Scheduling algorithms
for heterogeneous and failure-prone platforms

Yves Robert
Ecole Normale Supérieure de Lyon
& Institut Universitaire de France
http://graal.ens-lyon.fr/~yrobert

Joint work with Olivier Beaumont, Anne Benoit, Henri Casanova, Fanny Dufossé, Mathias Jacquelin, Arnaud Legrand, Loris Marchal, Paul Renaud-Goud, Arnold Rosenberg & Frédéric Vivien

HCW, Anchorage, May 16, 2011
Evolution of parallel machines

From (good old) parallel architectures ...
Evolution of parallel machines

...to heterogeneous clusters...
Evolution of parallel machines

...to large-scale grid platforms...
Evolution of parallel machines

...everything hard-to-program ... (courtesy Rajeev Thakur)
Evolution of parallel machines

...and definitely prone to failure!

(courtesy Al Geist)

Fear of the Exponential Growth in Parallelism

- Fundamental assumptions of today’s system software architecture did not anticipate exponential growth in parallelism
- Number of system components is increasing faster than component reliability, which is set by COTS needs
- Number of components and MTBF leading to a paradigm shift – Faults will be the norm rather than rare events. SW adaptation to frequent failures or “be crazy and die like a dog”
New platforms, new problems, new solutions

Parallel algorithm design and scheduling were already difficult tasks with homogeneous machines.

On heterogeneous multicore failure-prone platforms, it gets worse 😞

Need to adapt algorithms and scheduling strategies: new objective functions, new models
Parallel algorithm design and scheduling were already difficult tasks with homogeneous machines.

On heterogeneous multicore failure-prone platforms, it gets worse 😞

Need to adapt algorithms and scheduling strategies: new objective functions, new models.
Outline

1. Who needs a scheduler?
2. Background: scheduling DAGs
3. Steady-state scheduling
4. Energy-aware scheduling
5. Scheduling with replication
6. Checkpointing strategies
7. Conclusion
Outline

1. Who needs a scheduler?
2. Background: scheduling DAGs
3. Steady-state scheduling
4. Energy-aware scheduling
5. Scheduling with replication
6. Checkpointing strategies
7. Conclusion
Who needs a scheduler?

- Billions of (mostly idle) computers in the world
- All interconnected by these (mostly empty) network pipes
- Resources: abundant and cheap, not to say unlimited and free

- Virtual machines
- Greedy resource selection
- Demand-driven execution: first-come first-serve, round-robin

Nobody needs a scheduler!!!
Who needs a scheduler?

- Billions of (mostly idle) computers in the world
- All interconnected by these (mostly empty) network pipes
- Resources: abundant and cheap, i.e., to say unlimited and free

- Virtual machines
- Greedy resource selection
- Demand-driven execution: first-come first-serve, round-robin

Let's prove this wrong?!
(A) Independent tasks – no communication

- B independent equal-size tasks
- p processors P_1, P_2, \ldots, P_p
- $w_i = \text{time for } P_i \text{ to process a task}$

- **Intuition:** load of P_i proportional to its speed $1/w_i$
- Assign n_i tasks to P_i

Objective: minimize $T_{exe} = \max \left(\sum_{i=1}^{p} n_i \times w_i \right)$
Dynamic programming

With 3 processors: $w_1 = 3$, $w_2 = 5$, and $w_3 = 8$

<table>
<thead>
<tr>
<th>Task</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>T_{exe}</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming

With 3 processors: \(w_1 = 3, w_2 = 5, \text{ and } w_3 = 8 \)

<table>
<thead>
<tr>
<th>Task</th>
<th>(n_1)</th>
<th>(n_2)</th>
<th>(n_3)</th>
<th>(T_{\text{exe}})</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming

With 3 processors: \(w_1 = 3, w_2 = 5, \text{ and } w_3 = 8 \)

<table>
<thead>
<tr>
<th>Task</th>
<th>(n_1)</th>
<th>(n_2)</th>
<th>(n_3)</th>
<th>(T_{\text{exe}})</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming

