
problem can be approximated within a factor (1 + δ

smin
)2(1 + 1

K)2, in a time polynomial in the size
of the instance and in K.

Proof. Consider an instance Iinc of the problem with the Incremental model. The execution
graph G has n tasks, D is the deadline, δ is the minimum permissible speed increment, and
smin , smax are the speed bounds. Moreover, let K > 0 be an integer, and let Einc be the optimal
value of the energy consumption for this instance Iinc.

We construct the following instance Ivdd with the Vdd-Hopping model: the execution graph
and the deadline are the same as in instance Iinc, and the speeds can take the values{

smin ×
(

1 +
1

K

)i}
0≤i≤N

,

where N is such that smax is not exceeded: N =
⌊
(ln(smax)− ln(smin))/ ln

(
1 + 1

K

)⌋
. As N is

asymptotically of order O(K ln(smax)), the number of possible speeds in Ivdd, and hence the size
of Ivdd, is polynomial in the size of Iinc and K.

Next, we solve Ivdd in polynomial time thanks to Theorem 5. For each task Ti, let s
(vdd)
i

be the average speed of Ti in this solution: if the execution time of the task in the solution

is di, then s
(vdd)
i = wi/di; Evdd is the optimal energy consumption obtained with these speeds.

Let s
(algo)
i = minu{smin + u × δ | u × δ ≥ s

(vdd)
i } be the smallest speed in Iinc which is larger

than s
(vdd)
i . There exists such a speed since, because of the values chosen for Ivdd, s(vdd)i ≤ smax .

The values s
(algo)
i can be computed in time polynomial in the size of Iinc and K. Let Ealgo be the

energy consumption obtained with these values.

In order to prove that this algorithm is an approximation of the optimal solution, we need to

prove that Ealgo ≤ (1 + δ
smin

)2(1 + 1
K)2 × Einc. For each task Ti, s

(algo)
i − δ ≤ s

(vdd)
i ≤ s

(algo)
i .

Since smin ≤ s(vdd)i , we derive that s
(algo)
i ≤ s(vdd)i × (1 + δ

smin
). Summing over all tasks, we get

Ealgo =
∑
i

wi

(
s
(algo)
i

)2
≤
∑
i

wi

(
s
(vdd)
i × (1 +

δ

smin
)

)2

≤ Evdd ×
(

1 +
δ

smin

)2

.

Next, we bound Evdd thanks to the optimal solution with the Continuous model, Econ. Let Icon
be the instance where the execution graph G, the deadline D, the speeds smin and smax are the
same as in instance Iinc, but now admissible speeds take any value between smin and smax . Let

s
(con)
i be the optimal continuous speed for task Ti, and let 0 ≤ u ≤ N be the value such that:

smin ×
(

1 +
1

K

)u
≤ s(con)i ≤ smin ×

(
1 +

1

K

)u+1

= s∗i .

In order to bound the energy consumption for Ivdd, we assume that Ti runs at speed s∗i , instead

of s
(vdd)
i . The solution with these speeds is a solution to Ivdd, and its energy consumption is

E∗ ≥ Evdd. From the previous inequalities, we deduce that s∗i ≤ s
(con)
i ×

(
1 + 1

K

)
, and by

summing over all tasks,

Evdd ≤ E∗ =
∑
i wi (s∗i)

2 ≤
∑
i wi

(
s
(con)
i ×

(
1 + 1

K

))2
≤ Econ×

(
1 + 1

K

)2 ≤ Einc× (1 + 1
K

)2
. ut

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 19

Proposition 3
• For any integer δ > 0, any instance of MinEnergy(G,D) with the Continuous model can

be approximated within a factor (1 + δ
smin

)2 in the Incremental model with speed incre-
ment δ.

• For any integer K > 0, any instance of MinEnergy(G,D) with the Discrete model can
be approximated within a factor (1+ α

s1
)2(1+ 1

K)2, with α = max1≤i<m{si+1−si}, in a time
polynomial in the size of the instance and in K.

Proof. For the first part, let s
(con)
i be the optimal continuous speed for task Ti in instance

Icon; Econ is the optimal energy consumption. For any task Ti, let si be the speed of Iinc such

that si − δ < sconi ≤ si. Then, s
(con)
i ≤ si ×

(
1 + δ

smin

)
. Let E be the energy with speeds si.

Econ ≤ E×
(

1 + δ
smin

)2
. Let Einc be the optimal energy of Iinc. Then, Econ ≤ Einc×

(
1 + δ

smin

)2
.

