
1098 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

A Framework for Exploiting Task and Data
Parallelism on Distributed Memory

Multicomputers
Shankar Ramaswamy, Sachin Sapatnekar, Member, IEEE,

 and Prithviraj Banerjee, Fellow, IEEE

Abstract —Distributed Memory Multicomputers (DMMs), such as the IBM SP-2, the Intel Paragon, and the Thinking Machines CM-5,
offer significant advantages over shared memory multiprocessors in terms of cost and scalability. Unfortunately, the utilization of all the
available computational power in these machines involves a tremendous programming effort on the part of users, which creates a need
for sophisticated compiler and run-time support for distributed memory machines. In this paper, we explore a new compiler optimization
for regular scientific applications–the simultaneous exploitation of task and data parallelism. Our optimization is implemented as part of
the PARADIGM HPF compiler framework we have developed. The intuitive idea behind the optimization is the use of task parallelism to
control the degree of data parallelism of individual tasks. The reason this provides increased performance is that data parallelism
provides diminishing returns as the number of processors used is increased. By controlling the number of processors used for each data
parallel task in an application and by concurrently executing these tasks, we make program execution more efficient and, therefore,
faster. A practical implementation of a task and data parallel scheme of execution for an application on a distributed memory
multicomputer also involves data redistribution. This data redistribution causes an overhead. However, as our experimental results show,
this overhead is not a problem; execution of a program using task and data parallelism together can be significantly faster than its
execution using data parallelism alone. This makes our proposed optimization practical and extremely useful.

Index Terms —Task parallel, data parallel, allocation, scheduling, HPF, distributed memory, convex programming.

—————————— ✦ ——————————

1 INTRODUCTION

1.1 Problem Description
ISTRIBUTED Memory Multicomputers (DMMs) such as
the IBM SP-2, the Intel Paragon, and the Thinking Ma-

chines CM-5 offer significant advantages over shared
memory multiprocessors in terms of cost and scalability.
Unfortunately, the utilization of all the available computa-
tional power in these machines involves a tremendous pro-
gramming effort on the part of users. This creates a need for
sophisticated compiler and run-time support for distributed
memory machines. In this paper, we explore a new com-
piler optimization for regular scientific applications—the
simultaneous exploitation of task and data parallelism.

Scientific applications are typically subdivided into two
major classes—Regular and Irregular applications. In regular
applications, the data structures used are dense arrays and
the accesses to these data structures can be characterized
well at compile time. In irregular applications, some of the
data structures used may be sparse arrays whose structure
can only be determined at the time of program execution.

Our work focuses on the domain of regular applications.
With respect to parallelism, applications can have either

Data or Task parallelism, or a mix of both types. For the
purpose of our work, data parallelism is defined to be the
parallelism obtained by concurrent computation using dif-
ferent portions of a set of data structures. On the other
hand, task parallelism is defined to be the parallelism ob-
tained by concurrent computation using different sets of
data structures. The computation on each set of data struc-
tures is called a task. Scientific applications often have a
mix of both types of parallelism, i.e., there are tasks that can
be executed concurrently as well as each task can be exe-
cuted in a data parallel fashion. However, the degree of
task parallelism in scientific applications is fairly small
while data parallelism is fairly abundant.

A typical example of the type of scientific program we are
targeting is shown in Fig. 1. The program corresponds to the
multiplication of two complex matrices ((AReal,AImag) and
(BReal,BImag)) to produce an output complex matrix
(CReal,CImag). The matrix CReal is produced by multiply-
ing AReal with BReal and AImag with BImag and taking their
difference. The matrix CImag is produced by multiplying
AReal with BImag and AImag with BReal and taking their
sum. There are six tasks in the program-four matrix multipli-
cations, one matrix addition, and one matrix subtraction. Fig. 2
plots the data parallel execution times for the two basic tasks
in the program–matrix multiplication and matrix addi-
tion/subtraction. The times were measured for 256 ¥ 256 ele-
ment input matrices using a Thinking Machines CM-5.

1045-9219/97/$10.00 © 1997 IEEE

————————————————

• S. Ramaswamy is with Transarc Corp., 707 Grant St., Pittsburgh, PA
15219. E-mail: shankar@transarc.com.

• S. Sapatnekar is with the Department of Electrical Engineering, 200 Union
St. SE, Minneapolis, MN 55455. E-mail: sachin@ee.umn.edu.

• P. Banerjee is with the Center for Parallel and Distributed Computing,
Northwestern University, Room 4386 Technological Institute, 2145 Sheri-
dan Rd., Evanston, IL 60208-3118.

 E-mail: banerjee@ece.nwu.edu.

Manuscript received 11 July 1994; revised 18 Apr. 1996.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100892.

D

RAMASWAMY ET AL.: A FRAMEWORK FOR EXPLOITING TASK AND DATA PARALLELISM ON DISTRIBUTED MEMORY MULTICOMPUTERS 1099

Now, given 64 processors, a pure data parallel scheme of
execution for our example program would involve execut-
ing all the tasks one after the other using all 64 processors.
Fig. 3a illustrates this scheme of execution. The pure data
parallel execution scheme finishes executing the program in
8.5 seconds.

On the other hand, if we use a pure task parallel scheme
of execution for the program, we would first execute the
four matrix multiplications concurrently using one proces-
sor each, and then execute the matrix addition and matrix
subtraction concurrently using one processor each. The

pure task parallel execution scheme finishes in 54.2 sec-
onds. As mentioned before, the degree of task parallelism
in scientific applications is small, which typically makes
pure data parallel execution much better as compared to a
pure task parallel execution. Therefore, pure task parallel
execution schemes are not important and shall be ignored
in the rest of this paper.

A third possible scheme of execution for the program is
one that uses task and data parallelism together. Fig. 3b
illustrates such a scheme. In this scheme, the four matrix
multiplications execute concurrently using 16 processors
each, then the matrix addition and subtraction execute con-
currently using 32 processors each. Using this mixed par-
allelism scheme, the program executes in 7.5 seconds.
Clearly, this scheme of execution is the fastest for the given
example program.

Our example illustrates the benefits to be obtained by
using the small degree of task parallelism available in sci-
entific applications together with the available data paral-
lelism. Task parallelism can be used to control the degree of
data parallelism of individual tasks. The reason for an im-
provement in the execution time as compared to the use of
pure data parallelism is the diminishing returns from data
parallelism as the number of processors used for a task is

PROGRAM COMPLEX_MATRIX_MULTIPLY

CALL MATRIXMULTIPLY(AReal,BReal,Temp1)

CALL MATRIXMULTIPLY(AImag,BImag,Temp2)

CALL MATRIXMULTIPLY(AReal,BImag,Temp3)

CALL MATRIXMULTIPLY(AImag,BReal,Temp4)

CALL MATRIXSUBTRACT(Temp1,Temp2,CReal)

CALL MATRIXADD(Temp3,Temp4,CImag)

END

Fig. 1. Multiplication of complex matrices.

 (a)

 (b)

Fig. 2. Execution time for matrix multiplication and addition on the CM-5:
(a) matrix multiplication, (b) matrix addition.

 (a)

 (b)

Fig. 3. Execution schemes for complex matrix multiplication program:
(a) pure data parallel, (b) task and data parallel.

1100 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

increased. The execution time plot for the matrix multipli-
cation in Fig. 2 clearly shows this. When we increase the
number of processors used for a multiply from 16 to 64 (a
factor of four), the execution time for the matrix multiplica-
tion does not drop proportionately, it reduces from 3.65
seconds to 1.14 seconds which is a factor of just 3.2.

1.2 Contributions
In considering the problem of simultaneous exploitation of
task and data parallelism on distributed memory multi-
computers, our paper makes the following contributions:

• Our research has been carried out by extending the
High Performance Fortran (HPF) [1], [2] standard and
extending the PARADIGM compiler [3] to automati-
cally exploit task and data parallelism in extended
HPF programs. Section 1.3 contains a brief discussion
of HPF and the reason for adding extensions to HPF.

• The issues involved in automatically exploiting task
and data parallelism in extended HPF applications are

1) Detecting and representing available task and data
parallelism for a given program. The representation
we use is the Macro Dataflow Graph (MDG). We have
developed algorithms for the automatic extraction of
an MDG from an extended HPF program.

2) Using the MDG to decide on a scheme of execution
that minimizes the execution time of the given
program. For this, we use an Allocation and Sched-
uling approach. Allocation decides on the number
of processors to be used for each task in the pro-
gram and scheduling decides on the order of exe-
cution for tasks.

3) Implementing the execution scheme with neces-
sary run-time library support. The most important
type of run-time support required is Data Redistri-
bution. The exploitation of task and data parallel-
ism could necessitate having tasks execute on sub-
sets of processors. Arrays that are written to by a
task executing on one subset and read by a task
executing on another subset have to be redistrib-
uted. The algorithms used for data redistribution
are not discussed in this paper; details can be
found in [4], [5].

• We have evaluated the benefits of our optimization of
using task and data parallelism together for a set of
benchmark programs.

1.3 High Performance Fortran (HPF)
Numerous research efforts have proposed language exten-
sions to Fortran in order to ease programming multicom-
puters; the most prominent one has been the High Per-
formance Fortran (HPF) language standardization [1], [2].
In its current form, HPF does not provide for specification
of task parallelism. Researchers have proposed extensions
to HPF for the specification of task parallelism [6], [7]; we
have adopted some of these extensions for our HPF com-
piler. Section 3 discusses the extensions in more detail.

