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o Introduction (15mn)

@ Large-scale computing platforms
@ Faults and failures

e General-purpose fault-tolerance techniques (30mn)
@ Replication
@ Process Checkpointing
@ Coordinated Checkpointing
@ Uncoordinated checkpointing

Probabilistic models for checkpointing (45mn)
@ Young/Daly's approximation

@ Coordinated checkpointing

@ Hierarchical checkpointing

Application-specific fault-tolerance techniques (45mn)
@ Fault-Tolerant Middleware

@ Bags of tasks

@ Iterative algorithms and fixed-point convergence

@ ABFT for Linear Algebra applications

@ Composite approach: ABFT & Checkpointing

e Other techniques (35mn)
@ Replication
@ Failure Prediction
@ In-memory checkpointing
@ Silent errors

e Conclusion (10mn)
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Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW

Syste 2011 Difference
K computer Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s 0(100)
Power 12.7 MW ~20 MW

System memory 1.6 PB 32-64PB O(10)
Node performance 128 GF 1,2 or 15TF O(10) - O(100)
Node memory BW 64 GB/s 2-4TB/s O(100)
Node concurrency 8 O(1k) or 10k O(100) — O(1000)
Total Node Interconnect BW 20 GB/s 200-400GB/s 0o(10)
System size (nodes) 88,124 O(100,000) or O(1M) O(10) - O(100)
Total concurrency 705,024 Olbillion) O(1,000)
MTTI days o(1 day) -0(10)
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Exascale platforms (courtesy C. Engelmann & S. Scott)

Toward Exascale Computing (My Roadmap)

Based on proposed DOE roadmap with MTTI adjusted to scale linearly

Systems 2009 2011 2015 2018
System peak 2 Peta 20 Peta 100-200 Peta 1 Exa
System memory 0.3PB 1.6 PB 5PB 10 PB
Node performance 125 GF 200GF 200-400 GF 1-10TF
Node memory BW 25 GB/s 40 GB/s 100 GB/s 200-400 GB/s
Node concurrency 12 32 0(100) 0O(1000)
Interconnect BW 1.5 GB/s 22 GB/s 25 GB/s 50 GB/s

I System size (nodes) 18,700 100,000 500,000 O(million) ]
Total concurrency 225,000 3,200,000 0O(50,000,000) O(billion)
Storage 15PB 30PB 150 PB 300 PB
10 0.2 TB/s 2TB/s 10 TB/s 20 TB/s

[mTTI 4days  19h4min 3h52min 1h56min |
Power 6 MW ~10MW ~10 MW ~20 MW
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Exascale platforms

@ Hierarchical
e 10° or 109 nodes
e Each node equipped with 10* or 103 cores

o Failure-prone

MTBF — one node | 1 year | 10 years | 120 years
MTBF — platform 30sec 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)
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Exascale platforms

@ Hierarchi™®
e 10° or 10% nod®

Exascale
+#+ Petascale x1000
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Even for today’s platforms (courtesy F. Cappello)

hlf:;ﬁ:&:ﬂMwAfso.an issue at Petasc BRI )

Fault tolerance becomes critical at Petascale (MTTI <= 1day)
Poor fault tolerance design may lead to huge overhead

Qverhead of checkpoint/restart
_|Cost of non optimal checkpoint intervals: EOO%
Ir ]
Today, 20% or more of the computing capacity in a large high-performance
computing system is wasted due to failures and recoveries.
Dr. E.N. (Mootaz) Elnozahyet al. System Resilience at Extreme Scale,

DARPA
X e
/ 30min ckpt w0 |I0%
20% " {min ckpt 0%
in ck|
o S5min ckpt 0%
%
Checkpoint
o 0% Interval (min)
1d 1 10 100 1000 10000
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Even for today’s platforms (courtesy F. Cappello)

Typical “Balanced Architecture” for PetaScale Computers

Compute nodes

40 to 200 GB/s
Parallel file system

Total memory: (1to 2 PB)

100-200 TB

. 1/0 nodes
T R —

Without optimization, Checkpoint-Restart needs
___about 1h! (~30 minutes each) i

Systems Perf. Ckpt time Source b‘q‘
RoadRunner 1PF ~20 min. Panasas
LLNL BG/L 500 TF >20 min. LLNL
LLNL Zeus 11TF 26 min. LLNL
YYY BG/P 100 TF ~30 min. YYY
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Scenario for 2015

Phase-Change memory
- read bandwidth 100GB/sec
- write bandwidth 10GB/sec

Checkpoint size 128GB

C: checkpoint save time: C = 12sec

R: checkpoint recovery time: R = 1.2sec

D: down/reboot time: D = 15sec

p: total number of (multicore) nodes: p = 28 to p = 220
MTBF p = 1 week, 1 month, 1/10/100|1000 years (per node)

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC



Introduction (15mn)
ooe

Distribution of parallel jobs

Number of processors required by typical jobs: two-stage
log-uniform distribution biased to powers of two (says Dr.
Feitelson)

o Let p = 27 for simplicity
@ Probability that a job is sequential: a9 = p1 =~ 0.25

o Otherwise, the job is parallel, and uses 2/ processors with
identical probability
o Steady-state utilization of whole platform:

- all processors always active
- constant proportion of jobs using any number of processors
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Platform throughput with optimal checkpointing period

[ p | Throughput | [ p [ Throughput | [ p [ Throughput |
~ | 28 91.56% < |2 96.04% |28 98.89%
g | 2" | 73.75% § |2 | 88.23% g |2 | 96.80%
22| 2007% Bl 6228% | 2| 90.59%
27| 2s1% |27 | 10.66% Ll27 | 70.46%
2% 0.31% < | 2% 1.33% 2% 15.96%

[ p | Throughput | [ p [ Throughput ] [ p [ Throughput ]
o [ 28 99.65% PN 99.89% PN 99.97%
g | ou 99.00% g | 2t 99.69% N 99.90%
o | 2% 97.15% 8| 2# 99.11% S | 2# 99.72%
| 2v 01.63% |2 97.45% ﬁ 217 99.20%
= | 2% 74.01% x| 20 92.56% 220 97.73%
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@ Faults and failures
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Error sources (courtesy Franck Cappello)

« Analysis of error and failure logs

* In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

* In 2007 (Garth Gibson, ICPP Keynote): um::> HHHH ——
Software
80| EINetwork
[JEnvironmend
- I Human
g ol —‘ ” H || ‘ | BUnknown
& [
g 50%
* In 2008 (Oliner and J. Stearley, DSN Conf.): 8 "
Raw Filtered ¢
Type Count % Count % 20)
Hardware 1745865161 0R.04 1990 | 18.78
<__ Software 144,899 0.08 6,814 | 64, o8
Indeterminate 3350044 | 1.88 | 1,832 | 17.21 Pink Blue Red Green Black Al

Relative frequency of root

cause by system type.
Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.
Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered
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A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable
Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably
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Failure distributions: (1) Exponential

Sequential Machine

Failure Probability
°
&
T~

Exp(1/100) ——
0 200 400 600 800 1000
Time (years)

Exp(\): Exponential distribution law of parameter \:
o Pdf: f(t) = Ae dt for t >0
o Cdf: F(t)=1—e ¢

@ Mean = X

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC



Introduction (15mn)
0000

Failure distributions: (1) Exponential

Sequential Machine

Failure Probability
oo
oo
~

Exp(1/100) ——
0 200 400 600 800 1000
Time (years)

X random variable for Exp(\) failure inter-arrival times:
o P(X < t)=1- e dt (by definition)
e Memoryless property: P(X > t+s|X >s)=P(X > t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

@ Mean Time Between Failures (MTBF) p=E(X) =

>
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Failure distributions: (2) Weibull

Sequential Machine

Failure Probability
oo
oo
g

Exp(1/100) ——
0.1 Weibull(0.7, 1/100)
Weibull(0.5, 1/100) -
0 200 400 600 800 1000
Time (years)

Weibull(k, X): Weibull distribution law of shape parameter k and
scale parameter \:

o Pdf: f(t) = kA(tA)kLe=(ADdt for t > 0
o Cdf: F(t)=1— e (0"
@ Mean = %r(l + %)
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Failure distributions: (2) Weibull

Sequential Machine

Failure Probability

Exp(1/100) ——
Weibull(0.7, 1/100)
Weibull(0.5, 1/100) -
0 200 400 600 800 1000
Time (years)

X random variable for Weibull(k, \) failure inter-arrival times:

o If k < 1: failure rate decreases with time
"infant mortality”: defective items fail early

o If k =1: Weibull(1,\) = Exp()\) constant failure time
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Failure distributions: with several processors

@ Processor (or node): any entity subject to failures
= approach agnostic to granularity

o If the MTBF is p with one processor,
what is its value with p processors?
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Failure distributions: with several processors

@ Processor (or node): any entity subject to failures
= approach agnostic to granularity

o If the MTBF is p with one processor,
what is its value with p processors?

e Well, it depends @
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With rejuvenation

@ Rebooting all p processors after a failure

@ Platform failure distribution
= minimum of p IID processor distributions

e With p distributions Exp(\):
min (Exp(A1), Exp(A2)) = Exp(A1 + A2)

1 I
= — = = —
p=N e =

e With p distributions Weibull(k, \):

m|n (We/bu//(k \)) = Weibull(k, p*/* )

1 1 W
w=~-IF1+ =)= pp=—+
A k P pl/k
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Without rejuvenation (= real life)

@ Rebooting only faulty processor

o Platform failure distribution
= superposition of p IID processor distributions

Theorem: i, = H for arbitrary distributions
p
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MTBF with p processors (1/2)

Theorem: ), = % for arbitrary distributions

With one processor:
e n(F) = number of failures until time F is exceeded
e X; iid random variables for inter-arrival times, with E (X;) = u
o ST X < F <)X
e Wald's equation: (E(n(F)) —1)u < F <E(n(F))p

E(n(F)) _
F

: 1
° ||mF—>+oo m
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MTBF with p processors (2/2)

Theorem: ), = % for arbitrary distributions

With p processors:

n(F) = number of platform failures until time F is exceeded
ng(F) = number of those failures that strike processor q

ng(F)+ 1 = number of failures on processor g until time F is
exceeded (except for processor with last-failure)

Y; iid random variables for platform inter-arrival times, with

E(Y;) = Hp
iMe_ 400 n(;) = uip as above
lime 100 "(I,f) = ﬁ because n(F) = >°F_; nq(F)

Hence pp = £

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC



Introduction (15mn)
oooe

Values from the literature

MTBF of one processor: between 1 and 125 years
Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)
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Does it matter?