With 3 processors: $w_1 = 3$, $w_2 = 5$, and $w_3 = 8$

<table>
<thead>
<tr>
<th>Task</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>T_{exe}</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming

With 3 processors: $w_1 = 3$, $w_2 = 5$, and $w_3 = 8$

<table>
<thead>
<tr>
<th>Task</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>T_{exe}</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming

With 3 processors: \(w_1 = 3, \ w_2 = 5, \text{ and } w_3 = 8 \)

<table>
<thead>
<tr>
<th>Task</th>
<th>(n_1)</th>
<th>(n_2)</th>
<th>(n_3)</th>
<th>(T_{\text{exe}})</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming

With 3 processors: $w_1 = 3$, $w_2 = 5$, and $w_3 = 8$

<table>
<thead>
<tr>
<th>Task</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>T_{exe}</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming

With 3 processors: \(w_1 = 3, \ w_2 = 5, \ \text{and} \ w_3 = 8 \)

<table>
<thead>
<tr>
<th>Task</th>
<th>(n_1)</th>
<th>(n_2)</th>
<th>(n_3)</th>
<th>(T_{\text{exe}})</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming

With 3 processors: \(w_1 = 3, \ w_2 = 5, \ \text{and} \ w_3 = 8 \)

<table>
<thead>
<tr>
<th>Task</th>
<th>(n_1)</th>
<th>(n_2)</th>
<th>(n_3)</th>
<th>(T_{\text{exe}})</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming

With 3 processors: $w_1 = 3$, $w_2 = 5$, and $w_3 = 8$

<table>
<thead>
<tr>
<th>Task</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>T_{exe}</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming

With 3 processors: \(w_1 = 3, \ w_2 = 5, \text{ and } w_3 = 8 \)

<table>
<thead>
<tr>
<th>Task</th>
<th>(n_1)</th>
<th>(n_2)</th>
<th>(n_3)</th>
<th>(T_{\text{exe}})</th>
<th>Selected proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Static versus dynamic

- Greedy (demand-driven) would have done a perfect job
- Would even be better (possible variations in processor speeds)

Static assignment required useless thinking 😞
Static versus dynamic

- Greedy (demand-driven) would have done a perfect job
- Would even be better (possible variations in processor speeds)

Static assignment required **useless thinking 😞**
(B) With dependencies – still no communication

A simple finite difference problem

- Iteration space: 2D rectangle of size $N_1 \times N_2$
- Dependences between tiles $\left\{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \right\}$
Allocation strategy (1/3)

Use column-wise allocation to enhance locality

Stepwise execution
Allocation strategy (1/3)

Use column-wise allocation to enhance locality

Stepwise execution

6 → 5 → 4 → 3 → 2 → 1 → 6 → 5 → 4 → 3 → 2 → 1...
Allocation strategy (1/3)

Use column-wise allocation to enhance locality

Stepwise execution

Yves.Robert@ens-lyon.fr
Allocation strategy (1/3)

Use column-wise allocation to enhance locality

Stepwise execution
Use column-wise allocation to enhance locality

Stepwise execution
Allocation strategy (1/3)

Use column-wise allocation to enhance locality

Stepwise execution
Allocation strategy (1/3)

Use column-wise allocation to enhance locality

```
...
6
5 → 6
4 → 5 → 6
3 → 4 → 5
2 → 3 → 4
1 → 2 → 3 ...
```

Stepwise execution
Allocation strategy (2/3)

- With column-wise allocation,

\[T_{\text{opt}} \approx \frac{N_1 \times N_2}{\sum_{i=1}^{p} \frac{1}{w_i}}. \]

- Greedy (demand-driven) allocation ⇒ slowdown ?!

- Execution progresses at the pace of the slowest processor 😞
Allocation strategy (2/3)

- With column-wise allocation,
 \[T_{opt} \approx \frac{N_1 \times N_2}{\sum_{i=1}^{p} \frac{1}{w_i}}. \]

- Greedy (demand-driven) allocation \(\Rightarrow \) **slowdown** ?!