A number of compilers for HPF have been proposed;
these include the PARADIGM compiler from the University
of Illinois [3], FORTRAN-D compiler from Rice University

[8], the SUIF compiler from Stanford [9], the pHPF compiler
from International Business Machines [10], the High Per-
formance Fortran 90 compiler from Digital Equipment Cor-
poration [11], the pgHPF compiler from the Portland Group
Inc. [12], the xHPF compiler from Applied Parallel Research
[13], the SUPERB compiler from the University of Vienna
[14], and the FORTRAN-90D/HPF compiler from Syracuse
University [15].

Fig. 4 illustrates the organization of the PARADIGM
compiler. The compiler currently accepts as input an ex-
tended HPF or Fortran 77 application. The research detailed
in this paper is implemented in the shaded blocks, and adds
the capability of simultaneously exploiting task and data
parallelism in extended HPF applications. We have added
extensions to HPF for expressing task parallelism; these ex-
tensions are discussed in Section 3. The modules we have
added to PARADIGM extract the MDG structure from an
extended HPF program and use it to exploit task and data
parallelism together. Our code generation module generates
Multiple Program Multiple Data (MPMD) code that contains
calls to data parallel codes for individual tasks, and the data
redistribution library. Data parallel code for individual tasks
is generated using the regular pattern analysis and optimiza-
tions module and the Single Program Multiple Data (SPMD)
code generation module in the PARADIGM framework. We
have augmented the PARADIGM run-time system to include
data redistribution routines.

1.4 Outline
Section 2 provides an overview of important related work.
Section 3 describes the Macro Dataflow Graph (MDG) rep-
resentation in detail and discusses its automatic extraction
from extended HPF programs. In Section 4, we discuss our
allocation and scheduling algorithms. Results demonstrat-
ing the usefulness of our optimization are discussed in Sec-
tion 5. Finally, Section 6 summarizes the implications of our
work and outlines possible future work.

2 RELATED WORK

2.1 Task and Data Parallelism
Recently, there has been growing interest in simultaneous
exploitation of task and data parallelism in Fortran appli-
cations. We briefly discuss below a few of these research
efforts.

The Fx compiler project [7], [16] targets a class of appli-
cations [17] that process continuous streams of data sets
such as images from a video camera. The processing for
each data set is essentially a data parallel computation.
Task parallelism is derived by operating concurrently on
different data sets. Input to the Fx compiler is an extended
form of HPF. The compiler implements allocation and
scheduling algorithms that are aimed at the class of appli-
cations it targets. As we will see later, our compiler targets
a more general class of applications than the Fx compiler,
and uses more sophisticated allocation and scheduling al-
gorithms.

Fortran-M [18] was initially conceived as an extension to
Fortran for expressing task parallelism. Recently, it has been
integrated with HPF [6] in order to enable the simultaneous

RAMASWAMY ET AL.: A FRAMEWORK FOR EXPLOITING TASK AND DATA PARALLELISM ON DISTRIBUTED MEMORY MULTICOMPUTERS 1101

exploitation of task and data parallelism. The Fortran-
M/HPF project targets a class of applications that have a few
extremely heavyweight data parallel tasks continuously in-
teracting with each other. The Fortran-M/HPF compiler does
not implement any algorithms for automatic allocation and
scheduling; the user has to provide this information.

The Parafrase compiler project [19] parallelizes Fortran
applications for shared memory machines. It analyzes an
input Fortran program and constructs a Hierarchical Task
Graph (HTG) representation [20], [21] for the program. The
HTG representation captures parallelism information at all
levels of granularity. Based on the HTG representation, an
Autoscheduling [22] technique has been proposed for ex-
ploiting task and data parallelism dynamically during pro-
gram execution.

Dhagat et al. [23] have proposed a language, UC, that
allows for the expression of task and data parallelism. The
UC compiler generates code that executes the program in a
task and data parallel manner. No algorithms for automatic
allocation and scheduling have been implemented in the
UC compiler.

2.2 Extensions to HPF
As mentioned before, the HPF standard does not provide
directives for expressing task parallelism at this time. The
HPF forum is currently considering including a set of di-
rectives for this purpose. Meanwhile, researchers have in-
dependently proposed directives for expressing task paral-
lelism in HPF programs.

• Foster et al. [6] have proposed the PROCESSES
statement as an extension to HPF. The body of the
PROCESSES statement contains independent calls to
a set of data parallel HPF subroutines.

• Gross et al. [7] have proposed the the PARALLEL di-
rective. The body of a PARALLEL section can contain
HPF data parallel subroutine calls and simple DO
loops.

For our research, we have essentially adopted a modi-
fied version of the directives proposed by Gross et al. The
major difference is that we allow for IF and DO WHILE
statements inside a parallel section. Further, our compiler
performs allocation and scheduling automatically without
any user intervention.

2.3 Macro Dataflow Graph
The hierarchical Macro Dataflow Graph (MDG) represen-
tation we use for programs is very similar to the Hierarchi-
cal Task Graph (HTG) representation of Girkar and Poly-
chronopoulos [20], [21]. The HTG representation is very
powerful and captures parallelism information at all levels
of granularity for Fortran programs. The MDG abstracts
much of this information and is well-suited for our alloca-
tion and scheduling algorithms.

2.4 Allocation and Scheduling
The basic problem of optimally scheduling a set of nodes
with precedence constraints on a p processor system

Fig. 4. Organization of the PARADIGM compiler.

1102 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

when each node uses just one processor has been shown
to be NP-complete by Lenstra and Kan [24]. Further
treatment on this topic can also be found in the book by
Garey and Johnson [25]. The problem of allocation and
scheduling we are considering in this paper is considera-
bly harder than the simple scheduling problem. There
have been two major approaches to the approximate so-
lution of the allocation and scheduling problem. The first
has been a Bottom-up approach like those used by Sarkar
[26] and by Yang and Gerasoulis [27], [28]. A bottom-up
approach considers nodes in the MDG to be lightweight
(in terms of computation requirements) with each node
using only one processor (an explicit allocation is not
done). The algorithms of [26]-[28] use clustering on the
nodes of the MDG to form larger nodes during the con-
struction of a schedule. The second approach to allocation
and scheduling is a Top-down approach like ours. Other
researchers who have used top-down allocation and
scheduling include: Prasanna and Agarwal [29], Prasanna
et al. [30], Belkhale and Banerjee [31], [32], Subhlok et al.
[33], and Subhlok and Vondran [34]. Top-down ap-
proaches take a more global view of the problem than
bottom-up approaches.

The differences between the top-down approaches of
other researchers and our approach are significant. A
primary difference between our approach and all other
approaches stems from our ability to handle program
control flow constructs in the MDG. There are also spe-
cific differences with respect to each of the related ap-
proaches. The methods presented in [29], [30] do not con-
sider data transfer costs between nodes of the MDG. They
also make simplifying assumptions about the type of
MDGs handled and the processing cost model used. We
do not make any assumptions for our MDGs, and use
very realistic cost models. The work in [31], [32] also does
not consider the effects of nonzero data transfer costs.
Their allocation and scheduling algorithms are similar to
the ones we use. The research discussed in [33], [34] con-
siders allocation and scheduling for a specific class of
problems that process continuous streams of data sets.
The computation for each data set has a simple tree-
structured MDG for all their benchmark programs [17]. It
is not clear how the proposed allocation and scheduling
heuristics would work for more general, nontree MDGs.
Our methods are able to handle all MDGs in a uniform
manner.

3 THE MACRO DATAFLOW GRAPH

3.1 Introduction
To exploit available task and data parallelism for an appli-
cation, we require a program representation that captures
information about both types of parallelism. The program
representation we use is called the Macro Dataflow Graph
(MDG) and is very similar to the Hierarchical Task Graph
representation proposed by Girkar and Polychronopoulos
[20], [21]. Our allocation and scheduling algorithms dis-
cussed in Section 4 use information in the MDG to decide
on an execution scheme for a given application.

Some of the important properties of the MDG are

• It is a weighted directed acyclic graph. Nodes repre-
sent computation and edges represent precedence
constraints.

• There are two distinguished nodes called START and
STOP in the MDG. START precedes all other nodes
and STOP succeeds all other nodes.

• The MDG is hierarchical in nature, i.e., nodes in an
MDG may actually contain MDGs themselves.

The basic types of nodes in an MDG are

• Simple (S) nodes that correspond to a basic data par-
allel task in the given application. At the lowest level
of the hierarchy in an MDG, all nodes are S nodes.

• Loop (L) nodes that correspond to loop constructs in
the given application. Loops can be FOR loops or
WHILE loops. An L node contains an MDG structure
corresponding to the loop body.

• Conditional (C) nodes that correspond to conditional
constructs in the given application. A C node contains
two MDG structures corresponding to the THEN and
ELSE bodies.

• User-Defined (U) nodes that correspond to user-
defined functions in the given application. A U node
contains an MDG corresponding to the function body.

Edges in the MDG correspond to precedence constraints
that exist between tasks. To understand the MDG structure
more clearly, we have shown examples of MDGs in Fig. 5.
Fig. 5a illustrates an MDG with only S nodes; we refer to
such MDGs as Simple MDGs. Fig. 5b depicts an MDG with
L, C, and U nodes in addition to S nodes; we refer to such
MDGs as Hierarchical MDGs. The automatic extraction of
the MDG structure from extended HPF programs is dis-
cussed in Section 3.2.

The weights of nodes and edges in the MDG are based
on the concepts of Processing and Data transfer costs. Proc-
essing costs account for the communication and computa-
tion costs of data parallel tasks corresponding to nodes and
depend on the number of processors allocated to the node.
Data transfer costs account for the costs of any data redis-
tribution that is necessary for preserving data dependence
relationships between nodes. Section 3.3 describes the proc-
essing and data transfer costs in detail and develops
mathematical models for them.