For the second part, we use the same algorithm as in Theorem 7. The same proof leads to the
approximation ratio with α instead of δ. ut

6 Conclusion

In this paper, we have assessed the tractability of a classical scheduling problem, with task pre-
allocation, under various energy models. We have given several results related to Continuous
speeds. However, while these are of conceptual importance, they cannot be achieved with physical
devices, and we have analyzed several models enforcing a bounded number of achievable speeds,
a.k.a. modes. In the classical Discrete model that arises from DVFS techniques, admissible
speeds can be irregularly distributed, which motivates the Vdd-Hopping approach that mixes two
consecutive modes optimally. While computing optimal speeds is NP-hard with discrete modes, it
has polynomial complexity when mixing speeds. Intuitively, the Vdd-Hopping approach allows
for smoothing out the discrete nature of the modes. An alternate (and simpler in practice) solution
to Vdd-Hopping is the Incremental model, where one sticks with unique speeds during task
execution as in the Discrete model, but where consecutive modes are regularly spaced. Such a
model can be made arbitrarily efficient, according to our approximation results.

Altogether, this paper has laid the theoretical foundations for a comparative study of energy
models. In the recent years, we have observed an increased concern for green computing, and
a rapidly growing number of approaches. It will be very interesting to see which energy-saving
technological solutions will be implemented in forthcoming future processor chips!

References

[1] AMD processors. http://www.amd.com.

[2] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor real-time systems. In
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS),
pages 113–121. IEEE CS Press, 2003.

[3] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temperature.
Journal of the ACM, 54(1):1 – 39, 2007.

[4] E. Beigne, F. Clermidy, J. Durupt, H. Lhermet, S. Miermont, Y. Thonnart, T. Xuan, A. Valen-
tian, D. Varreau, and P. Vivet. An asynchronous power aware and adaptive NoC based circuit.
In Proceedings of the 2008 IEEE Symposium on VLSI Circuits, pages 190–191, June 2008.

[5] E. Beigne, F. Clermidy, S. Miermont, Y. Thonnart, A. Valentian, and P. Vivet. A Localized
Power Control mixing hopping and Super Cut-Off techniques within a GALS NoC. In Pro-
ceedings of ICICDT 2008, the IEEE International Conference on Integrated Circuit Design
and Technology and Tutorial, pages 37–42, June 2008.

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 20

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[7] A. P. Chandrakasan and A. Sinha. JouleTrack: A Web Based Tool for Software Energy
Profiling. In Design Automation Conference, pages 220–225, Los Alamitos, CA, USA, 2001.
IEEE Computer Society Press.

[8] G. Chen, K. Malkowski, M. Kandemir, and P. Raghavan. Reducing power with performance
constraints for parallel sparse applications. In Proceedings of IPDPS 2005, the 19th IEEE
International Parallel and Distributed Processing Symposium, page 8 pp., Apr. 2005.

[9] J.-J. Chen and C.-F. Kuo. Energy-Efficient Scheduling for Real-Time Systems on Dynamic
Voltage Scaling (DVS) Platforms. In Proceedings of the International Workshop on Real-
Time Computing Systems and Applications, pages 28–38, Los Alamitos, CA, USA, 2007.
IEEE Computer Society.

[10] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient scheduling for real-time tasks. In
Proceedings of International Conference on Parallel Processing (ICPP), pages 13–20. IEEE
CS Press, 2005.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[12] R. Ge, X. Feng, and K. W. Cameron. Performance-constrained distributed DVS scheduling for
scientific applications on power-aware clusters. In Proceedings of the ACM/IEEE conference
on SuperComputing (SC), page 34. IEEE Computer Society, 2005.

[13] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microprocessors. IEEE
Journal of Solid-State Circuits, 31(9):1277 –1284, Sept. 1996.

[14] P. Grosse, Y. Durand, and P. Feautrier. Methods for power optimization in SOC-based data
flow systems. ACM Trans. Des. Autom. Electron. Syst., 14:38:1–38:20, June 2009.

[15] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi. Profile-based
optimization of power performance by using dynamic voltage scaling on a pc cluster. In
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS),
page 340, Los Alamitos, CA, USA, 2006. IEEE Computer Society Press.

[16] Intel XScale technology. http://www.intel.com/design/intelxscale.

[17] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable voltage
processors. In Proceedings of International Symposium on Low Power Electronics and Design
(ISLPED), pages 197–202. ACM Press, 1998.

[18] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for real-
time embedded systems. In Proceedings of DAC’04, the 41st annual Design Automation
Conferencea, pages 275–280, New York, NY, USA, 2004. ACM.