- Execution progresses at the pace of the slowest processor 😞
With 3 processors, \(w_1 = 3 \), \(w_2 = 5 \), and \(w_3 = 8 \):

\[
T_{\text{exe}} \approx \frac{8}{3} N_1 N_2 \approx 2.67 N_1 N_2
\]

\[
T_{\text{opt}} \approx \frac{120}{79} N_1 N_2 \approx 1.52 N_1 N_2
\]
Periodic static allocation (1/2)

With 3 processors, $w_1 = 3$, $w_2 = 5$, and $w_3 = 8$:

Assigning blocks of $B = 10$ columns, $T_{\text{exe}} \approx 1.6 N_1 N_2$
Periodic static allocation (2/2)

- $L = \text{lcm}(w_1, w_2, \ldots, w_p)$

 Example: $L = \text{lcm}(3, 5, 8) = 120$

- P_1 receives first $n_1 = L/w_1$ columns, P_2 next $n_2 = L/w_2$ columns, and so on

- Period: block of $B = n_1 + n_2 + \ldots + n_p$ contiguous columns

 Example: $B = n_1 + n_2 + n_3 = 40 + 24 + 15 = 79$

- **Change schedule:**
 - Sort processors so that $n_1 w_1 \leq n_2 w_2 \leq \ldots \leq n_p w_p$
 - Process horizontally within blocks

- **Optimal 😊**
Outline

1. Who needs a scheduler?
2. Background: scheduling DAGs
3. Steady-state scheduling
4. Energy-aware scheduling
5. Scheduling with replication
6. Checkpointing strategies
7. Conclusion
Traditional scheduling – Framework

- **Application** DAG $G = (\mathcal{T}, E, w)$
 - \mathcal{T} = set of tasks
 - E = dependence constraints
 - $w(T)$ = computational cost of task T (execution time)
 - $c(T, T')$ = communication cost (data sent from T to T')

- **Platform** Set of p identical processors

- **Schedule**
 - $\sigma(T)$ = date to begin execution of task T
 - $\text{alloc}(T)$ = processor assigned to it

- **Objective** **Makespan** or total execution time

$$MS(\sigma) = \max_{T \in \mathcal{T}} (\sigma(T) + w(T))$$
Traditional scheduling – Constraints

- **Data dependences** If \((T, T') \in E\) then
 - if \(\text{alloc}(T) = \text{alloc}(T')\) then \(\sigma(T) + w(T) \leq \sigma(T')\)
 - if \(\text{alloc}(T) \neq \text{alloc}(T')\) then \(\sigma(T) + w(T) + c(T, T') \leq \sigma(T')\)

- **Resource constraints**

 \[
 \text{alloc}(T) = \text{alloc}(T') \implies \sigma(T) + w(T) \leq \sigma(T') \text{ or } (\sigma(T') + w(T') \leq \sigma(T))
 \]
Traditional scheduling – About the model

- Simple but OK for computational resources
 - No CPU sharing, even in models with preemption
 - At most one task running per processor at any time-step
- **Very crude** for network resources
 - Unlimited number of simultaneous sends/receives per processor
 - No contention \rightarrow unbounded bandwidth on any link
 - Fully connected interconnection graph (clique)
- In fact, model assumes **infinite** network capacity
Makespan minimization

- **NP-hardness**
 - \(Pb(p) \) NP-complete for independent tasks and no communications
 \((E = \emptyset, \ p = 2 \text{ and } c = 0) \)
 - \(Pb(p) \) NP-complete for UET-UCT graphs \((w = c = 1) \)

- **Approximation algorithms**
 - Without communications, list scheduling is a \((2 - \frac{1}{p}) \)-approximation
 - With communications, result extends to coarse-grain graphs
 - With communications, no \(\lambda \)-approximation in general
List scheduling – Without communications

Initialization:
- Compute priority level of all tasks
- Priority queue = list of free tasks (tasks without predecessors) sorted by priority

While there remain tasks to execute:
- Add new free tasks, if any, to the queue.
- If there are \(q \) available processors and \(r \) tasks in the queue, remove first \(\min(q, r) \) tasks from the queue and execute them