Parallel machine (106 nodes)

1 S AU P e e

0.9 b /o
0.8 | /
0.7 FF

0.6
0.5
0.4 f
0.3

02 Exp(1/100) ——
0.1 Weibull(0.7, 1/100) i
0 ‘ ngbuII(OTs, 1/190) .............

Oh 3h 6h 9h 12h 15h 18h 21h 24h
Time (hours)

.

Failure Probability
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9 General-purpose fault-tolerance techniques (30mn)

@ Replication

@ Process Checkpointing

@ Coordinated Checkpointing
@ Uncoordinated checkpointing
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General Purpose FT
Maintaining Redundant Information

@ General Purpose Fault Tolerance Techniques: work despite the
application behavior

@ Two adversaries: Failures & Application

@ Use automatically computed redundant information
e At given instants: checkpoints
e At any instant: replication
e Or anything in between: checkpoint + message logging
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9 General-purpose fault-tolerance techniques (30mn)
@ Replication
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Replication

State Update

P replica f x
P / \ P V
Passive Replication Active Replication

@ Each process is replicated on a resource that has small chance
to be hit by the same failure as its replica

P replica

Both process the
same messages

@ In case of failure, one of the replicas will continue working,
while the other recovers

@ Passive Replication / Active Replication
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Replication

State Update

P replica f A \

P / \ \
Update
Latency

Challenges

@ Passive replication: latency of state update

@ Active replication: ordering of decision — internal additional
communications
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Replication

Any replica can provide an answer
(load balance)

P replica /

Challenges

@ Passive replication: latency of state update

@ Active replication: ordering of decision — internal additional
communications
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9 General-purpose fault-tolerance techniques (30mn)

@ Process Checkpointing
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General Purpose FT

Process Checkpointing

Save the current state of the process
e FT Protocols save a possible state of the parallel application

User-level checkpointing

System-level checkpointing

Blocking call

e 6 o6 o

Asynchronous call
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User-level checkpointing

User code serializes the state of the process in a file. |

Usually small(er than system-level checkpointing)

Portability

Diversity of use

Hard to implement if preemptive checkpointing is needed

Loss of the functions call stack

e code full of jumps
o loss of internal library state
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System-level checkpointing

@ Different possible implementations: OS syscall; dynamic
library; compiler assisted

@ Create a serial file that can be loaded in a process image.
Usually on the same architecture, same OS, same software
environment.

@ Entirely transparent

@ Preemptive (often needed for library-level checkpointing)

@ Lack of portability

@ Large size of checkpoint (=~ memory footprint)
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Blocking / Asynchronous call

Blocking Checkpointing

Relatively intuitive: ~ checkpoint (filename)
Cost: no process activity during the whole checkpoint operation.
Can be linear in the size of memory and in the size of modified files

Asynchronous Checkpointing

System-level approach: make use of copy on write of fork syscall
User-level approach: critical sections, when needed
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Storage

Remote Reliable Storage

Intuitive. /O intensive. Disk usage.

Memory Hierarchy

@ local memory

@ local disk (SSD, HDD)
@ remote disk

e Scalable Checkpoint Restart Library
http://scalablecr.sourceforge.net

Checkpoint is valid when finished on reliable storage

Distributed Memory Storage

@ In-memory checkpointing

@ Disk-less checkpointing

N
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9 General-purpose fault-tolerance techniques (30mn)

@ Coordinated Checkpointing
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General Purpose FT
Coordinated checkpointing

Definition (Missing Message)
A message is missing if in the current configuration, the sender
sent, while the receiver did not receive it
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Coordinated checkpointing

Definition (Orphan Message)

A message is orphan if in the current configuration, the receiver
received it, while the sender did not send it
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General Purpose FT
Coordinated Checkpointing Idea

L

Create a consistent view of the application J

@ Messages belong to a checkpoint wave or another

@ All communication channels must be flushed (all2all)
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Blocking Coordinated Checkpointing

@ Silences the network during the checkpoint J
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Non—BIockinE Coordinated Checkpointing

=
s
]
\‘ ]
]
‘/_/,,

—» App. Message ----- + Marker Message

@ Communications received after the beginning of the

checkpoint and before its end are added to the receiver's
checkpoint

@ Communications inside a checkpoint are pushed back at the
beginning of the queues

herault@icl.utk.edu — yves.robert@ens-lyon.fr
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Implementation

Communication Library

@ Flush of communication channels

e conservative approach. One Message per open channel / One
message per channel

@ Preemptive checkpointing usually required

e Can have a user-level checkpointing, but requires one that be
called any time

Application Level

@ Flush of communication channels

o Can be as simple as Barrier(); Checkpoint();
e Or as complex as having a quiesce () ; function in all libraries

o User-level checkpointing
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Coordinated Protocol Performance

BT.B.64
L B e e s s

160

238
s38

2
3

Execution time (s)
o
8

'VCL execution time
+— PCL execution time
I T I i i |
5

I 2 3 4 3
Number of checkpoint waves

Number of checkpoint waves

[N
o838

ST
IR AR

<

20 40 60 80 100
m

o
£
=

Execution time (s)

Number of checkpoint waves

2 4 6
Number of checkpoint waves

Coordinated Protocol Performance

@ VCL = nonblocking coordinated protocol

@ PCL = blocking coordinated protocol
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9 General-purpose fault-tolerance techniques (30mn)

@ Uncoordinated checkpointing
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00000

Uncoordinated Checkpointing ldea

%Jumk’oleum

Processes checkpoint independently J
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Uncoordinated Checkpointing ldea

Optimistic Protocol
@ Each process i keeps some checkpoints C{

o V(i ...in), Jj/{ C,{(k} form a consistent cut?

@ Domino Effect
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Piece-wise Deterministic Assumption

Deterministic
Sequence

%

Nondeterministic
Choice

Piece-wise Deterministic Assumption

@ Process: alternate sequence of non-deterministic choice and
deterministic steps

@ Translated in Message Passing:
o Receptions / Progress test are non-deterministic
(MPI,Wait (ANY_SOURCE),
if ( MPI_Test() )<...>; else <...>)
o Emissions / others are deterministic
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Message Logging

.th
i probe false m" reception from B (on A)
i+ probe: true Unique Identifeir: (B, n, A, m)
Payload: P
B

nthemission to A (from B)

Message Logging

By replaying the sequence of messages and test/probe with the
same result that it obtained in the initial execution (from the last
checkpoint), one can guide the execution of a process to its exact
state just before the failure
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Message Logging

.th
i probe false m" reception from B (on A)
i+10 probe: true Unique Identifeir: (B, n, A, m)
Payload: P
B
nt"emission to A (from B)

Message / Events

@ Message = unique identifier (source, emission index,
destination, reception index) + payload (content of the
message)

@ Probe = unique identifier (number of consecutive
failed /success probes on this link)

@ Event Logging: saving the unique identifier of a message, or
of a probe
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Message Logging

.th
i probe false mn reception from B (on A)
i+ probe: true Unique Identifeir: (B, n, A, m)
Payload: P
B
nthemission to A (from B)

Message / Events

@ Payload Logging: saving the content of a message

@ Message Logging: saving the unique identifier and the payload
of a message, saving unique identifiers of probes, saving the
(local) order of events
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Message Logging

Checkpom@ Checkpoint
Q might be requested
if A and B rollback
Q
P \
@ | P will never be

‘requested again

Where to save the Payload?

@ Almost always as Sender Based

@ Local copy: less impact on performance

@ More memory demanding — trade-off garbage collection
algorithm

@ Payload needs to be included in the checkpoints
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Message Logging

Where to save the Events?

@ Events must be saved on a reliable space

@ Must avoid: loss of events ordering information, for all events
that can impact the outgoing communications

@ Two (three) approaches: pessimistic + reliable system, or
causal, (or optimistic)
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Optimistic Message Logging

A

P /
Event Log

Where to save the Events?

@ On a reliable media, asynchronously

@ "Hope that the event will have time to be logged” (before its
loss is damageable)

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC



General Purpose FT
00000

Optimistic Message Logging

A

(A 1,B,7) P /
Event Log

Where to save the Events?

@ On a reliable media, asynchronously

@ "Hope that the event will have time to be logged” (before its
loss is damageable)
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Optimistic Message Logging

A

(A 1,8,7)P /
Event Log

Where to save the Events?

@ On a reliable media, asynchronously

@ "Hope that the event will have time to be logged” (before its
loss is damageable)
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Optimistic Message Logging

(A,1,B,?7) P /
Event Log 54
(C 3,B,5) \
\ Ack
B / L
©387Q \
C

Where to save the Events?

@ On a reliable media, asynchronously

@ "“Hope that the event will have time to be logged” (before its
loss is damageable)
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Optimistic Message Logging

(A1.B2P /
Event Log 54

i
(C,3,B,7)Q i v

+

i

Where to save the Events?