3.2 MDG Extraction
Section 3.2.1 considers the extensions required for HPF in
order to facilitate the extraction of an MDG structure. Later,
we present algorithms that perform the automatic extraction
of the MDG structure in Section 3.2.2. Section 3.3.5 presents
algorithms used to fill in cost information in the MDG.

3.2.1 Extensions to High Performance Fortran
In order to let users demarcate an MDG structure in the
HPF framework, we provide the PROCESSES directive:

CHPF$ PROCESSES

statements

CHPF$ ENDPROCESSES

At this point, we do not allow for nested PROCESSES di-
rectives. Further, only a single PROCESSES directive is al-
lowed per subroutine or function, and all statements in the

RAMASWAMY ET AL.: A FRAMEWORK FOR EXPLOITING TASK AND DATA PARALLELISM ON DISTRIBUTED MEMORY MULTICOMPUTERS 1103

subroutine must be enclosed inside the PROCESSES direc-
tive. The following types of statements are allowed inside
the PROCESSES directive:

• Calls to intrinsic or user-defined HPF subroutines that
are PURE [1], [2]. All parameters to these calls must be
complete arrays or scalars (array element accesses not
allowed). This greatly simplifies our dependence
analysis algorithms discussed later.

• Assignment statements involving scalar computations
(array element accesses not allowed).

• DO loops with unit stride and constant lower and up-
per bounds.

• DO WHILE loops with scalar variables (array element
accesses not allowed) in the predicate expression.

• IF statements with scalar variables (array element ac-
cesses not allowed) in the predicate expression.

A few examples illustrating the use of the processes di-
rective are shown below:

CHPF$ PROCESSES

CALL MATRIXMULTIPLY(A, B, S1)

CALL MATRIXMULTIPLY(C, D, S2)

CALL MATRIXADD(S1, S2, S)

CHPF$ ENDPROCESSES

CHPF$ PROCESSES

DO I = 1, 20

CALL READIMAGE(AR, AI)

CALL ROWFFT(AR, AI)

CALL COLFFT(AR, AI)

END DO

CHPF ENDPROCESSES

CHPF$ PROCESSES

CALL NORM(B, BNRM)

IF (BNRM.GT.0)

SOLVE(A, B, X)

ENDIF

CHPF$ ENDPROCESSES

To ease our dependence analysis algorithms, we provide
another set of directives for the user. These are

CHPF$ IN variables

CHPF$ OUT variables

CHPF$ INOUT variables

The IN directive declares input variables for a subrou-
tine, the OUT directive declares output variables and the
INOUT directive declares variables that are inputs and well
as outputs. Input/output directives must be provided for
all user-defined subroutines in the program. For intrinsic
functions, information about input and output variables is
implicit. Examples illustrating the use of the IN, OUT and
INOUT directives are shown below:

SUBROUTINE MATRIXADD(A, B, C)

CHPF$ IN A,B

CHPF$ OUT C

SUBROUTINE DOTPRODUCT(A, DP)

CHPF$ IN A

CHPF$ OUT DP

SUBROUTINE FFT2D(AR, AR)

CHPF$ INOUT AR, AI

3.2.2 Extraction of MDG Structure
To extract the MDG structure for a given extended HPF
application, we use Parafrase-2 [19], [35] (with modifica-
tions to accommodate extended HPF [36]) as a front end to
build a parse tree representation. We then use this parse
tree to construct the hierarchical MDG structure for the
program. Details of algorithms used for building the MDG
for various types of statements are provided in [5]; we pre-
sent some simple examples here to illustrate the process.

As a first step, we traverse the parse tree and build the
MDG structure for each program unit (HPF subroutine)
that contains a PROCESSES directive. This is done in an in-
cremental manner by traversing the statements inside the
body of the PROCESSES directive. A separate MDG is con-
structed for each statement before combining it with the
MDG corresponding to all previous statements.

Fig. 6 illustrates the process of building the MDG struc-
ture for a subroutine call. To build an MDG for this state-
ment, we create an MDG with a single S node correspond-
ing to the VECSCALE subroutine. The input variables Q and
BETA cause the addition of the edge between the START

(a)

(b)

Fig. 5. Examples of MDGs: (a) simple MDG, (b) hierarchical MDG.

1104 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

node of the MDG and node corresponding to the VECSCALE
call. Similarly, the output variable P causes the addition of
the edge between the VECSCALE call and the STOP node.
Intuitively, we summarize the variable read and write in-
formation using edges to START and STOP. This allows us
to easily combine MDGs during the incremental MDG
building process for a program.

The process of combining MDGs is illustrated in Fig. 7.
In order to combine MDGs, we consider the list of variables
written by the first MDG and compare it against the list of
variables referenced in the second MDG. As discussed
above, these lists can be easily computed using the STOP
node of the first MDG and the START node of the second
MDG, respectively. If we find a variable referenced in the
second MDG is written in the first MDG, we look for the
node that last modifies the variable in the first MDG, and
connect all nodes that reference the variable in the second
MDG to that node. If a variable is written in the first MDG
and not written in the second MDG, the last node to write
to the variable is connected to the STOP node of the second
MDG. Similarly, if a variable is referenced in the second
MDG but not written in the first MDG, we connect all
nodes that reference the variable in the second MDG to the
START node of the first MDG. Last, we free the STOP node
of the first MDG and the START node of the second MDG.

Fig. 8 illustrates the procedure used for building the hi-
erarchical MDG structure for a conditional statement. At
the top level, we build an MDG with a single Conditional C
node. All variables referenced in the predicate result in
edges from the START node of the MDG to the C node. We
then build separate MDGs at a lower level for the state-
ments in the THEN and the ELSE parts. Finally, we obtain all
variable reference and write information from these MDGs
(using their START and STOP nodes), and use this to update
the variable reference and write information at the top
level. All variable references in the lower levels result in
edges between the START node and the C node at the top
level. Similarly, variable writes result in edges between the
C node and the STOP node at the top level.

A procedure similar to the one described above is used
for building the hierarchical MDG for loop statements; de-
tails of this procedure can be found in [5].

 CALL VECSCALE (Q, BETA, P)

 CALL VECADD (P, R, S)

 CALL MATVECMULT (A, S, Q)

Fig. 7. Example of MDG combining.

 IF (RHO .NE. O) THEN

 CALL EQNSOLVE (A, Z, P)

 CALL EQNSOLVE (A, P, Q)

 ELSE

 CALL VECSCALE (Q, BETA, P)

 CALL METVECMULT (A, P, Q)

 ENDIF

Fig. 8. Example of MDG construction for a conditional statement.

 CALL VECSCALE (Q, BETA, P)

Fig. 6. Example of MDG construction for a subroutine call.

RAMASWAMY ET AL.: A FRAMEWORK FOR EXPLOITING TASK AND DATA PARALLELISM ON DISTRIBUTED MEMORY MULTICOMPUTERS 1105

3.3 Mathematical Cost Models
In this section, we describe our processing and data transfer
cost functions and prove that they all belong to the class of
posynomial functions [37], [5]. An important property of
posynomial functions is that they can be mapped onto the
class of convex functions1; our allocation and scheduling
algorithms described in Section 4 rely on this property.

The processing cost function we use is an often used
model. On the other hand, we have developed our own
data transfer cost functions.

3.3.1 Processing Cost Model
For the processing cost model, we use Amdahl’s law, i.e.,
the execution time of the data parallel task corresponding

to the ith node ti
Ce j as a function of the number of proces-

sors it uses (pi) is given by

t pi
C

i
i

i
i= +

-F
HG

I
KJ ◊a

a
t

1
, (1)

where ti is the execution time of the task on a single proces-
sor and ai is the fraction of the data parallel task that has to
be executed serially.

The values of parameters a and t are calculated for the
data parallel tasks used in our benchmarks by actually
measuring execution times for the tasks as a function of the
number of processors they use, and then using linear re-
gression to fit the measured values to a function of the form
shown above.

LEMMA 1. ti
C is a posynomial function w.r.t. pi.

PROOF. Due to a lack of space, we are unable to provide a
proof here, please refer [5] for a complete proof. �

LEMMA 2. t pi
C

i◊ is a posynomial function w.r.t. pi.

PROOF. Due to a lack of space, we are unable to provide a
proof here, please refer [5] for a complete proof. �

3.3.2 Data Transfer Cost Model
In this section, we consider the cost of redistribution of an
array of data elements between the execution of nodes i and
j of the MDG. Node i is assumed to have pi processors allo-
cated to it and node j is assumed to have pj processors allo-
cated to it. For modeling an array redistribution, we assume
that the array is distributed evenly across the pi sending
processors before the redistribution, and, across the pj, re-
ceiving processors after the redistribution. In addition, we
assume that the sizes and numbers of messages will be the
same for each sending processor, and for each receiving
processor. For example, every sending processor may send
three messages of 1,000 bytes each, and every receiver may
receive five messages of 1,500 bytes each. Both of our as-
sumptions are valid for the realm of regular scientific appli-
cations.

The regular distributions of an array along any of its di-
mensions (size along dimension is S) across a set of p proc-
essors are classified into the following cases:

1. Convex functions have a unique global minimum value over convex sets,
and such minimization problems can be solved in polynomial time [38].

• ALL: All elements of the array along the dimension
are owned by the same processor (p = 1).

• BLOCK: Elements of the array are distributed evenly
across all the processors with each processor owning
a contiguous block of S

p elements.