[19] H. Kawaguchi, G. Zhang, S. Lee, and T. Sakurai. An LSI for VDD-Hopping and MPEG4
System Based on the Chip. In Proceedings of ISCAS’2001, the International Symposium on
Circuits and Systems, May 2001.

[20] K. H. Kim, R. Buyya, and J. Kim. Power Aware Scheduling of Bag-of-Tasks Applications
with Deadline Constraints on DVS-enabled Clusters. In Proceedings of CCGRID 2007, the
7th IEEE International Symposium on Cluster Computing and the Grid, pages 541 –548, May
2007.

[21] K. Lahiri, A. Raghunathan, S. Dey, and D. Panigrahi. Battery-driven system design: a new
frontier in low power design. In Proceedings of ASP-DAC 2002, the 7th Asia and South Pacific
Design Automation Conference and the 15th International Conference on VLSI Design, pages
261 –267, 2002.

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Reclaiming the energy of a schedule: models and algorithms 21

[22] P. Langen and B. Juurlink. Leakage-aware multiprocessor scheduling. J. Signal Process. Syst.,
57(1):73–88, 2009.

[23] S. Lee and T. Sakurai. Run-time voltage hopping for low-power real-time systems. In Pro-
ceedings of DAC’2000, the 37th Conference on Design Automation, pages 806–809, 2000.

[24] S. Miermont, P. Vivet, and M. Renaudin. A Power Supply Selector for Energy- and Area-
Efficient Local Dynamic Voltage Scaling. In N. Azémard and L. Svensson, editors, Integrated
Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, vol-
ume 4644 of Lecture Notes in Computer Science, pages 556–565. Springer Berlin / Heidelberg,
2007.

[25] M. P. Mills. The internet begins with coal. Environment and Climate News, page ., 1999.

[26] T. Okuma, H. Yasuura, and T. Ishihara. Software energy reduction techniques for variable-
voltage processors. Design Test of Computers, IEEE, 18(2):31 –41, Mar. 2001.

[27] R. B. Prathipati. Energy efficient scheduling techniques for real-time embedded systems.
Master’s thesis, Texas A&M University, May 2004.

[28] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed scaling of tasks with precedence con-
straints. Theory of Computing Systems, 43:67–80, 2008.

[29] V. J. Rayward-Smith, F. W. Burton, and G. J. Janacek. Scheduling parallel programs as-
suming preallocation. In P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu, editors,
Scheduling Theory and its Applications. John Wiley and Sons, 1995.

[30] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of Algorithms
and Combinatorics. Springer-Verlag, 2003.

[31] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan.
Temperature-aware microarchitecture: modeling and implementation. ACM Transactions on
Architecture and Code Optimization, 1(1):94–125, 2004.

[32] L. Wang, G. von Laszewski, J. Dayal, and F. Wang. Towards Energy Aware Scheduling
for Precedence Constrained Parallel Tasks in a Cluster with DVFS. In Proceedings of CC-
Grid’2010, the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting, pages 368 –377, May 2010.

[33] R. Xu, D. Mossé, and R. Melhem. Minimizing expected energy consumption in real-time
systems through dynamic voltage scaling. ACM Trans. Comput. Syst., 25(4):9, 2007.

[34] L. Yang and L. Man. On-Line and Off-Line DVS for Fixed Priority with Preemption Threshold
Scheduling. In Proceedings of ICESS’09, the International Conference on Embedded Software
and Systems, pages 273 –280, May 2009.

[35] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In Proceed-
ings of FOCS ’95, the 36th Annual Symposium on Foundations of Computer Science, page
374, Washington, DC, USA, 1995. IEEE Computer Society.

[36] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy
minimization. In Proceedings of DAC’02, the 39th annual Design Automation Conference,
pages 183–188, New York, NY, USA, 2002. ACM.

RR n° 7598

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

in
ria

-0
05

84
94

4,
 v

er
si

on
 1

 -
11

 A
pr

 2
01

1

	1 Introduction
	2 Related work
	2.1 DVFS and optimization problems
	2.2 Energy models

	3 Framework
	3.1 Optimization problem
	3.2 Energy models
	3.3 Example

	4 The Continuous model
	4.1 Preliminary lemma
	4.2 Special execution graphs
	4.2.1 Independent tasks
	4.2.2 Linear chain of tasks
	4.2.3 Fork and join graphs
	4.2.4 Trees
	4.2.5 Series-parallel graphs

	4.3 General DAGs

	5 Discrete models
	5.1 The Vdd-Hopping model
	5.2 NP-completeness results
	5.3 Approximation results

	6 Conclusion