@ On a reliable media, asynchronously

@ "“Hope that the event will have time to be logged” (before its
loss is damageable)
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Pessimistic Message Logging

A

P /
Event Log

Where to save the Events?

@ On a reliable media, synchronously

@ Delay of emissions that depend on non-deterministic choices
until the corresponding choice is acknowledged

@ Recovery: connect to the storage system to get the history
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Pessimistic Message Logging

O
(A 1,B,?)P /
E
vent Log r
(C.3,B,5)
Ack
B X
7 A
€.3870 | ;\‘
(¢} + "
| '
@ Emission

Delayed

Where to save the Events?

@ On a reliable media, synchronously

@ Delay of emissions that depend on non-deterministic choices
until the corresponding choice is acknowledged

@ Recovery: connect to the storage system to get the history
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Causal Message Logging
)

A

(A1,B,7)P /
Event Lo
¢ 7
(C.3,B,5) msg
Ack
B X

msg + (C, 3, B, 5)

(C.,3,B,7)Q

Where to save the Events?

@ Any message carries with it (piggybacked) the whole history
of non-deterministic events that precede

@ Garbage collection using checkpointing, detection of cycles

@ Can be coupled with asynchronous storage on reliable media
to help garbage collection

@ Recovery: global communication + potential storage system
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Recover in Message Logging

A

Received: empty
Event Log

(A, \B, 1 Resend: P
(C,3,8,5) S

S e .

P . A -
Received: R~ Resend: Q ™
c

Recovery

@ Collect the history (from event log / event log + peers for
Causal)

@ Collect Id of last message sent

@ Emitters resend, deliver in history order

@ Fake emission of sent messages
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Uncoordinated Protocol Performance

1

B Pessimist 2500 F

8 Optimist E
o B Pessimist (Event Logging only) 2000
E 1.06 — @ Optimist (Event Logging only) 7] F
5 Q1500
£ g 3 mm Open MPI
© 1.04 “(5 1000
i} E -
© E mmm= Open MPI-V pessimist
2 500
E 1.02 E/
S 20000 60000 100000 140000 180000

; Problem Size (N)
Ple64  febt  luebt | moobi  spobd  cgobd Weak scalability of HPL (90 procs, 360 cores).

NAS Kernel

Uncoordinated Protocol Performance
@ NAS Parallel Benchmarks — 64 nodes

@ High Performance Linpack

o Figures courtesy of A. Bouteiller, G. Bosilca
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Hierarchical Protocols

Many Core Systems

@ All interactions between threads considered as a message
@ Explosion of number of events

@ Cost of message payload logging =~ cost of communicating —
sender-based logging expensive

@ Correlation of failures on the node
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Hierarchical Protocols

Hierarchical Protocol

@ Processes are separated in groups
@ A group co-ordinates its checkpoint

@ Between groups, use message logging
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Hierarchical Protocols

~
1 f Wl

] [ v 7
f 4
[ ~
P

Hierarchical Protocol

@ Coordinated Checkpointing: the processes can behave as a
non-deterministic entity (interactions between processes)

[ e
—

@ Need to log the non-deterministic events: Hierarchical
Protocols are uncoordinated protocols + event logging

@ No need to log the payload
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Event Log Reduction

Strategies to reduce the amount of event log

e Few HPC applications use message ordering / timing
information to take decisions

@ Many receptions (in MPI) are in fact deterministic: do not
need to be logged

@ For others, although the reception is non-deterministic, the
order does not influence the interactions of the process with
the rest (send-determinism). No need to log either

@ Reduction of the amount of log to a few applications, for a
few messages: event logging can be overlapped
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Hierarchical Protocol Performance

FT ce 600

500

400

300

200

Performance (GFlop/s)

Theoretical peak ——

100 Vanilla Open MPl ——

Coordinated Message Logging —s—
Regular Message Logging ——

0
260 o0 08 402 (7060 080 aee0
Matrix size (N)

Pert. Regular Message Logging / Per. Vanilla —x—
Perf. Coordinated Message Logging / Perf. Vanilla —&—

Hierarchical Protocol Performance

@ NAS Parallel Benchmarks — shared memory system, 32 cores

e HPL distributed system, 64 cores, 8 groups

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC



Probabilistic models for checkpointing (45mn)

Outline

Probabilistic models for checkpointing (45mn)

@ Young/Daly's approximation
@ Coordinated checkpointing
@ Hierarchical checkpointing

ult-tolerance for HPC

yves.robert@ens-lyon.fr
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Outline

Probabilistic models for checkpointing (45mn)
@ Young/Daly's approximation

herault@icl.utk.ed yves.robert@ens-lyon.fr
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Checkpointing cost

Time spent working
m——Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk
Processing the first chunk Processing the second chunk

Blocking model: while a checkpoint is taken, no computation can
be performed
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Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF p = pjpg

Applies to a platform with p processors with MTBF p = %

e coordinated checkpointing
o tightly-coupled application
e progress <> all processors available

Waste: fraction of time not spent for useful computations J

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC
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Waste in fault-free execution

@ TIMEpsse: application base time

ﬂ o TIMEfg: with periodic checkpoints
but failure-free

TIMEpr = TIMEpase + #checkpoints x C

(valid for large jobs)

TIMEbase—‘ TIMEpase

#£checkpoints = [ ¢ ¢

TIMEgg — TIME C
WASTE[FF] = FTFIMEFF base _ -

Fault-tolerance for HPC
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Waste due to failures

@ TIMEpsse: application base time
o TIMEpg: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinal = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tost: average time lost par failures

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC
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Waste due to failures

@ TIMEpsse: application base time
o TIMEpg: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinal = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tost: average time lost par failures

TIMEfinal
Nfaults =

7-|05t?
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0®00

Computing Tjest

— Time spent working —— Time spent checkpointing
—— Downtime — Recovery time Time
PD
U
Pl
P2
Ps
Tlost D R T-C C
T
Tost =D+ R+ >

= Instants when periods begin and failures strike are independent
=- Valid for all distribution laws, regardless of their particular shape
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Waste due to failures

TIMEfinal = TIMEFF 4+ Neauies X Tiost

WASTE(fail] = =—(D+R+ —

TIME¢na — TIMEERE 1 T
TIMEfinal j 2
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Total waste

[ Tc|d 7c | 7c |d 7 |d 7< |c_

TIMEgg =TIMEgjna (1-WASTE[Fail])  TIMEFha X WASTE[Fail]

TIMEFinal

TIMEfinaI - TIMEbase
TIMEfinal

WASTE =

1 — WASTE = (1 — WASTE[FF])(1 — WASTE[fail])
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Waste minimization

WASTE:%—i—v—I—WT

D+R) V_D+R—C/2 1
% % 2p

u:C(l—

WASTE minimized for T = \/%

T=+2(u—-(D+R))C
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Comparison with Young/Daly

[ c|d 7c | 7c |d 7 |d 7< |c_

TIMEgg =TIMEgjna (1-WASTE[Fail]) TIMEFiha X WASTE[Fail]

TIMEFinal

(1 — WASTE[fail]) TIMEfina = TIMEFf
=T= \/2(/4 —(D+R))C

Daly: TIMEfina = (1 4+ WASTE[fail]) TIMEF¢
= T=V2u+(D+R)C+C

Young: TIMEfina = (1 + WASTE[fail]) TIMEFr and D =R =0
=T =2uC+C
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Validity of the approach (1/3)

Technicalities

° IE(Nr’aults) = % and IE(Tlost) =D+ R+ %
but expectation of product is not product of expectations
(not independent RVs here)

@ Enforce C < T to get WASTE[FF] <1

@ Enforce D + R < ;1 and bound T to get WASTE[fail] <1
but u = % too small for large p, regardless of fijng
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Validity of the approach (2/3)

Several failures within same period?

e WasTE[fail] accurate only when two or more faults do not
take place within same period

o Cap period: T < ~vpu, where v is some tuning parameter
e Poisson process of parameter § = %
o Probability of having k > 0 failures : P(X = k) = %e‘e
o Probability of having two or more failures:
T=P(X>2)=1—-(P(X=0)+P(X=1))=1—(1+60)e”"
e v=027 = 7<0.03
= overlapping faults for only 3% of checkpointing segments
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Validity of the approach (3/3)

@ Enforce T <~u, C <~u,and D+ R < ~vypu

e Optimal period 1/2(u — (D + R))C may not belong to
admissible interval [C, ypu]

@ Waste is then minimized for one of the bounds of this
admissible interval (by convexity)
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@ Capping periods, and enforcing a lower bound on MTBF
= mandatory for mathematical rigor @

@ Not needed for practical purposes ©
e actual job execution uses optimal value
e account for multiple faults by re-executing work until success

e Approach surprisingly robust ©
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[ leJe]

Outline

e Probabilistic models for checkpointing (45mn)

@ Coordinated checkpointing

herault@icl.utk.ed yves.robert@ens-lyon.fr
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[e]e]e]

Background: coordinated checkpointing protocols

Po i
@ Coordinated checkpoints over all
processes P
@ Global restart after a failure
P2 1t

© No risk of cascading rollbacks
© No need to log messages

® All processors need to roll back

herault@icl.utk.edu — yves.robert@ens-lyon.fr
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Background: message logging protocols

Po O 0
@ Message content logging m1 / \m3
P 3

1
< __A--

my

(sender memory)

@ Restart of failed process only

© No cascading rollbacks

© Number of processes to roll back
® Memory occupation

® Overhead
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Background: hierarchical protocols

@ Clusters of processes Po —O /

@ Coordinated checkpointing

protocol within clusters L R e S -
. ma ms3 mxy
o Message logging protocols <€

between clusters Po 2 My mmef - -
@ Only processors from failed group ma

need to roll back

@ Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

© Faster re-execution with logged messages
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Which checkpointing protocol to use?