• CYCLIC: Elements of the array are distributed evenly
across all the processors in a round robin fashion,
with each processor owning every pth element, with
the ith processor starting at element i.

• BLOCKCYCLIC(X): Elements of the array are distrib-
uted evenly across all the processors in a round robin
fashion, with each processor owning every pth block
of X elements, the ith processor starting at the ith
block of X elements.

More details of regular distributions can be found in [1],
[2]. For our discussion of data transfer costs, the distribu-
tion of an array can change from any of those listed above
to any other along one or more of its dimensions.

For an array redistribution from node i to node j, there are
three basic cost components—a sending component tij

S in-

curred by processors allocated to node i, a network delay
component tij

D to allow for messages to reach the processors

allocated to node j, and a receiving component tij
R incurred by

processors allocated to node j. The tij
S component is accounted

for in the weight of node i, the tij
D component is taken to be the

weight of the edge joining node i and node j, and the tij
R com-

ponent is accounted for in the weight of node j.
We propose the following expressions for the three cost

components

t S p p t L p t

t
L

p S p p
t

t R p p t L p t

ij
S

ij i j ss
i

ps

ij
D

i ij i j
n

ij
R

ij i j sr
j

pr

= ◊ + ◊ ◊

=
◊

◊

= ◊ + ◊ ◊

,

,

, , ()

e j

e j

e j

1

1
2

where

• L is the length (in bytes) of the array being trans-
ferred,

• tss, tps are the startup and per byte cost for sending
messages from a processor,

• tn is the network cost per message byte,
• tsr, tpr are the startup and per byte cost for receiving

messages at a processor,
• Sij is the number of messages sent from each sending

processor, and
• Rij is the number of messages received at each re-

ceiving processor.

Intuitively, the sending component tij
Se j for each sending

processor involves a startup cost for each of the Sij mes-
sages sent, and a processing cost for its share of the array

L
pi
e j . The same logic holds for the receiving component tij

Re j

1106 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

of receiving processors. The network component represents
the minimum delay required for messages to be delivered
to the receiving processors after they have been sent from
the sending processors. If we assume a pipelined network
with no congestion effects, this delay will depend on the
length of the last message sent. By our assumption of equal-
sized messages, we see that the size of each message will be

L
p S p pi ij i j◊ ,e j

. This is the reasoning behind the network cost

component expression shown.
The quantities Sij and Rij in our cost expressions will de-

pend on the type of array redistribution being performed. It
is possible to express these quantities in terms of a pair of
parameters of the sending and receiving distributions. The
first of these parameters is called the Block Factor (BF), and
it provides a measure of the sizes of the blocks of elements
a processor owns under any of the regular distributions.
The block factor for the different regular distributions of an
array of L bytes on pi processors is shown in Table 1. The
other parameter we use is called the Skip Factor (SF), which
provides an idea of the distance between the successive
blocks of elements a processor owns. We have listed the
skip factors for the various regular distributions of an array
of L bytes on pi processors in Table 2. The quantities Sij and
Rij can be expressed in terms of block factors and skip fac-
tors using

S
SF
SF

BF
BF

SF
SF

BF
BF

R
SF
SF

BF
BF

SF
SF

BF
BF

ij
j

i

i

j

j

i

i

j

ij
i

j

j

i

i

j

j

i

= ◊
F
HG

I
KJ

= ◊
F
HG

I
KJ

max , , ,

max , , , , ()

1

1 3

where BFi and SFi are the block factor and skip factor for
the sending distribution; BFj and SFj are the block factor
and skip factor for the receiving distribution.

Some details have been omitted in the expressions above
to make them easily understandable. First, we have consid-
ered the redistribution of a one-dimensional array; how-
ever, in practice, arbitrary n-dimensional arrays may be
redistributed. In addition, we consider redistribution of a
single array; again, in practice, more than one array may
have to be redistributed between a pair of nodes with the
type of redistribution being different for each of the arrays.

It is easy to extend our functions to account for these ef-
fects. We do not show these extended forms here as they
are complex and lengthy. Our actual implementation of the
cost models uses extended forms of the functions described
above.

LEMMA 3. tij
S , tij

R , and tij
D are posynomial functions w.r.t. pi and

pj for all possible cases of redistributions.

PROOF. Due to a lack of space, we are unable to provide a
proof here. Please refer to [5] for a complete proof. �

LEMMA 4. t pij
S

i◊ and t pij
R

j◊ are posynomial functions w.r.t. pi

and pj for all possible cases of redistributions.

PROOF. Due to a lack of space, we are unable to provide a
proof here. Please refer to [5] for a complete proof. �

3.3.3 Node and Edge Costs
The cost of a node in the MDG comprises the processing
cost for the task to which it corresponds, the receiving cost
component (tR) for all data transfers from predecessor
nodes, and the sending cost component (tS) for all data
transfers to successor nodes. Formally, the cost of the ith
node in the MDG (Ti) is given by

T t t ti pi
R

i
C

is
S

s SUCCp PRED ii

= + +
ŒŒ
ÂÂ , (4)

where PREDi is the set of predecessors of node i and SUCCi
is the set of successors of node i.

The cost of the edge between nodes i and j in the MDG
(Eij) is the delay component of the data transfer between the
nodes and is given by

E tij ij
N= . (5)

Using the sum property of posynomials described in [5]
we can show the node and edge costs to be posynomials.

3.3.4 MDG Cost Properties
We use a few cost-related properties of an MDG in con-
structing our allocation and scheduling algorithms—the
Critical Path and the Average Area. The critical path (C) of an
MDG is defined as the time at which node n (STOP node)
finishes execution. If yi is the finish time of node i, the criti-
cal path is given by

C y

y y E T
n

i p PRED p pi i
i

=
= + +

Œ
max . ()e j 6

The average area (A) of an MDG for a P processor sys-
tem is defined as

A P T pi i

n

= ◊ ◊Â1

1

. (7)

The critical path represents the longest path in the MDG
and the average area provides a measure of the processor-
time area required by the MDG. Fig. 9 shows an example of
an MDG with node and edge costs listed. The allocation for
each node is shown next to it in parentheses. The critical
path and average area (for P = 8) are also computed and
shown below the MDG.

TABLE 1
BLOCK FACTORS FOR VARIOUS REGULAR DISTRIBUTIONS

DISTRIBUTION BLOCK FACTOR
ALL L

BLOCK
L
pi

CYCLIC 1
BLOCKCYCLIC(X) X

TABLE 2
SKIP FACTORS FOR VARIOUS REGULAR DISTRIBUTIONS

DISTRIBUTION SKIP FACTOR
ALL L

BLOCK L
CYCLIC pi

BLOCKCYCLIC(X) X p
i

◊

RAMASWAMY ET AL.: A FRAMEWORK FOR EXPLOITING TASK AND DATA PARALLELISM ON DISTRIBUTED MEMORY MULTICOMPUTERS 1107

Using the sum and max properties of posynomials [37],
[5], we can show the critical path and average area to be
posynomials. As we shall see in Section 4, the fact that the
critical path and average area are posynomials is useful
while making allocation and scheduling decisions.

3.3.5 Updating MDG Cost Parameters
The cost models for processing and data transfer in the
MDG that were discussed above are all parameterized. In
the case of processing costs, the a and t parameters are
characteristic of the data parallel task being considered. For
data transfer costs, we essentially need the size of the arrays
being redistributed, their distribution for the source task,
and their distribution for the target task.

For the purposes of our research, we assume that values
of the a and t parameters and data distribution schemes for
arrays are available for all simple (S) nodes in the MDG for
a given HPF program. S nodes in a HPF program corre-
spond to intrinsic calls, operators, or calls to user-defined
HPF data parallel routines. For intrinsic calls and operators,
we use a profiling approach for estimating the cost pa-
rameters a and t. In the case of user-defined HPF data par-
allel routines, cost parameters a and t are computed using
the cost estimation techniques of Gupta [39], and Gupta
and Banerjee [40]. These methods have been implemented
as part of the PARADIGM compiler framework [3]. Data
distribution information for user-defined HPF routines is
obtained from the HPF data distribution directives used in
the routine.

We compute the cost model parameters for C, L, and U
nodes by traversing the MDG in a bottom-up manner. At
the lowest level in the MDG, all nodes are S nodes whose
cost parameters we obtain as described before. Therefore,
as we travel upwards in the MDG, we use cost information
from lower levels to compute cost information at the upper
levels. Due to a lack of space, we are unable to present the
algorithms used; they are discussed in [5].

3.4 Summary
In this section, we considered the MDG representation for
an application. Extensions to HPF to enable extraction of

the MDG structure were discussed in Section 3.2.1. In
Section 3.2.2, we considered algorithms to extract the
structure of the MDG from an extended HPF program.
Models for node and edge costs in the MDG were pre-
sented in Sections 3.3.1 and 3.3.2. Finally, in Section 3.3.5,
we discussed algorithms for computing the parameters
for these cost models for all nodes and edges in the MDG.

The MDG captures information about available task and
data parallelism in an application. This information is used
by our allocation and scheduling algorithms, discussed in
the next section, to decide on an execution scheme for the
application.

4 ALLOCATION AND SCHEDULING ALGORITHMS

4.1 Introduction
As previously discussed, our approach for the simultane-
ous exploitation of task and data parallelism relies on our
allocation and scheduling algorithms. These algorithms
are responsible for deciding on an execution scheme for
an application, given its Macro Dataflow Graph (MDG)
representation (Section 3). The MDG provides detailed
cost information for an application. As we will see in the
rest of this section, these cost models are extensively used
by our allocation and scheduling algorithms.