Coordinated checkpointing
© No risk of cascading rollbacks
© No need to log messages
® All processors need to roll back

® Rumor: May not scale to very large platforms

Hierarchical checkpointing

® Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

Only processors from failed group need to roll back

Faster re-execution with logged messages

© OO

Rumor: Should scale to very large platforms
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Coordinated checkpointing

—Time spent working

Time spent checkpointing

Time

Computing the first chunk Checkpointing
fthe first chunk

Processing the first chunk Processing the second chunk

Blocking model: checkpointing blocks all computations
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Coordinated checkpointing

—Time spent working

Time spent checkpointing
Time

Computing the first chunk Checkpointing
fthe first chunk

Processing the first chunk

Processing the second chunk

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to

disk)
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Coordinated checkpointing

—Time spent working

Time spent checkpointing

== == ==== Time spent working with slowdown Time

Computing the first chunk Checkpointing
fthe first chunk

Processing the first chunk

General model: checkpointing slows computations down: during
a checkpoint of duration C, the same amount of computation is
done as during a time aC without checkpointing (0 < o < 1)
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Probabilistic models for checkpointing (45mn)
ooe

Waste in fault-free execution

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

Pl c———
Pl —
P2 —
P e——

Time elapsed since last checkpoint: T

Amount of computations executed: WORK = (T — C) + aC

WASTE[FF] = T={orE

Fault-tolerance for HPC
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Waste due to failures

= Time spent working ===== Time spent checkpointing ==='Time spent working with slowdown

Time
[ mpp————
[ R mpp————
[ mpp————
[ QS mpp————|

Failure can happen
© During computation phase
@ During checkpointing phase
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Waste due to failures

= Time spent working ===== Time spent checkpointing

=== Time spent working with slowdown

Po
Py
P>
Ps

herault@icl.utk.ed

yves.robert@en

ult-tolerance for HPC
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Waste due to failures

= Time spent working ===== Time spent checkpointing

=== Time spent working with slowdown

Po
Py
P>
Ps

herault@icl.utk.ed

yves.robert@en

ult-tolerance for HPC
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Waste due to failures

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

Pi c———
Py
Pa
Ps

=T

Tiost

Coordinated checkpointing protocol: when one processor is victim
of a failure, all processors lose their work and must roll back to last

checkpoint

Fault-tolerance for HPC
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Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
Time

=== Downtime

Po
Py
Pa
Ps

Fault-tolerance for HPC

yves.robert@ens-lyon.fr
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Waste due to failures in computation phase

= Time spent working ===== Time spent checkpointing ==='Time spent working with slowdown

=== Downtime === Recovery time Time

Po
Py
P>
Ps

Coordinated checkpointing protocol: all processors must recover
from last checkpoint
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Waste due to failures in computation phase

= Time spent working === Time spent checkpointing === Time spent working with slowdown
—— Downtime —— Recovery time —— Re-executing slowed-down work Time

S g /
Y
Py L
Py
Ps
[
c aC

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-execution is
faster than the original computation

Fault-tolerance for HPC
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Waste due to failures in computation phase

= Time spent working ===== Time spent checkpointing ==='Time spent working with slowdown

= Downtime = Recovery time = Re-executing slowed-down work Time
[ JE ey y
7
Pl L aemann L
P, maummum
P; eauumnm
T-C

Re-execute the computation phase
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Waste due to failures in computation phase

= Time spent working ===== Time spent checkpointing ==='Time spent working with slowdown

=== Downtime === Recovery time = Re-executing slowed-down work Time
[ JE ey | —————————————————
7
P —fmmeann AR e ——
P o e e — ——— .
P o e e — e .
C

Finally, the checkpointing phase is executed
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Total waste

= Time spent working === Time spent checkpointing === Time spent working with slowdown
—— Recovery time —— Re-exccuting slowed-down work Time

== Downtime

/

Po
Py
Pa
Ps

=T

1 T
WastE[faill] = = D+ R+ aC + 5
i

Optimal period T, = \/2(1 —a)(p — (D + R))C

Fault-tolerance for HPC
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Outline

e Probabilistic models for checkpointing (45mn)

@ Hierarchical checkpointing
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Hierarchical checkpointing

=== Time spent working === Time spent checkpointing === Time spent working with slowdown

== Downtime === Recovery time == Re-executing slowed-down work Time
[ e e
Gi tmmmmmaaa- / R
/ —
Cf emmmmmmmmm e e e ——— -
Gif ehmmmmmmmmemsd— | | |  j——————— eyl
Gs e memmmmmmman
Tew D R ‘( Tios I 6.C
a(G—g+1)C T—G.C—Tiost
T

@ Processors partitioned into G groups
@ Each group includes g processors
@ Inside each group: coordinated checkpointing in time C(q)

@ Inter-group messages are logged

herault@icl.utk.edu — yves.robert@ens-lyon.fr
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Accounting for message logging: Impact on work

o ® Logging messages slows down execution:
= WORK becomes A\WORK, where 0 < A <1
Typical value: A ~ 0.98

o © Re-execution after a failure is faster:
= RE-EXEC becomes @ where p € [1..2]
Typical value: p~ 1.5

T —
WASTE[FF] — M
T
1 RE-E
WaASTE[fail] = M <D(q) + R(q) + EPXEC>
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Accounting for message logging: Impact on checkpoint size

@ Inter-groups messages logged continuously

@ Checkpoint size increases with amount of work executed
before a checkpoint ®

@ Co(q): Checkpoint size of a group without message logging

C(q) — Go(q)

C(q) = Co(q)(]. + BWORK) & [ = Co(q)VVORK

WOoRK = AT — (1 — a)GC(q))

~ Go(q)(1+BAT)
¢la) =17 GGCo(q)BM1 — a)
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Three case studies

Coord-10
Coordinated approach: C = Cyem = 'Vt'f
where Mem is the memory footprint of the application

Hierarch-10
Several (large) groups, I/O-saturated
= groups checkpoint sequentially

CMm Mem
Gla) =5~ = Gy,
10

Hierarch-Port

Very large number of smaller groups, port-saturated
= some groups checkpoint in parallel

Groups of q,,;, processors, where q.i,bport > bio
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0®000

Three applications

Q@ 2D-stencil

© Matrix product
© 3D-Stencil

o Plane
e Line
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00000

Computing [ for 2D-Stencil

C(q) = Co(q) + Logged_Msg = Co(q)(1 + FWORK)

Real n x n matrix and p x p grid
Work = 95—22, b=n/p
Each process sends a block to its 4 neighbors

HIERARCH-1O: f

o 1 group =1 grid row

@ 2 out of the 4 messages are logged

o 3= Logged Msg _ _ 2pb  _ 2sp |
q)WORK ~— pb2(9b%/sp) ~ 9b3

HIERARCH—PORT:

@ (3 doubles
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00000

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory 1/0 Network Bandwidth (bj,) 1/0 Bandwidth (bport)
cores PrOCesSors proal | per processor | per processor |  Read Write Read/Write per processor
Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 B 16GB 150GB/s 96GB/s 20GB/s
Exascale-Slim | 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s
Name Scenario G (C(q)) 3 for 3 for
2D-STENCIL | MATRIX-PRODUCT
COORD-10 1 (2,048s) / /
Titan HIERARCH-IO 136 (15s) 0.0001098 0.0004280
HIERARCH-PORT 1,246 (1.6s) 0.0002196 0.0008561
CoORD-IO 1 (14,688s)
K-Computer HIERARCH-1O 296 (50s) 0.0002858 0.001113
HIERARCH-PORT | 17,626 (0.83s) 0.0005716 0.002227
COORD-IO 1 (64,000s)
Exascale-Slim HIERARCH-IO 1,000 (64s) 0.0002599 0.001013
HIERARCH-PORT | 200,0000 (0.32s) 0.0005199 0.002026
COORD-10 1 (64,000s)
Exascale-Fat HIERARCH-IO 316 (217s) 0.00008220 0.0003203
HIERARCH-PORT | 33,3333 (1.92s) 0.00016440 0.0006407
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Probabilistic models for checkpointing (45mn)
00®00

Checkpoint time

Name C
K-Computer | 14,688s
Exascale-Slim | 64,000
Exascale-Fat | 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms
a=03,A2=09and p=1.5
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00000

Plotting formulas — Platform: Titan

Stencil 2D Matrix product Stencil 3D

09

0

07

06

0.4

03

01
T
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00000

Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

T 3 3 o 20 S0 oo T 3 3 T 20 S0 100 T 3 3 o 20 S0 oo

Waste as a function of processor MTBF pjng
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000®0

Plotting formulas — Platform: Exascale

WASTE = 1 for all scenarios!!! J
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000®0

Plotting formulas — Platform: Exascale

Goodbye Exascale?!
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00000

Plotting formulas — Platform: Exascale with C = 1,000

Stencil 2D Matrix product Stencil 3D

N 0o 05 0o
1
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0 07 07 07
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\ I \
_— \ \
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ql) \ \
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00000

Plotting formulas — Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D

1
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Waste as a function of processor MTBF 1,4, C = 100
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Simulations — Platform: Titan

Probabilistic models for checkpointing (45mn)

Stencil 2D
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Simulations — Platform: Exascale with C = 1,000

Stencil 2D Matrix product

Coordinated ——— Hierarchical ——— Hierarchical Port
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Simulations — Platform: Exascale with C = 100

Stencil 2D Matrix product
Coordinated ——— Hierarchical ——— Hierarchical Port
Coordinated BestPer -------- Hierarchical BestPer -------- Hierarchical Port BestPer --------
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App. Specific FT

Outline

Application-specific fault-tolerance techniques (45mn)
@ Fault-Tolerant Middleware

@ Bags of tasks
@ Iterative algorithms and fixed-point convergence

@ ABFT for Linear Algebra applications
@ Composite approach: ABFT & Checkpointing

ult-tolerance for HPC

yves.robert@ens-lyon.fr
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App. Specific FT

Fault Tolerance Software Stack

| Application

| Lib1 || Lib2 |

Runtime
Helpers

Comm. Middleware (MPI)

oS

Network
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App. Specific FT

Fault Tolerance Software Stack

Application-Based
Permanent

| Crash

Fault Tolerance

Application
| —
I e >/
& N 4

R
Help
Permanent ) 1
Crash H Comm. Middleware (MPI)
Detection

- . AN .
Transient
\/ Network Failures
(inc. msg corruption)

e e
Fault Tolerance

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC



App. Specific FT

Motivation

@ Generality can prevent Efficiency

@ Specific solutions exploit more capability, have more
opportunity to extract efficiency

@ Naturally Fault Tolerant Applications
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App. Specific FT
®00

Outline

Application-specific fault-tolerance techniques (45mn)
@ Fault-Tolerant Middleware
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App. Specific FT
000

HPC — MPI

@ Most popular middleware for multi-node programming in
HPC: Message Passing Interface (+Open MP +pthread +...)