The allocation and scheduling algorithm used for simple
MDGs (MDGs with only S nodes) forms the basis for the
allocation and scheduling algorithm used for hierarchical
MDGs. Therefore, we first discuss the allocation and
scheduling algorithm for simple MDGs in Section 4.2. Later,
in Section 4.5, we consider the allocation and scheduling
algorithm for hierarchical MDGs.

4.2 Simple MDGs
For simple MDGs, we use the Two Step Allocation and
Scheduling (TSAS) algorithm described in Section 4.3.
This algorithm views allocation and scheduling as inde-
pendent problems and provides solutions for each. We
have theoretically analyzed and quantified the perform-
ance of the TSAS algorithm. This analysis is provided in
Section 4.4.

4.3 Two Step Allocation and Scheduling (TSAS)
Given an MDG and a P processor system, our Two Step
Allocation and Scheduling (TSAS) algorithm consists of the
following steps

1) Allocate processors to nodes in the MDG using the
Convex Programming Allocation Algorithm.

2) Schedule the allocated nodes using the Prioritized
Scheduling Algorithm.

4.3.1 Convex Programming Allocation Algorithm (CPAA)
Given an MDG and a P processor system, let pi be the num-
ber of processors allocated to the ith node. The CPAA com-
putes the allocation for the MDG (pi "i = 1, n) using the
following steps:

1) Obtain a real number solution to the following mini-
mization problem

minimize F = max ,A Ca f (8)

Fig. 9. Example illustrating computation of critical path and average
area.

1108 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

subject to p P i ni1 1£ £ " = , , (9)

 where the quantities A and C are the average area and
the critical path for the MDG (defined in Section 3.3.4).
Let the values of A and C that produce the minimum
value of F be denoted by Ap and Cp, respectively.

2) Set p p i ni i= " =c h 1, .

3) Set pi = min(pi, PB), where PB is a function of P and
can be computed using Corollary 1.

The intuition behind minimizing F is that it represents a
theoretical lower bound on the time required to execute the
application corresponding to a given MDG. The reason is
that the execution time for the application can neither be
smaller than the critical path of the MDG nor be less than
the average area of the MDG. To better understand these
constraints on the execution time, we can view a given
processor system to be a bin of width P, and each node in
the MDG to correspond to a box of width pi (processors
allocated to node) and height Ti (cost of node, as described
in Section 3.3.3). The execution time of the application is the
height of the processor system bin that accommodates
boxes corresponding to all the nodes in the MDG while
preserving all precedence constraints. Clearly, this height
can neither be less than that of the tallest stack of boxes
arising from the set of precedence constraints, nor have
area less than that required to accommodate all the boxes.
The critical path of the MDG represents the former con-
straint and the average area of the MDG represents the lat-
ter constraint. Fig. 10 illustrates the effect of the critical path
and average area on the execution time of an example ap-
plication. In this figure, we show two possible allocation
schemes for the MDG corresponding to the application. We
have shown a box corresponding to each node in the MDG;
the width of the box is the allocation (pi) for the node and
the height of the box is the cost (Ti) of the node. Given the
allocations and costs for nodes and ignoring edge costs, we
have computed and shown the average area and critical
path for an eight processor system using the two allocation
schemes. As we can see, the first scheme has a higher critical
path value and the second scheme has a higher average area
value. This means the execution time for the first scheme is
constrained by the critical path in the first case and by the
average area in the second case. In terms of our processor
system bin visualization, this translates to the height of the
bin being constrained by the tallest stack of boxes in the first
case and by the area required to accommodate all boxes in
the second case. This is illustrated in Fig. 11.

By obtaining an allocation (set of pis) that concentrates
on minimizing the lower bound F, we are hoping to mini-
mize the execution time for the given application. However,
our minimization process is carried out in a continuous
domain, which results in the pis being real numbers rather
than integers, thus, necessitating rounding-off of the real
number solution. We hope that this rounding-off produces
an allocation close enough to the optimal allocation in the
discrete domain. The reasons for using a continuous do-
main formulation are

1) the posynomial properties of our cost models (Section
3.3) make our minimization problem equivalent to a

convex programming formulation [37], [5]. This guar-
antees finding the optimum minimum solution.

2) A convex programming formulation has been shown
to be solvable in polynomial time [38]—this means we
can find a optimum continuous allocation in polyno-
mial time.

Note that, in Step 1 of the CPAA, our search space for a
set of pis is not constrained in any form; tasks are allowed to
use even the complete system if needed. This unconstrained

 (a)

 (b)

Fig. 10. Effect of allocation on critical path and average area:
(a) dominating critical path, (b) dominating average area.

RAMASWAMY ET AL.: A FRAMEWORK FOR EXPLOITING TASK AND DATA PARALLELISM ON DISTRIBUTED MEMORY MULTICOMPUTERS 1109

minimization does not ensure “schedulability”—by this
term we mean that allowing a task to use any number of
processors may result in an inability to schedule tasks that
can run concurrently with it. To improve the theoretical
schedulability, we impose a bound PB on the allocation in
Step 3. The optimum value for PB is computed using the
analysis that follows in Section 4.4.

4.3.2 Prioritized Scheduling Algorithm (PSA)
The steps involved in the PSA are

1) Place the START node of the MDG in a queue called
the Ready queue and mark its Earliest Start Time
(EST1) as 0.

2) Pick a node i from the Ready queue that has the low-
est value of the Earliest Start Time (ESTi). Use the
schedule built so far to check the time at which the
processor requirement of the task can be met. This is
called the Processor Satisfaction Time (PSTi) for the
node. Schedule the node at max(ESTi, PSTi) and com-
pute its finish time (FTi).

3) If the node scheduled in the previous step is STOP,
terminate the scheduler with a finish time FTn; other-
wise, proceed to the next step.

4) Check all the successors of the node just scheduled to
see if all the precedence constraints of any of them
have been met, i.e., all their predecessors have been
scheduled. Any successor nodes that meet this crite-
rion are placed on the Ready queue with their Earliest
Start Time computed.

5) Repeat starting at Step 2.

Note that picking the node with lowest Earliest Start
Time in Step 2 of the algorithm creates a priority among
nodes, hence the name for the algorithm. The scheduler
described above is a variant of the popular list scheduling
algorithm that has been used by numerous researchers
including Liu [41], Garey et al. [42], and Wang and
Cheng [43]. Some of these researchers have also used
variants of the basic list scheduling algorithm. When the

maximum number of processors used by any node of the
MDG is bounded, we can show that the PSA produces a
schedule that finishes within a factor of the optimum
(Theorem 1).

The complexity of the CPAA step has been shown to be
O(n2.5) [38] and the complexity of the PSA is O(np log p).
The p log p term arises in Step 2 of the PSA, where the proc-
essor finish times have to be sorted to determine a suitable
set of processors for the next task. Therefore, the complexity
of the TSAS algorithm is O(n2.5 + np log p).

In the next section, we provide a theoretical analysis of the
TSAS algorithm. We bound the solution produced by the
TSAS in terms of F. As mentioned before, F represents a theo-
retical lower bound on the finish time obtainable for an MDG.

4.4 Theoretical Analysis of TSAS
While developing the Convex Programming Allocation
Algorithm (CPAA) discussed in the previous section, we
used a continuous domain formulation and ignored the
scheduling problem. As stated before, this formulation pro-
vides us not only with a starting point for obtaining a solu-
tion to the allocation and scheduling problem, but also pro-
vides us with a quantity F, which represents a theoretical
lower bound on the finish time that can be obtained for a
given MDG. In this section, we provide some theoretical
results that quantify the deviation of the solution obtained
using our Two Step Allocation and Scheduling (TSAS) Al-
gorithm with respect to F. The bound on this deviation is
derived in three phases:

• Theorem 1 examines the possible deviation of the solu-
tion produced by our Prioritized Scheduling Algorithm
(PSA) with respect to the solution produced by an op-
timal scheduling algorithm. This deviation is depend-
ent on the maximum number of processors (PB) used
by any node in the MDG; the lower the value of PB, the
smaller the deviation. The intuitive reason for this is
that the maximum idle time possible in a schedule built
by the PSA is dependent on the value of PB.

 (a) (b)

Fig. 11. Processor system bin visualization of program execution: (a) dominating critical path, (b) dominating average area.

1110 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

• Theorem 2 examines the effect of rounding-off (Step 2
of CPAA) and bounding (Step 3 of CPAA) on the
value of F. Rounding-off and bounding modify the
values of the pis computed in Step 1 of the CPAA; this
may result in a change in the values of the critical
path and average area for the MDG and, thus, a
change in the value of F. The lower the value of the
bound PB, the larger the change in F.

• Theorem 3 summarizes the effects discussed in Theo-
rems 1 and 2 to quantify the possible deviation of the
allocation and scheduling solution produced by the
TSAS with respect to F, which represents a theoretical
lower bound on the finish time. This deviation can be
seen to be dependent on PB; Corollary 1 selects a
value for PB that minimizes it.

THEOREM 1. Assume we are given an MDG with n nodes and a
processor allocation such that no node uses more than PB
processors. Let Tpsa denote the value of the finish time ob-
tained by scheduling this MDG on a given p processor sys-
tem using the PSA algorithm and Topt

PB denote the value ob-

tained using the best possible scheduler. The relationship
between these two quantities is given by

T
P

p PB Tpsa opt
PB£ + - +

F
HG

I
KJ ◊1 1 . (10)

PROOF. Omitted due to lack of space. For details please refer
to [44], [5]. �

THEOREM 2. In Steps 2 and 3 of the CPAA, we modify the proc-
essor allocation produced by Step 1 of the CPAA. If Topt

PB

denotes the value of the finish time obtained for the given
MDG on a p processor system with this modified allocation
using an optimal scheduling algorithm, the relationship be-

tween Topt
PB and F is given by

T
P

PBopt
PB £

◊F
HG

I
KJ ◊

2
F , (11)

where F is the solution obtained in Step 1 of the CPAA
and represents a theoretical lower bound on the finish time
obtainable for the given MDG.