@ Fault Tolerance in MPI:
[...] it is the job of the implementor of the MPI
subsystem to insulate the user from this unreliability,
or to reflect unrecoverable errors as failures.
Whenever possible, such failures will be reflected as
errors in the relevant communication call. Similarly,
MPI itself provides no mechanisms for handling
processor failures.

— MPI Standard 3.0, p. 20, |. 36:39
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App. Specific FT
000

HPC — MPI

@ Most popular middleware for multi-node programming in
HPC: Message Passing Interface (+Open MP +pthread +...)

@ Fault Tolerance in MPI:
This document does not specify the state of a
computation after an erroneous MPI call has
occurred.

— MPI Standard 3.0, p. 21, |. 24:25
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000

HPC — MPI

MPI Implementations

@ Open MPI (http://www.open-mpi.org)
e On failure detection, the runtime system Kkills all processes
e trunk: error is never reported to the MPI processes.
e ft-branch: the error is reported, MPI might be partly usable.
@ MPICH (http://www.mcs.anl.gov/mpi/mpich/)
o Default: on failure detection, the runtime kills all processes.
Can be de-activated by a runtime switch
e Errors might be reported to MPI processes in that case. MPI
might be partly usable.
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App. Specific FT
0®0

FT Middleware in HPC

@ Not MPI. Sockets, PVM... CCI?
http://www.olcf.ornl.gov/center-projects/
common-communication-interface/ UCCS?

@ FT-MPI: http://icl.cs.utk.edu/harness/, 2003

@ MPI-Next-FT proposal (Open MPI, MPICH): ULFM

o User-Level Failure Mitigation
e http://fault-tolerance.org/ulfm/

@ Checkpoint on Failures: the rejuvenation in HPC
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App. Specific FT
000

MPI-Next-FT proposal: ULFM

Resume Communication Capability for MPI (and nothing more)

o Failure Reporting

e Failure notification propagation / Distributed State
reconciliation

= In the past, these operations have often been merged
— this incurs high failure free overheads
ULFM splits these steps and gives control to the user

@ Recovery

@ Termination
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000

MPI-Next-FT proposal: ULFM

Resume Communication Capability for MPI (and nothing more)

@ Error reporting indicates impossibility to carry an operation

e State of MPI is unchanged for operations that can continue
(i.e. if they do not involve a dead process)

Errors are non uniformly returned

o (Otherwise, synchronizing semantic is altered drastically with
high performance impact)

REVOKE allows to resolve non-uniform error status

SHRINK allows to rebuild error-free communicators

AGREE allows to quit a communication pattern knowing it is
fully complete
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ooe

MPI-Next-FT proposal: ULFM

Errors are visible only for operations that
cannot complete

Error Reporting ﬁ\

@ Operations that cannot complete return

AW
o ERR_PROC_FAILED, or ERR_PENDING if ﬂ\\n :
appropriate l ﬂ

awll

o State of MPI Objects is unchanged

(communicators etc.) ﬂ

o Repeating the same operation has the
same outcome

@ Operations that can be completed return
MPI_SUCCESS
@ point to point operations between
non-failed ranks can continue
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App. Specific FT
000

MPI-Next-FT proposal: ULFM

Inconsistent Global State and Resolution )

Error Reporting

@ Operations that can’t complete return
o ERR_PROC_FAILED, or ERR_PENDING if
appropriate l :
@ Operations that can be completed return
MPI_SUCCESS ’ 5

o Local semantic is respected (buffer
content is defined), this does not
indicate success at other ranks.

e New constructs
MPI_Comm Revoke/MPI_Comm_shrink
are a base to resolve inconsistencies
introduced by failure

aw
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000

MPI-Next-FT proposal: ULFM

ULFM Fault Tolerant MPI Performance with lailu;es

Sequoia AMG Performance with Fault Tolerance IMB Ping-pong between ranks 0 and 1 (IB20G)
+1% T T T T T T T 12 T b‘Pen‘MPI T T T T T T T

5 11 | %  FT Open MPI (w/failure at rank 3) /(x’l
g g 1 72 8 |
F 40.5% 2 917 7t i i
o L gglsest 1 |
H c = %}
H 5§ 3 |2 6f 4
B = S 7(sst / 4 1
z T |« 5| J
z 0% = | — EG"A:,%HHH*’/ ] ]
8 l . £ 4 i
z z =z 1 4 16 64 256 1K
I&:J S @ ar | 1
.0.5% @ 3t ]
w =
=] Lo 2+ y

- 1

9% Lo . . . . . . o e
8 16 32 64 128 256 512 1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M
NUMBER OF PROCESSES MESSAGE SIZE (Bytes)

Open MPI - ULFM support

@ Branch of Open MPI (www.open-mpi.org)

@ Maintained on bitbucket:
https://bitbucket.org/icldistcomp/ulfm

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC


www.open-mpi.org
https://bitbucket.org/icldistcomp/ulfm

App. Specific FT
®00

Outline

e Application-specific fault-tolerance techniques (45mn)

@ Bags of tasks
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[e]e]e]

Master /Worker
.......................... >
Master
WorkerQO
Worker1
Worker2
while(1) {

MPI_Recv( master, &work );

if ( work == STOP_CMD )
break;

process_work (work, &result);

MPI_Send( master, result );

Fault-tolerance for HPC 112/ 182
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000

Master /Worker

for(i = 0; i < active_workers; i++) {
new_work = select_work();
MPI_Send(i, new_work);

}

while( active_workers > 0 ) {
MPI_Wait( MPI_ANY_SOURCE, &worker );
MPI_Recv( worker, &work );
work_completed (work) ;
if ( work_tocomplete() == 0 ) break;
new_work = select_work();
if ( new_work) MPI_Send( worker, new_work );

}

for(i = 0; i < active_workers; i++) {

MPI_Send(i, STOP_CMD);
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App. Specific FT
0®0

FT Master

Fault Tolerant Master
/* Non-FT preamble */
for(i = 0; i < active_workers; i++) {
new_work = select_work();
rc = MPI_Send(i, new_work);
if ( MPI_SUCCESS !'= rc ) MPI_Abort(MPI_COMM_WORLD) ;

}
/* FT Section */
<..002>

/* Non-FT epilogue */
for(i = 0; i < active_workers; i++) {
rc = MPI_Send(i, STOP_CMD);
if ( MPI_SUCCESS != rc ) MPI_Abort(MPI_COMM_WORLD) ;
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000

FT Master

Fault Tolerant Master

while( active_workers > 0 ) { /* FT Section */
rc = MPI_Wait( MPI_ANY_SOURCE, &worker );
switch( rc ) {
case MPI_SUCCESS: /#* Received a result */
break;
case MPI_ERR_PENDING:
case MPI_ERR_PROC_FAILED: /* Worker died */
<...2>
continue;
break;
default:
/* Unknown error, not related to failure */
MPI_Abort (MPI_COMM_WORLD) ;
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FT Master

Fault Tolerant Master

case MPI_ERR_PENDING:
case MPI_ERR_PROC_FAILED:

/* A worker died */
MPI_Comm_failure_ack(comm) ;
MPI_Comm_failure_get_acked(comm, &group);
MPI_Group_difference(group, failed,

&newfailed) ;
MPI_Group_size(newfailed, &ns);
active_workers —-= ns;

/* Iterate on newfailed to mark the work

* as not submitted */
failed = group;
continue;
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FT Master

Fault Tolerant Master

rc = MPI_Recv( worker, &work );

switch( rc ) {
/* Code similar to the MPI_Wait code */

<...0>
}
work_completed (work) ;
if ( work_tocomplete() == 0 ) break;

new_work = select_work();
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FT Master

Fault Tolerant Master

if (new_work) {
rc = MPI_Send( worker, new_work );
switch( rc ) {
/* Code similar to the MPI_Wait code */
/* Re-submit the work somewhere */
<.00>

}
} /* End of while( active_workers > 0 ) */
MPI_Group_difference(comm, failed, &living);
/* Iterate on living */
for(i = 0; i < active_workers; i++) {
MPI_Send(rank_of (comm, living, i), STOP_CMD);
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Outline

e Application-specific fault-tolerance techniques (45mn)