PROOF. Omitted due to lack of space. For details please refer
to [44], [5]. �

THEOREM 3. Let TTSAS denote the value of the finish time obtained
for allocation and scheduling using the TSAS algorithm
(Section 4.3). The deviation of TTSAS from F is given by

T
P

P PB
P

PBTSAS £ + - +
F
HG

I
KJ ◊

◊F
HG

I
KJ1 1

2
F , (12)

where F represents a theoretical lower bound on the finish
time obtainable for the given MDG and is computed in
Step 1 of the CPAA.

PROOF. Omitted due to lack of space. For details please refer
to [44], [5]. �

COROLLARY 1. The optimum value of PB to use for the TSAS
algorithm given P processors is:

PB P= + ◊1 0.58579 . (13)

Further, using this value of PB gives us the following
worst case deviation for TTSAS w.r.t. F:

TTSAS £ ◊11 66. F . (14)

PROOF. From Theorem 3, we see that the optimum value for
PB is one that minimizes the following expression:

minimize 1 1
2

+ - +
F
HG

I
KJ ◊

◊F
HG

I
KJ

P
P PB

P
PB (15)

subject to PB P1 £ £ . (16)

This minimization problem can easily be solved
analytically for PB and gives us the value shown in
(13). Using this value for PB in the bound expression
shown in (15), we obtain:

TTSAS
P

£
+

◊
6 8284

01

.
.58579

F . (17)

Since P ≥ 0, we obtain:

T TTSAS TSAS£ ◊ fi £ ◊
6 8284

0 11 66
.

.58579 .F F , (18)

which is the required result. �

4.5 Hierarchical MDGs
The Two Step Allocation and Scheduling (TSAS) algo-
rithm described in Section 4.3 forms the basis of our hier-
archical allocation and scheduling algorithm. Basically,
we use the TSAS algorithm to allocate and schedule at
each level in a hierarchical MDG. Fig. 12 shows the Hier-
archical Two Step Allocation and Scheduling (HTSAS)
algorithm. The HTSAS algorithm first uses the TSAS algo-
rithm to allocate and schedule at the current level. Then, it
checks for the presence of L, C, and U nodes at the current
level. Depending on the type of node, the following ac-
tions are taken:

L nodes: If the loop is a WHILE loop, we simply use the
HTSAS algorithm to allocate and schedule the MDG
corresponding to the loop body. However, if the loop is
a FOR loop, we use the algorithm shown in Fig. 13 to
allocate and schedule the loop body. This algorithm
uses unrolling to try to increase available task parallel-
ism to improve the performance. Fig. 14 shows an ex-
ample of a loop, the MDG corresponding to the body of
the loop, and the effect of unrolling the loop once. As
we can see, the MDG corresponding to the unrolled
loop has more task parallelism; this can lead to poten-
tial performance gains. However, unrolling can also
lead to code expansion, which is why we use the pa-
rameters MAXFACTOR and IMPFACTOR in Fig. 13 to limit
the amount of unrolling. Currently, we use a value of 4
for MAXFACTOR and 0.95 for IMPFACTOR, which means
we limit unrolling to a maximum of four times and in-
crease the amount of unrolling only if the finish time is
reduced to 95 percent of its original value.

C nodes: For conditional nodes, allocation and scheduling is
done using the HTSAS algorithm on the MDGs corre-
sponding to the bodies of the IF and ELSE parts.

RAMASWAMY ET AL.: A FRAMEWORK FOR EXPLOITING TASK AND DATA PARALLELISM ON DISTRIBUTED MEMORY MULTICOMPUTERS 1111

U nodes: In the case of user-defined nodes, we use the
HTSAS algorithm for allocating and scheduling the
MDG corresponding to the body of the user-defined
function.

As can be seen, allocation and scheduling at lower levels
is done using the allocation already computed at a preced-
ing higher level.

4.6 Summary
In this section, we considered the problem of allocation and
scheduling given the MDG representation for an applica-
tion. Allocation and scheduling exploit available task and
data parallelism in an application and decide on a suitable
execution scheme. We first considered allocation and
scheduling for simple MDGs in Section 4.2 and later used
these algorithms to construct allocation and scheduling
algorithms for hierarchical MDGs in Section 4.5.

Once we have decided on a suitable execution scheme
for an application, in order to implement it, we have to
generate MPMD code and provide run-time support for
data redistribution.

5 IMPLEMENTATION AND RESULTS

5.1 Introduction
In this section, we discuss experimental evidence that dem-
onstrates the effectiveness of our proposed optimization—
the simultaneous exploitation of task and data parallelism.
In the next section, we briefly describe each of the bench-
mark applications used for our experiments. Later, we pre-
sent speedup measurements obtained for our benchmark
applications on the Thinking Machines CM-5 and Intel
Paragon.

5.2 Benchmarks
We have used a set of five benchmark applications for our
experiments. The applications are:

1) CMMUL: This is the simplest of our applications and
corresponds to the multiplication of a pair of complex
matrices. The MDG for this application is a simple
MDG.

2) STRASSEN: This application corresponds to the multi-
plication of a pair of matrices using the Strassen’s
Matrix Multiplication algorithm [45]. The MDG for
this application is a simple MDG.

3) CFD: This benchmark corresponds to the core of a
Fourier-Chebyshev spectral computational fluid dy-
namics algorithm [46]. The MDG for this application
is a simple MDG.

4) POLY: This benchmark corresponds to the multiplica-
tion of a sequence of polynomials using fast Fourier
transforms [23]. The MDG for this application is hier-
archical and contains an L node.

5) BICG: This application corresponds to the Biconjugate
Gradient iterative method for solving systems of lin-
ear equations [47]. The MDG for this application is hi-
erarchical and contains four C nodes and an L node.

5.3 Experiments
To evaluate the benefits of our proposed optimization of
exploiting task and data parallelism, we compare the
speedups obtained for our benchmarks using the optimiza-
tion with speedups obtained using data parallelism alone.
Fig. 15 shows speedup data obtained for the Thinking Ma-
chines CM-5. Fig. 16 shows speedup data obtained for the
Intel Paragon. Speedups obtained using a task and data
parallel scheme of execution are denoted by MPMD, and
those obtained using a pure data parallel scheme of execu-
tion are denoted by SPMD. We used 32, 64, and 128 proces-
sors for our speedup measurements on the CM-5. On the
other hand, we used 8, 16, and 32 processors for our meas-
urements on the Paragon.

From the speedup data, we can make the following ob-
servations:

1) Simultaneous exploitation of task and data parallel-
ism provides increased speedups as compared to
pure data parallelism in almost all cases. For some

HTSAS

1 TSAS

3

4
5
6

7 HTSAS

8 HTSAS

9

10 HTSAS

11 HTSAS

12

13 HTSAS

14

MDG NumProcs

FinishTime MDG NumProcs MDGNodeList nodes MDG

elsemdg MDGNode allocation MDGNode

MDGNodeList next MDGNodeList

FinishTime

,

, []

[], []

[]

a f
a f

c
g

c
g

c h
c h

c h

¨ ¨
π
¨

¨

2

15
16

while

do

switch
case

if

then

else

case

case

return

MDGNodeList

MDGNode node[MDGNodeList]

loopmdg[MDGNode],

allocation[MDGNode]

loopmdg[MDGNode],

allocation[MDGNode]

ifmdg[MDGNode], allocation[MDGNode]

mdg[MDGNode], allocation[MDGNode]

NIL

type[MDGNode] = LoopNode:
looptype[MDGNode] = While

ForLoop

type[MDGNode] = Conditional Node:

type[MDGNode] = UserDefNode:

Fig. 12. Allocation and scheduling for hierarchical MDGs.

HTSASForLoop

1 TSAS

5

6

7 UnrollMDG

TSAS

MDG NumProcs

OldFinishTime

UnrollFactor

UnrollFactor MaxFactor and FinishTime

OldFinishTime

FinishTime MDG UnrollFactor

Parent parent MDG

loopmdg Parent TempMDG

unrollfactor Parent UnrollFactor

OldFinishTime

,

/

[]
[]

[]

a f
a f

b g b
g

b g
a f

FinishTime MDG

ImpFactor

OldFinishTime FinishTime

UnrollFactor UnrollFactor + 1

TempMDG MDG, UnrollFactor

¨
¨ •

¨
< £

¥
¨

¨
¨

¨
¨

¨
¨ -

2

3 0

4

8

9
10

11 1

12

while

do

return

Fig. 13. Allocation and scheduling for loop (L) nodes.

1112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

benchmarks, MPMD does slightly worse than SPMD for
small system sizes but does much better for larger
system sizes—there is a crossover point. The reason
for this crossover in some benchmarks is that the
benefits obtained from executing tasks efficiently are
outweighed by the cost of redistributing data between
tasks.

2) For many benchmarks, pure data parallelism actually
produces lower speedups on larger system sizes. This
makes the exploitation of task and data parallelism
very critical.