@ Iterative algorithms and fixed-point convergence
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°

lterative Algorithm

while( gnorm > epsilon ) {

iterate();

compute_norm(&lnorm) ;

rc = MPI_Allreduce( &lnorm, &gnorm, 1,

MPI_DOUBLE, MPI_MAX, comm);

if ( (MPI_ERR_PROC_FAILED == rc) ||
(MPI_ERR_COMM_REVOKED == rc) ||
(gnorm <= epsilon) ) {

if ( MPI_ERR_PROC_FAILED == rc )
MPI_Comm_revoke (comm) ;

allsuceeded = (rc == MPI_SUCCESS);
MPI_Comm_agree (comm, &allsuceeded);
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o

lterative Algorithm

if( 'allsucceeded ) {
MPI_Comm_revoke (comm) ;
MPI_Comm_shrink(comm, &comm2) ;
MPI_Comm_free (comm) ;
comm = comm2;
gnorm = epsilon + 1.0;

Fault-tolerance for HPC
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000

Outline

e Application-specific fault-tolerance techniques (45mn)

@ ABFT for Linear Algebra applications
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Example: block LU/QR factorization

@ Solve A- x = b (hard)
@ Transform A into a LU factorization
@ Solve L-y=B-b,then U-x=y
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900

Example: block LU/QR factorization

TRSM - Update row block

A op L

AI

— T —
GETF2: factorize a GEMM: Update
column block the trailing

matrix

@ Solve A-x = b (hard)
@ Transform A into a LU factorization
@ Solve L-y=B-b,then U-x=y
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900

Example: block LU/QR factorization

TRSM - Update row block

L d "

GETF2: factorize a GEMM: Update
column block the trailing
matrix

@ Solve A-x = b (hard)
@ Transform A into a LU factorization
@ Solve L-y=B-b,then U-x=y
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Example: block LU/QR factorization

Failure of rank 2

w(24]0[2[4]0[2] o4 ofll4]o]
j8[5(13[5[1]3 i8/5/113]5[1]3
l4fo]2]4]0]2] 4 [0 Il 4 (0]

i, [3]5 |13 . > b (3]5]1/3
124102 an

@ 2D Block Cyclic Distribution (here 2 x 3)

@ A single failure = many data lost
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Algorithm Based Fault Tolerant LU decomposition

n Q _l ,4 2N/Q +nb
IE'IIIEIIIEIE
I_ EINEIE

" JNEEIg -

_U'III }:

L A ANENENEN_ |

@ Checksum: invertible operation on the data of the row /
column

o Checksum blocks are doubled, to allow recovery when data
and checksum are lost together
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Algorithm Based Fault Tolerant LU decomposition

N
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4[0[2[4]0]2] ARAANANAE |
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\ H EIE |
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1

@ Checksum: invertible operation on the data of the row /
column
o Checksum replication can be avoided by dedicating computing
resources to checksum storage
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[e]e]e]

Algorithm Based Fault Tolerant LU decomposition

hul2[alol2[4lol2(alAl bol2 402 [410]2[A[A A
a1 [s[s[1 5[5 ]s]e NRENEENEEEE |
o]zl o alal4 ol2 (o2 o[2[A[A[4
El op HECONAEEAEEE
E| B | olaTalal4
E| | BE
g | Al
E | B ___GBE

GETF2 GEMM

@ Checksum: invertible operation on the data of the row /
column
o Idea of ABFT: applying the operation on data and checksum
preserves the checksum properties

Fault-tolerance for HPC 124/ 182
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Algorithm Based Fault Tolerant LU decomposition

nAEANABNARNAE | nAEANBANARAE |
s (5]1]3]s5]1[3[B|B|E] lals]1]s]s]1[s/B[B/H
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H MEHAHEEE o > H hi[3[5[1]3[B[B]
H [2[4]0[2[A[A[A H j2[4]0[2]A[A[ A}
H EIE | H EIE |
H Al H AE |
H E EIE

'L_'_jﬁu H B]

@ Checksum: invertible operation on the data of the row /
column

e For the part of the data that is not updated this way, the
checksum must be re-calculated
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App. Specific FT
000

Algorithm Based Fault Tolerant LU decomposition
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@ Checksum: invertible operation on the data of the row /
column

e To avoid slowing down all processors and panel operation,
group checksum updates every g block columns
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[e]e]e]

Algorithm Based Fault Tolerant LU decomposition

>
>
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@ Checksum: invertible operation on the data of the row /
column

e To avoid slowing down all processors and panel operation,
group checksum updates every g block columns
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000

Algorithm Based Fault Tolerant LU decomposition
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@ Checksum: invertible operation on the data of the row /
column
e To avoid slowing down all processors and panel operation,
group checksum updates every g block columns
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000

Algorithm Based Fault Tolerant LU decomposition
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+

@ Checksum: invertible operation on the data of the row /
column
e Then, update the missing coverage. Keep checkpoint block
column to cover failures during that time
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Algorithm Based Fault Tolerant LU decomposition

alofll4lollAlAA M (2[4lo0[2[alo[2[A[A[Af
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H el GEE

LLT ]
@ In case of failure, conclude the operation, then

o Missing Data = Checksum - Sum(Existing Data) s }
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Algorithm Based Fault Tolerant LU decomposition
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+
@ In case of failure, conclude the operation, then

o Missing Checksum = Sum(Existing Data)s }
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ABFT LU decomposition: implementation

MPI Implementation

@ PBLAS-based: need to provide “Fault-Aware” version of the
library

e Cannot enter recovery state at any point in time: need to
complete ongoing operations despite failures
e Recovery starts by defining the position of each process in the
factorization and bring them all in a consistent state
(checksum property holds)
@ Need to test the return code of each and every MPI-related
call
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ABFT LU decomposition: performance

35 50
Overhead: FT-PDGETRF (w/1 recovery) ==
Overhead: FT-PDGETRF (no error) =m=
FT-PDGETRF (w/1 recovery) sss
28} FT-PDGETRF (no error) === 440
= ScalAPACK PDGETRF mem =
= 5
3 af {30 =
E [
3 g
S ur 10 £
< ©
e &
7L {10

0
6. 'LB\‘\ s m\gm b, %N;Bﬂ%" \E“\éax%" 320

I3
o2\ o

#Processors (PxQ grid); Matrix size (N)

MPI-Next ULFM Performance

@ Open MPI with ULFM; Kraken supercomputer;

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC



App. Specific FT

[e]e]e]

ABFT LU decomposition: implementation

ABFT
Recovery

Checkpoint on Failure - MPI Implementation

e FT-MPI / MPI-Next FT: not easily available on large
machines

@ Checkpoint on Failure = workaround
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ABFT QR decomposition: performance

3.5

w

@ _,,,»"""ly r
2 25 e
E 2
@
g 15
g 107
& p
0.5 | #. _ScaLAPACK QR - |
: CoF-QR (w/o failure) —e—
0 CoF-QR (w/1 failure) ——

20k 40k 60k 80k 100k
Matrix Size (N)

Checkpoint on Failure - MPI Performance

@ Open MPI; Kraken supercomputer;
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0000000

Outline

e Application-specific fault-tolerance techniques (45mn)

@ Composite approach: ABFT & Checkpointing
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0000000

Fault Tolerance Techniques

General Techniques s == * *
@ Replication ‘Lﬂ I

o Coordinated Checkpointing
e Uncoordinated Checkpointing &
Message Logging

@ Rollback Recovery : | 1
e Hierarchical Checkpointing

Application-Specific Techniques

@ Algorithm Based Fault Tolerance
(ABFT)

@ lterative Convergence

@ Approximated Computation
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App. Specific FT
®000000

Typical Application

for( aninsanenumber ) {
/* Extract data from

x simulation, fill up
* matrix */
sim2mat ();

/*x Factorize matrix,
* Solve x*/

dgeqrf ();

dsolve ();

/* Update simulation
% with result vector x/
vec2sim ();

herault@icl.utk.edu — yves.robert@ens-lyon.fr

LisrARY Phase GENERAL Phase
Process 0 ‘Q_H T

Library

Process 1

][ Avpleation

Library

Process 2

T e AT

Library

Characteristics

© Large part of (total)
computation spent in
factorization/solve

@ Between LA operations:

@ use resulting vector / matrix
with operations that do not
preserve the checksums on
the data

® modify data not covered by
ABFT algorithms
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®000000

Application

LisraRY Phase

Application
Library

Process 0

Application
Library

Process 1

Typical Applicatio..

Application
Library

Process 2

for( aninsanenump
/* Extract dat
* simulation ,
* matrix x/
sim2mat ();

/*x Factorize matrj
* Solve x*/
dgeqrf ();
dsolve ();

preserve the ch ums on
the data

® modify data not co

ABFT algorithms

Fault-tolerance for HPC 132/ 182
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®000000

Application

Problem Statement g
— Application
Library
for( ; — Application
< Library
/% 1 How to use fault tolerant operations™®) within a -
I , non-fault tolerant**) application 2***)
sim2
/* 1 o - .
. (*) ABFT, or other application-specific FT
dge: (**) Or within an application that does not have the same kind of FT
dsol (***) And keep the application globally fault tolerant...
TTOSTCShtng veCtor T natrix
/* Update simulation with operations that do not

x with result vector x/

i preserve the checksums on
vec2sim ();

the data
® modify data not covered by
ABFT algorithms
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0000000

ABFT&PERIODICCKPT

PERIODICCKPT: no failure

Periodic
Checkpoint

Process 0 Application
Library
Process 1 i Application
L Library
Process 2 Application
| Library

Split
Forced
Checkpoints

Fault-tolerance for HPC
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ABFT&PERIODICCKPT

PERIODICCKPT: failure during

App. Specific FT
0000000

Process 0 _| ’_‘

Application
Library

Process 1 —| ’_|

Application
Library

Process 2 _[I_

Failure

(during LIBRARY) ABFT

Recovery
Rollback
(partial)
Recovery

Application
Library
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0®00000

ABFT&PERIODICCKPT

PERIODICCKPT: failure during GENERAL phase
Process0 — | ] Application
i 1 Library
Process 1 — ] |: Application

Library
Process2 — [ |:

I Application
L Library

i
L

Failure
(during GENERAL)

Rollback
(fully
Recovery
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0000000

ABFT&PERIODICCKPT: Optimizations

Process 0 ﬂ Application
[j Library

Process 1 ﬂ Application
{j Library

Process 2 ﬂ Application
{j Library

1dMD2Ia0IH3dR 1 49V

ABFT&PERIODICCKPT: Optimizations
@ If the duration of the GENERAL phase is too small: don't add
checkpoints
@ If the duration of the LIBRARY phase is too small: don't do
ABFT recovery, remain in GENERAL mode
o this assumes a performance model for the library call

136/ 182
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0000000

ABFT&PERIODICCKPT: Optimizations

Process 0 Application
Library

Process 1 Application
Library

Process 2 Application
Library

GENERAL
Checkpoint Interval

1d¥D01a01H3d R 1 AV

ABFT&PERIODICCKPT: Optimizations
@ If the duration of the GENERAL phase is too small: don’'t add

checkpoints

@ If the duration of the LIBRARY phase is too small: don't do
ABFT recovery, remain in GENERAL mode

o this assumes a performance model for the library call

136/ 182
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0000000

notations

To ﬁ
Process 0 LM Application
Library
Pc 4
Process 1 —q—a—ﬂ—q—d—D—L Application
Library

Process 2 Application
Library
Te Tu

Times, Periods

To: Duration of an Epoch (without FT)

T, = aTg: Time spent in the LIBRARY phase

Tc = (1 —a)To: Time spent in the GENERAL phase
Pg: Periodic Checkpointing Period

o g T{F: “Fault Free" times

tiost £}°st: Lost time (recovery overhreads)

Thnal "Tfinal: Total times (with faults)
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0000000

A few notations

c o

CL /
Process 0 \ Application
Library
Process 1 Application
Library
Process 2 Application
Library

C, = pC: time to take a checkpoint of the LIBRARY data set

C; = (1 — p)C: time to take a checkpoint of the GENERAL data
set

R, R;: time to load a full / GENERAL data set checkpoint

D: down time (time to allocate a new machine / reboot)
Reconsaggt: time to apply the ABFT recovery

¢: Slowdown factor on the LIBRARY phase, when applying ABFT

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 137/ 182



App. Specific FT
00®0000

GENERAL phase, fault free waste

GENERAL phase

Periodic
Checkpoint

Process 0 Application
Library

Process 1 Application
Library

Process 2 Application
Library

Split
Forced
Checkpoints

<

Without Failures

Tff Te + CZ if T¢ < Pg
poSe X Pe if Te > Pg
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LIBRARY phase, fault free waste

LIBRARY phase

Periodic
Checkpoint

Process 0 Application

Library
Process 1 Application

Library
Process 2 Application

Library

Split
Forced
Checkpoints

Without Failures

TF=¢x T +C
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0000000

GENERAL phase, failure overhead

M
GENERAL phase

Process 0 Application
Library

Process 1 Application
Library

Process 2 Application
Library

P

Failure
(during GENERAL)
Rollback
(fulll)
Recovery
V.
Failure Overhead
T .
tIGOSt: D+R+ = if T¢ <Pg

D+R+%8 if Tg>Pg
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LIBRARY phase, failure overhead

LIBRARY phase

Process 0 Application
Library

Process 1 Application
Library

Process 2 4[‘_ Application
Library

pad
Failure

ABFT

(during LIBRARY)
Recovery

Rollback
(partial)
Recovery

y

Failure Overhead

tILOSt =D+ RZ + ReconsagpTt

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC



App. Specific FT
0000000

Overall

Overall

Time (with overheads) of LIBRARY phase is constant (in Pg ):

1

1 — D+ RZ+ReCOnSABFT
n

T{inal = X (a x T + CL)

Time (with overehads) of GENERAL phase accepts two cases:

1 DR+
final __ -
TG — HTG

Pg
D+R+-&
(1-£)a- 252

if T¢ > Pg

Which is minimal in the second case, if

Pe = \/2C(i—D—R)
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0000000

From the previous, we derive the waste, which is obtained by

To

Tél’la + TLIna
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Toward Exascale, and Beyond!

Let's think at scale

@ Number of components = MTBF \
@ Number of components =- Problem Size *

@ Problem Size =
Computation Time spent in LIBRARY phase *

© ABFT&PERIODICCKPT should perform better with scale
By how much?
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Competitors

FT algorithms compared
PeriodicCkpt Basic periodic checkpointing

Bi-PeriodicCkpt Applies incremental checkpointing techniques to
save only the library data during the library phase.

ABFT&PeriodicCkpt The algorithm described above
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Weak Scale #1

Weak Scale Scenario #1

@ Number of components, n, increase

@ Memory per component remains constant

@ Problem Size increases in O(y/n) (e.g. matrix operation)

o patn=10% 1day,isin O(%)
e C (=R) at n=10%, is 1 minute, is in O(n)
@ « is constant at 0.8, as is p.

(both LIBRARY and GENERAL phase increase in time at the
same speed)
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00000 e0

Weak Scale #1

40 ‘
2 30| Nb Faults PeriodicCkpt |
=] Nb Faults Bi-PeriodicCkpt e )
& 20 | Nb Faults ABFT PeriodicCkpt mmmmms |
10 I
* 0 I r-li[ll.llll
0.4 ‘
PeriodicCkpt —+—
0.35 I Bi-PeriodicCkpt ------
ABFT PeriodicCkpt ---%--:
0.3
0.25
Q
& 02
=
0.15 E
0.1
0.05
WM M B e M e )
0
1k 10k 100k 1M

Nodes
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Weak Scale #2

Weak Scale Scenario #2

@ Number of components, n, increase

@ Memory per component remains constant

@ Problem Size increases in O(y/n) (e.g. matrix operation)

pat n=10% 1 day, is O(%)
C (=R) at n=10%, is 1 minute, is in O(n)
@ p remains constant at 0.8, but LIBRARY phase is O(n%) when

GENERAL phases progresses in O(n?) (o is 0.8 at n = 10°
nodes).
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Weak Scale #2

40 T
£ 30 Nb Faults PeriodicCkpt s
3 20 Nb Faults Bi-PeriodicCkpt mmsssm
s 0 Nb Faults ABFT PeriodicCkpt
#*
0 --l’-l‘lil
o E--»EJV-‘-E---E'"B‘"E"'E'"E"'E'"E"'E‘fl 100 .g
0.35 .ENE.‘.E--E"E'“'EE # 0.88 5
0.3 o /x 0.75 é
B i
0.25 g ® 1062 @
° [ /& 2
2 ! £
g 02 PeriodicCkpt /( 050 2
Bi-PeriodicCkpt ------ 4 @
0.15 - ABFT PeriodicCkpt - % 038 2
ABFT Ratio / g
01 % 025 £
0.05 ’4/%& 0.12 S
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SRR T 3 TS IR L i ﬁ"""""""'.-... N E
0 0.00
1k 10k 100k 1M

Nodes
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Weak Scale #3

Weak Scale Scenario #3

@ Number of components, n, increase

@ Memory per component remains constant

@ Problem Size increases in O(y/n) (e.g. matrix operation)

o patn=10% 1day, is O(%)

e C (=R) at n=10%, is 1 minute, stays independent of n
(0(1))

@ p remains constant at 0.8, but LIBRARY phase is O(n%) when
GENERAL phases progresses in O(n?) (« is 0.8 at n = 10°
nodes).
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Weak Scale #3

) 6f Nb Faults PeriodicCkpt s
S5 4} Nb Faults Bi-PeriodicCkpt
3 5 Nb Faults ABFT PeriodicCkpt . | '
#*
0 . ----lllllll'll I

0.4

0.35

0.3

0.25
i)
(2]
g 02 PeriodicCkpt —+—

Bi-PeriodicCkpt

015 ABFT PeriodicCkpt -

N //

0.05 -

..........,....................,...,...,...,...,!:._,.’.._‘.M...*...._,_.,.......,._,...,..,
0 e . i N
1k 10k 100k M
o =0.55 a=0.8 Nodes o=0.92 o=0.975
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Other techniqu

Outline

e Other techniques (35mn)

@ Replication
@ Failure Prediction
@ In-memory checkpointing

@ Silent errors

Fault-tolerance for HPC

yves.robert@ens-lyon.fr
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Other techniqu
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Outline

e Other techniques (35mn)
@ Replication
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000

Replication

@ Systematic replication: efficiency < 50%

@ Can replication+checkpointing be more efficient than
checkpointing alone?