3) We use smaller system sizes on the Paragon as com-
pared to the CM-5. Yet, we obtain significant speedup
improvements on the Paragon when using task and
data parallelism. The reason for this is the low com-
putation to communication ratio on the Paragon,
which results in data parallelism becoming rapidly
inefficient, and, in turn, leads to our optimization
providing performance benefits at smaller system
sizes, as compared to the CM-5, where the computa-
tion to communication ratio is larger. Low computa-
tion to communication ratio is becoming a trend in
newer distributed memory machines as processor
speeds are growing faster than network speeds. This
means that our optimization will provide significant
performance benefits even for moderate data sizes
and small system sizes.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new compiler optimiza-
tion for distributed memory machines—the simultaneous

exploitation of task and data parallelism. Our optimization
uses the small degree of task parallelism present in many
scientific applications to control the degree of data paral-
lelism used for individual tasks. We have implemented the
optimization as part of an extended HPF compiler. As evi-
denced by our experimental results, the optimization can
potentially provide significant performance gains for regu-
lar scientific applications.

In order to represent available task and data parallelism
for an application, we use the Macro Dataflow Graph
(MDG) representation. The MDG structure is hierarchical
and supports complex program constructs such as loops
and conditionals. We have developed algorithms to extract
the MDG structure automatically from extended HPF ap-
plications. In addition, we have developed detailed cost
models for nodes and edges in the MDG and proved some
mathematical properties for these cost functions. These
properties are exploited by our allocation and scheduling
algorithm.

Given an MDG representation for an application, we used
an allocation and scheduling approach to decide on a suitable
task and data parallel execution scheme. Allocation decides
on the number of processors to use for each data parallel task
in the given application and scheduling decides on an order
of execution for the tasks. The allocation and scheduling
problem is NP-complete in the discrete domain. The key idea
behind our approximate allocation and scheduling algorithm
is to solve the problem optimally in polynomial time using a
continuous domain formulation, and then round off this so-
lution for the discrete domain. This provides us with near
optimal results in practice.

for i=1:100

 read(ar);

 read(ai);

 fft(ar,ai);

 br=ar�;

 bi=ai�;

 fft(br,bi);

end

Fig. 14. Example illustrating unrolling for loops.

RAMASWAMY ET AL.: A FRAMEWORK FOR EXPLOITING TASK AND DATA PARALLELISM ON DISTRIBUTED MEMORY MULTICOMPUTERS 1113

An interesting issue we would like to consider in the
future is the use of run-time schemes to augment our static
allocation and scheduling for large iterative applications.
Our allocation and scheduling algorithm relies heavily on
cost estimates; a run-time scheme could monitor the actual
performance and fine tune the allocation and scheduling to
compensate for any estimation errors. Another important
future direction is the investigation of techniques for ex-
ploiting task and data parallelism in irregular scientific ap-

plications [48]. These applications may require dynamic
run-time allocation and scheduling techniques in contrast
to the static techniques used in this paper.

ACKNOWLEDGMENTS

This research was supported in part by an IBM Graduate
Fellowship and in part by the National Aeronautics and
Space Administration under contract NASA NAG 1-613.

 CMMUL STRASSEN

 CFD POLY

 BICG

Fig. 15. Speedup measurements for benchmark applications on the CM-5.

1114 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

REFERENCES

[1] High Performance Fortran Forum, “High Performance Fortran
Language Specification, version 1.1,” technical report, Center for
Research on Parallel Computation, Rice Univ., Houston, Texas,
Nov. 1994.

[2] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., and M. Zosel,
The High Performance Fortran Handbook. Cambridge, Mass.: MIT
Press, 1994.

[3] P. Banerjee, J.A. Chandy, M. Gupta, E.W. Hodges IV, J.G. Holm,
A. Lain, D.J. Palermo, S. Ramaswamy, and E. Su, “The PARA-

DIGM Compiler for Distributed-Memory Multicomputers,” Com-
puter, vol. 28, no. 10, pp. 37–47, Oct. 1995.

[4] S. Ramaswamy and P. Banerjee, “Automatic Generation of Effi-
cient Array Redistribution Routines for Distributed Memory
Multicomputers,” Proc. Frontiers ‘95: The Fifth Symposium on the
Frontiers of Massively Parallel Computation, pp. 342–349, McLean,
Va., Feb. 1995.

[5] S. Ramaswamy, “Simultaneous Exploitation of Task and Data
Parallelism in Regular Scientific Applications,” PhD thesis CRHC-
96-03/UILU-ENG-96-2203, Dept. of Electrical and Computer Eng.,
Univ. of Illinois, Urbana, Jan. 1996.

 CMMUL STRASSEN

 CFD POLY

 BICG

Fig. 16. Speedup measurements for benchmark applications on the Paragon.

RAMASWAMY ET AL.: A FRAMEWORK FOR EXPLOITING TASK AND DATA PARALLELISM ON DISTRIBUTED MEMORY MULTICOMPUTERS 1115

[6] I. Foster, B. Avalani, A. Choudhary, and M. Xu, “A Compilation
System That Integrates High Performance Fortran and Fortran
M,” Proc. Scalable High Performance Computing Conf., pp. 293–300,
Knoxville, Tenn., May 1994.

[7] T. Gross, D. O’Halloran, and J. Subhlok, “Task Parallelism in a
High Performance Fortran Framework,” IEEE Parallel and Distrib-
uted Technology, vol. 2, no. 3, pp. 16–26, Fall 1994.

[8] S. Hiranandani, K. Kennedy, and C. Tseng, “Compiling Fortran D
for MIMD Distributed Memory Machines,” Comm. ACM, vol. 35,
no. 8, pp. 66–80, Aug. 1992.

[9] S.P. Amarasinghe, J.M. Anderson, M.S. Lam, and A.W. Lim, “An
Overview of a Compiler for Scalable Parallel Machines,” Proc.
Sixth Workshop Languages and Compilers for Parallel Computing, pp.
253–272, Portland, Ore., Aug. 1993.

[10] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K.Y.
Wang, W.-M. Ching, and T. Ngo, “An HPF Compiler for the IBM
SP2,” Proc. Supercomputing, San Diego, Calif., Dec. 1995.

[11] Digital High Performance Fortran 90 HPF and PSE Manual. May-
nard, Mass.: Digital Equipment Corp., 1995.

[12] PGHPF User’s Guide. Wilsonville, Ore.: Portland Group Inc., 1995.
[13] XHPF User’s Guide, Version 2.0. Placerville, Calif.: Applied Parallel

Research, 1995.
[14] B. Chapman, P. Mehrotra, and H. Zima, “Programming in Vienna

Fortran,” Scientific Programming, vol. 1, no. 1, pp. 31–50, Aug.
1992.

[15] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M.-Y.
Wu, “Compiling Fortran 90D/HPF for Distributed Memory
MIMD Computers,” J. Parallel and Distributed Computing, vol. 21,
no. 1, pp. 15–26, Apr. 1994.

[16] J. Subhlok, J. Stichnoth, D. O’Halloran, and T. Gross, “Exploiting
Task and Data Parallelism on a Multicomputer,” Proc. Fourth
ACM SIGPLAN Symposium Principles and Practice of Parallel Pro-
gramming, pp. 13–22, San Diego, Calif., May 1993.

[17] P. Dinda, T. Gross, D. O’Halloran, E. Segall, J. Stichnoth, J. Sub-
hlok, J. Webb, and B. Yang, “The CMU Task Parallel Program
Suite,” Technical Report CMU-CS-94-131, School of Computer
Science, Carnegie Mellon Univ., Pittsburgh, Pa., Mar. 1994.

[18] I. Foster and K.M. Chandy, “Fortran M: A Language for Modular
Parallel Programming,” J. Parallel and Distributed Computing, vol. 26,
no. 1, pp. 24–35, Apr. 1995.

[19] C.D. Polychronopoulos, M. Girkar, M.R. Haghighat, C.L. Lee, B.
Leung, and D. Schouten, “Parafrase-2: An Environment for Paral-
lelizing, Partitioning, Synchronizing and Scheduling Programs on
Multiprocessors,” Proc. 18th Int’l Conf. Parallel Processing, pp. 39–48,
St. Charles, Ill., Aug. 1989.

[20] M. Girkar and C.D. Polychronopoulos, “Automatic Extraction of
Functional Parallelism from Ordinary Programs,” IEEE Trans. Par-
allel and Distributed Systems, vol. 3, no. 2, pp. 166–178, Mar. 1992.

[21] M. Girkar, “Functional Parallelism: Theoretical Foundations and
Implementations,” PhD thesis CSRD-1182, Center for Supercomput-
ing Research and Development, Univ. of Illinois, Urbana, Dec. 1991.

[22] J.E. Moreira, “On the Implementation and Effectiveness of
Autoscheduling for Shared-Memory Multiprocessors,” PhD the-
sis, Center for Supercomputing Research and Development, Univ.
of Illinois, Urbana, Jan. 1995.

[23] M. Dhagat, R. Bagrodia, and M. Chandy, “Integrating Task and
Data Parallelism in UC,” Proc. Int’l Conf. Parallel Processing, pp. 29–
36, Oconomowoc, Wis., Aug. 1995.

[24] J.K. Lenstra and A.H.G.R. Kan, “Complexity of Scheduling under
Precedence Constraints,” Operations Research, vol. 26, no. 1, pp. 22–
35, Jan. 1978.

[25] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco, Calif.:
W.H. Freeman, 1979.

[26] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multi-
processors. Cambridge, Mass.: MIT Press, 1989.

[27] T. Yang and A. Gerasoulis, “A Fast Static Scheduling Algorithm
for DAGs on an Unbounded Number of Processors,” Proc. Super-
computing, pp. 633–642, Albuquerque, N.M., Nov. 1991.