@ Study by Ferreira et al. [SC'2011]: yes
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Model by Ferreira et al. [SC' 2011]

Parallel application comprising N processes

Platform with piotay = 2N processors

o

o

@ Each process replicated — N replica-groups

@ When a replica is hit by a failure, it is not restarted
o

Application fails when both replicas in one replica-group have
been hit by failures
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The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday 7

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

+oo
Birthday(N) = 1 +/ e (14 x/N)N=1dx
0

The analogy

Two people with same birthday

Two failures hitting same replica-group
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Differences with birthday problem

1 2 i N

@ N processes; each replicated twice

@ Uniform distribution of failures
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Other techniqu
000

Differences with birthday problem

i

1 2 i N

@ N processes; each replicated twice
@ Uniform distribution of failures
e First failure: each replica-group has probability 1/N to be hit
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Other techniqu

000

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure: can failed PE be hit?
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Other techniqu
000

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 157/ 182



Other techniqu

000

Differences with birthday problem

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 157/ 182



Other techniqu
000

Differences with birthday problem

-B

i

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)
o Probability that replica-group # i is hit by failure: 2/(2N — 1)
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Differences with birthday problem

-B

§

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)
o Probability that replica-group # i is hit by failure: 2/(2N — 1)
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Other techniqu
000

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

Failure uniformly distributed over 2N — 1 PEs

Probability that replica-group i is hit by failure: 1/(2N — 1)
Probability that replica-group # i is hit by failure: 2/(2N — 1)
Failure not uniformly distributed over replica-groups:

this is not the birthday problem
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Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE
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Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE

e Suppose failure hits replica-group 7
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Differences with birthday problem

i

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE

e Suppose failure hits replica-group 7
o If failure hits failed PE:
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Differences with birthday problem

1 2 i N

N processes; each replicated twice

First failure: each replica-group has probability 1/N to be hit
Second failure hit failed PE

Suppose failure hits replica-group i

If failure hits failed PE:

If failure hits running PE: application killed

Not all failures hitting the same replica-group are equal:

this is not the birthday problem

(]
@ Uniform distribution of failures
o
o
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Correct analogy

OO 4
1 2 3 4 n

i

0000000000 _ .
N = n,g bins, red and blue balls
Mean Number of Failures to Interruption (bring down application)

MNFTI = expected number of balls to throw
until one bin gets one ball of each color
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Failure distribution

200 200 o
150 4
g 100 o
£
5 50 o
— BESTPERIODg = 1 — BESTPERIOD-g = 1
o | — BestPemiong =2 o ] — BestPerion-g =2
T T T T T T T T T T T T T T
o 2 o I o P o s o a7 2 o 0 P

number of processors

(a) Exponential

number of processors

(b) Weibull, k = 0.7

Crossover point for replication when g = 125 years
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Weibull distribution with kK = 0.7

Dashed line: Ferreira et al. Solid line: Correct analogy
— C =150
1000000 | — C = 300
— C =600
— C =900
g 800000 + ¢ 1200
8 — C =2400
S
& 600000 —
s
é 400000 |
2
200000 —
0 T T —————

T T T
1 10 100
Processor MTBF (in years)

@ Study by Ferrreira et al. favors replication

@ Replication beneficial if small y + large C + big piotar
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Outline

e Other techniques (35mn)

@ Failure Prediction
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Framework

Predictor
e Exact prediction dates (at least C seconds in advance)
@ Recall r: fraction of faults that are predicted

@ Precision p: fraction of fault predictions that are correct

Events
@ true positive: predicted faults

@ false positive: fault predictions that did not materialize as
actual faults

o false negative: unpredicted faults
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Algorithm

© While no fault prediction is available:
e checkpoints taken periodically with period T
@ When a fault is predicted at time t:
e take a checkpoint ALAP (completion right at time t)
e after the checkpoint, complete the execution of the period
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Computing the waste

O Fault-free execution: WASTE[FF] = £

. .1 T
© Unpredicted faults: [D+ R+ L]

Error

<] & [[__[] ]

T-C T-C Tiost T-C Time
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Computing the waste

@ Predictions: -1 [p(C + D + R)+ (1 p)C]

©p
Error
[c] [ BB [ [c]
T-C Wieg T-Wieg-C T-C Time

with actual fault (true positive)

<] (B[4 [ [

T-C Wieg T-Wieg-C T-C T-C Time

no actual fault (false negative)

herault@icl.utk.edu — yves.robert@ens-lyon.fr Fault-tolerance for HPC 164/ 182



Other techniqu
oo

Computing the waste

@ Predictions: -1 [p(C + D + R)+ (1 p)C]

©p
Error
[c] [ BB [ [c]
T-C Wieg T-Wieg-C T-C Time

with actual fault (true positive)

<] (B[4 [ [

T-C Wieg T-Wieg-C T-C T-C Time

no actual fault (false negative)

2uC

fail] =
WASTE(fail] T,

1 T
; (1—r)2+D+R+;C:|:>TOpt%
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Refinements

@ Use different value C, for proactive checkpoints

@ Avoid checkpointing too frequently for false negatives
= Only trust predictions with some fixed probability q
= Ignore predictions with probability 1 — g
Conclusion: trust predictor always or never (g =0 or g = 1)

@ Trust prediction depending upon position in current period
= Increase g when progressing
= Break-even point 7"
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With prediction windows

Other techniqu
oo

(Regular mode) Error
4] & Gl ]
Tr-C Tr-C Tiost Tr-C Time
(Prediction without failure) /
] [ B ECECE [
Tr-C Wieg| [Tp-Co  Tp-Cp,  Tp-Cp |Twr-C Time
Regular mode Proactive mode Wieg
(Prediction with failure)  Error
<] [ @l ECEE [
Tr-C Wieg| [Tp-Co  Tp-Cp Tr-C Time
Regular mode Proactive mode “Weeg

Gets too complicated! @

Fault-tolerance for HPC
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Outline

e Other techniques (35mn)

@ In-memory checkpointing
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Motivation

@ Checkpoint transfer and storage
= critical issues of rollback/recovery protocols

@ Stable storage: high cost

@ Distributed in-memory storage:

e Store checkpoints in local memory = no centralized storage
© Much better scalability

o Replicate checkpoints = application survives single failure
® Still, risk of fatal failure in some (unlikely) scenarios
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Double checkpoint algorithm (Kale et al., UIUC)

Local checkpoint Remote checkpoint Period
done done done
Node p | 1 |
Node p' | 1 |
->
) 0 o
P

@ Platform nodes partitioned into pairs
@ Each node in a pair exchanges its checkpoint with its buddy

@ Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy's data
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Failures

Risk Period
Node p' 1 1

- - — Checkpoint of Checkpoint of
8 0 G 3 0 tiost ° P
P \ \
-— -—
D R 0 tiost

@ After failure: downtime D and recovery from buddy node

@ Two checkpoint files lost, must be re-sent to faulty processor
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Failures

wosop [ {8 Y :
Risk Pej
oo @ ; ;_Eﬁ¢<‘ ]
- - . Checkpoint of Checkpoint of
3 6 s 3 6 Yost ’ ’

Node to replace p

o After failure: downtime D and recovery from buddy node
@ Two checkpoint files lost, must be re-sent to faulty processor

@ Application at risk until complete reception of both messages

Best trade-off between performance and risk? J
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Outline

e Other techniques (35mn)

@ Silent errors
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Silent errors

@ Many types of faults: software error, hardware malfunction,
memory corruption

@ Many possible behaviors: silent, transient, unrecoverable
o Consider silent errors here

@ This includes some software faults, some hardware errors (soft
errors in L1 cache), bit flips (cosmic radiations)

@ Silent error detected when corrupt data is activated
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Detection latency

Instantaneous error detection = fail-stop failures

Silent errors (data corruption) = detection latency

Errorj 2 Detection

X. Xy Time

Error and detection latency

Last checkpoint may have saved an already corrupted state

Even when saving k checkpoints: which one to roll back to?

Critical failure: all checkpoints contain corrupted data
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Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

Time

V' large compared to w = large WASTE¢, can we improve that?
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Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

Time

V' large compared to w = large WASTE¢, can we improve that?
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Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

[« Mg« g« M« fd

Time

V small in front of w = large WASTEs,j, can we improve that?
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Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

[« Mg« g« M« fd

Time

V small in front of w = large WASTEs,j, can we improve that?
Is this better?

[z [ w2 e wrz 1 wrz e wrz ] w2 el wi2 1

Time
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Coupling checkpointing and verification

Large cost V: 5 checkpoints for 1 verification

More complicated periodic patterns? Different-size chunks?
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k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w Te[ w Je[ w Jef w Je] w V]

Time
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k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w e[ w Je[ w e w Je] w TvIr[ V]

Time
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k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w e[ w Je[ w Je] w Je] w TVIRTVIRI V]

T Time
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k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w Te[ w Je] w Jc] w Je] w JVIR[VIR[V]R]

Time
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k checkpoints for 1 verification

Where did the error strike?

Error

[e[ w Tl w [e] w Jef w Je] w [VIRIVIR[V]A]

Time

RE-EXEC =2(w + C) + (w + V)
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k checkpoints for 1 verification
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0.116
o 0-114
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20
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1 2 3 4 5 6 7 8 9 10
k

Waste as function of k, using optimal period

(V=100s,C =R =6sand u = loi’g?rs)
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o Conclusion (10mn)
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Conclusion

@ Multiple approaches to Fault Tolerance
@ Application-Specific Fault Tolerance will always provide more
benefits:

o Checkpoint Size Reduction (when needed)
o Portability (can run on different hardware, different

deployment, etc..)
o Diversity of use (can be used to restart the execution and

change parameters in the middle)
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Conclusion

@ Multiple approaches to Fault Tolerance
@ General Purpose Fault Tolerance is a required feature of the
platforms
o Not every computer scientist needs to learn how to write

fault-tolerant applications
e Not all parallel applications can be ported to a fault-tolerant

version
@ Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?
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Conclusion

Application-Specific Fault Tolerance

@ Fault Tolerance is introducing redundancy in the application
e replication of computation
e maintaining invariant in the data
@ Requirements of a more Fault-friendly programming
environment

e MPI-Next evolution
e Other programming environments?
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Conclusion

General Purpose Fault Tolerance

@ Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

@ Multi-criteria scheduling problem
execution time/energy /reliability
add replication
best resource usage (performance trade-offs)

@ Need combine all these approaches!

Several challenging algorithmic/scheduling problems @ J
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