[28] T. Yang and A. Gerasoulis, “A Parallel Programming Tool for
Scheduling on Distributed Memory Multiprocessors,” Proc.
Scalable High Performance Computing Conference, pp. 350–357,
Williamsburg, Va., Apr. 1992.

[29] G.N.S. Prasanna and A. Agarwal, “Compile-Time Techniques for
Processor Allocation in Macro Dataflow Graphs for Multiproces-
sors,” Proc. Int’l Conf. Parallel Processing, pp. 279–283, St. Charles,
Ill., Aug. 1992.

[30] G.N.S. Prasanna, A. Agarwal, and B.R. Musicus, “Hierarchical
Compilation of Macro Dataflow Graphs for Multiprocessors with
Local Memory,” IEEE Trans. Parallel and Distributed Systems, vol.
5, no. 7, pp. 720–736, July 1994.

[31] K.P. Belkhale and P. Banerjee, “Approximate Algorithms for the
Partitionable Independent Task Scheduling Problem,” Proc. 19th
Int’l Conf. Parallel Processing, pp. 72–75, St. Charles, Ill., Aug. 1990.

[32] K.P. Belkhale and P. Banerjee, “A Scheduling Algorithm for Par-
allelizable Dependent Tasks,” Proc. Int’l Parallel Processing Symp.,
pp. 500–506, Anaheim, Calif., Apr. 1991.

[33] J. Subhlok, D. O’Halloran, T. Gross, P. Dinda, and J. Webb,
“Communication and Memory Requirements as the Basis for
Mapping Task and Data Parallel Programs,” Proc. Supercomputing
‘94, pp. 330–339, Washington D.C., Nov. 1994.

[34] J. Subhlok and G. Vondran, “Optimal Mapping of Sequences of
Data Parallel Tasks,” Proc. Fifth ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming, pp. 134–143, Santa Barbara,
Calif., July 1995.

[35] C.D. Polychronopoulos, M. Girkar, M.R. Haghighat, C.L. Lee, B.
Leung, and D. Schouten, “Parafrase-2 Manual,” technical report,
Center for Supercomputing Research and Development, Univ. of
Illinois, Urbana, Aug. 1990.

[36] E.W. Hodges IV, “High Performance Fortran Support for the
PARADIGM Compiler,” MS thesis CRHC-95-23/UILU-ENG-95-
2237, Dept. of Electrical and Computer Eng., Univ. of Illinois,
Urbana, Oct. 1995.

[37] J.G. Ecker, “Geometric Programming: Methods, Computations
and Applications,” SIAM Rev., vol. 22, no. 3, pp. 338–362, July
1980.

[38] P.M. Vaidya, “A New Algorithm for Minimizing Convex Func-
tions Over Convex Sets,” Proc. Symp. Foundations of Computer Sci-
ence, pp. 332–337, Research Triangle Park, N.C., Oct. 1989.

[39] M. Gupta, “Automatic Data Partitioning on Distributed Memory
Multicomputers,” PhD thesis CRHC-92-19/UILU-ENG-92-2237,
Dept. of Computer Science, Univ. of Illinois, Urbana, Sept. 1992.

[40] M. Gupta and P. Banerjee, “Compile-Time Estimation of Com-
munication Costs on Multicomputers,” Proc. Sixth Int’l Parallel
Processing Symp., pp. 470–475, Beverly Hills, Calif., Mar. 1992.

[41] C.L. Liu, Elements of Discrete Mathematics. New York: McGraw-
Hill, 1985.

[42] M.R. Garey, R.L. Graham, and D.S. Johnson, “Performance Guar-
antees for Scheduling Algorithms,” Operations Research, vol. 26,
no. 1, pp. 3–21, Jan. 1978.

[43] Q. Wang and K.H. Cheng, “A Heuristic for Scheduling Parallel
Tasks and Its Analysis,” SIAM J. Computing, vol. 21, no. 2, pp. 281–
294, Apr. 1992.

[44] S. Ramaswamy, S. Sapatnekar, and P. Banerjee, “A Convex Pro-
gramming Approach for Exploiting Data and Functional Paral-
lelism on Distributed Memory Multicomputers,” Proc. 23rd Int’l
Conf. Parallel Processing, vol. II, pp. 116–125, St. Charles, Ill., Aug.
1994.

[45] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computing. Cambridge,
England: Cambridge Univ. Press, 1988.

[46] S.L. Lyons, T.J. Hanratty, and J.B. McLaughlin, “Large-Scale
Computer Simulation of Fully Developed Channel Flow with
Heat Transfer,” Int’l J. Numerical Methods for Fluids, vol. 13, no. 8,
pp. 999–1,028, Nov. 1991.

[47] R. Barett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V.
Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM, 1994.

[48] A. Lain, “Compiler and Run-Time Support for Irregular Compu-
tations,” PhD thesis CRHC-92-22, Dept. of Computer Science,
Univ. of Illinois, Urbana, Oct. 1995.

1116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

Shankar Ramaswamy received the BSc degree
in electronics from Delhi University, New Delhi,
India, in July 1987, the ME degree in electrical
engineering from the Indian Institute of Science,
Bangalore, India, in July 1991, and the PhD
degree in electrical engineering from the Univer-
sity of Illinois at Urbana-Champaign in May
1996.

Dr. Ramaswamy is currently a member of the
technical staff at Transarc Corp., Pittsburgh,
Pennsylvania.

Dr. Ramaswamy’s research interests are in the area of systems
software for Distributed and Parallel computer systems. He was the
receipient of an IBM Graduate fellowship award while at the University
of Illinois, the Alfred Hay gold medal from the Indian Institute of Sci-
ence, and the Smt. Prakashwati Memorial Award from Delhi University.

Sachin Sapatnekar received the BTech degree
from the Indian Institute of Technology, Bombay,
in 1987, the MS degree from Syracuse Univer-
sity in 1989, and the PhD degree from the Uni-
versity of Illinois at Urbana-Champaign in 1992.

Dr. Sapatnekar is currently an associate
professor in the Department of Electrical Engi-
neering at the University of Minnesota. From
1992 to 1997, he was an assistant professor in
the Department of Electrical and Computer En-
gineering at Iowa State University. He also

worked at Texas Instruments Inc., Dallas, Texas, in 1990, and at Intel
Corporation, Santa Clara, California, in 1997.

Dr. Sapatnekar’s research interests lie in developing efficient tech-
niques for computer-aided design of integrated circuits and are primar-
ily centered around physical design, power, timing and simulation is-
sues, and optimization algorithms. He has authored several papers in
this area, as well as a book entitled Design Automation for Timing-
Driven Layout Synthesis, published by Kluwer Academic Publishers,
Boston, Massachusetts. Dr. Sapatnekar served as an associate editor
for IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, and served on program committees for several
conferences.

Dr. Sapatnekar is a recipient of the National Science Foundation
Career Award and a Best Paper award at the 1997 Design Automation
Conference.

Prithviraj Banerjee received the BTech degree
in electronics and electrical engineering from the
Indian Institute of Technology, Kharagpur, India,
in August 1981, and the MS and PhD degrees in
electrical engineering from the University of Illi-
nois at Urbana-Champaign in 1982 and 1984,
respectively.

Dr. Banerjee is currently the Walter P. Mur-
phy chaired professor of Electrical and Computer
Engineering and director of the Center for Par-
allel and Distributed Computing at Northwestern

University in Evanston, Illinois. Prior to that, he was the director of the
Computational Science and Engineering Program, and a professor in
the Electrical and Computer Engineering Department and the Coordi-
nated Science Laboratory at the University of Illinois at Urbana-
Champaign.

Dr. Banerjee’s research interests are in parallel algorithms for VLSI
design automation, distributed memory parallel compilers, and parallel
architectures with an emphasis on fault tolerance. He is the author of
more than 180 papers in these areas. He leads the PARADIGM com-
piler project for compiling programs for distributed memory multicom-
puters, and ProperCAD project for portable parallel VLSI CAD applica-
tions. He is also the author of a book entitled Parallel Algorithms for
VLSI CAD published by Prentice Hall, in 1994. He has supervised 22
PhD and 25 MS student theses thus far.

Dr. Banerjee has received numerous awards and honors during his
career. He is the recipient of the 1996 Frederick Emmons Terman
Award of ASEE’s Electrical Engineering Division sponsored by Hewl-
ett-Packard. He was elected a fellow of the IEEE in 1995. He received
the University Scholar award from the University of Illinois for in 1993,
the Senior Xerox Research Award in 1992, IEEE senior membership in
1990, the National Science Foundation’s Presidential Young Investi-
gators’ Award in 1987, the IBM Young Faculty Development Award in
1986, and the President of India Gold Medal from the Indian Institute of
Technology, Kharagpur, in 1981.

Dr. Banerjee served as the program chair of the International Con-
ference on Parallel Processing for 1995. He served on the program
and organizing committees of the 1988, 1989, 1993, and 1996 Fault
Tolerant Computing Symposia, the 1992, 1994, 1995, 1996, and 1997
International Parallel Processing Symposia, the 1991, 1992, and 1994
International Symposia on Computer Architecture, the 1990, 1993,
1994, 1995, 1996, and 1997 International Symposia on VLSI Design,
the 1994, 1995 and 1996 International Conference on Parallel Proc-
essing, and the 1995 and 1996 International Conference on High-
Performance Computing. He also served as general chairman of the
International Workshop on Hardware Fault Tolerance in Multiproces-
sors, 1989. He is an associate editor of the Journal of Parallel and
Distributed Computing and IEEE Transactions on Computers. In the
past, he has served as editor of the IEEE Transactions of VLSI Sys-
tems, and the Journal of Circuits, Systems, and Computers.