Priority level
- Use critical path: longest path from the task to an exit node
- Computed recursively by a bottom-up traversal of the graph
List scheduling – With communications

- **Priority level**
 - Use **pessimistic** critical path: include all edge costs in the weight
 - Computed recursively by a bottom-up traversal of the graph

- **MCP Modified Critical Path**
 - Assign free task with highest priority to **best** processor
 - Best processor = finishes execution first, given already taken scheduling decisions
 - Free tasks may not be ready for execution (communication delays)
 - May explore inserting the task in empty slots of schedule
 - Complexity $O(|V| \log |V| + (|E| + |V|)p)$
Extending the model to heterogeneous resources

- Task graph with n tasks T_1, \ldots, T_n.
- Platform with p heterogeneous processors P_1, \ldots, P_p.
- Computation costs:
 - $w_{iq} = \text{execution time of } T_i \text{ on } P_q$
 - $\overline{w_i} = \frac{\sum_{q=1}^{p} w_{iq}}{p} \text{ average execution time of } T_i$
 - particular case: consistent tasks $w_{iq} = w_i \times \gamma_q$
- Communication costs:
 - $\text{data}(i,j)$: data volume for edge $e_{ij} : T_i \rightarrow T_j$
 - v_{qr}: communication time for unit-size message from P_q to P_r (zero if $q = r$)
 - $\text{com}(i,j,q,r) = \text{data}(i,j) \times v_{qr}$ communication time from T_i executed on P_q to P_j executed on P_r
 - $\overline{\text{com}_{ij}} = \text{data}(i,j) \times \frac{\sum_{1 \leq q,r \leq p, q \neq r} v_{qr}}{p(p-1)} \text{ average communication cost for edge } e_{ij} : T_i \rightarrow T_j$
HEFT: Heterogeneous Earliest Finish Time

- Priority level:
 - \(\text{rank}(T_i) = \overline{w_i} + \max_{T_j \in \text{Succ}(T_i)} (\overline{\text{com}}_{ij} + \text{rank}(T_j)) \),
 - where \(\text{Succ}(T) \) is the set of successors of \(T \)
 - Recursive computation by bottom-up traversal of the graph

- Allocation
 - For current task \(T_i \), determine best processor \(P_q \):
 - minimize \(\sigma(T_i) + w_{iq} \)
 - Enforce constraints related to communication costs
 - Insertion scheduling: look for \(t = \sigma(T_i) \) s.t. \(P_q \) is available during interval \([t, t + w_{iq}]\)

- Complexity: same as MCP without/with insertion
What’s wrong?

- 😊 Nothing (still may need to map a DAG onto a platform!)
- 😞 Absurd communication model:
 complicated: many parameters to instantiate
 while not realistic (clique + no contention)
- 😞 Wrong metric: need to relax makespan minimization objective
What’s wrong?

- 😊 Nothing (still may need to map a DAG onto a platform!)
- 🙁 Absurd communication model:
 complicated: many parameters to instantiate
 while not realistic (clique + no contention)
- 😞 Wrong metric: need to relax makespan minimization objective
What’s wrong?

- 😊 Nothing (still may need to map a DAG onto a platform!)
- 😞 Absurd communication model: complicated: many parameters to instantiate while not realistic (clique + no contention)
- 😞 Wrong metric: need to relax makespan minimization objective
Favorite communication models

One-port
- serialize incoming (and/or) outgoing communications
- pessimistic but realistic
- standard MPI

Bounded multi-port
- several concurrent incoming and outgoing communications
- share total available bandwidth
- bottleneck = network card
- multi-threaded systems
Outline

1. Who needs a scheduler?
2. Background: scheduling DAGs
3. Steady-state scheduling
4. Energy-aware scheduling
5. Scheduling with replication
6. Checkpointing strategies
7. Conclusion
Volunteer computing applications

- Monte Carlo methods
- SETI@home
- Factoring large numbers
- Searching for Mersenne primes
- Particle detection at CERN (LHC@home)
- ... many others: BOINC at http://boinc.berkeley.edu
Example

Data starts here

My computer

Intermediate nodes can compute too

Internet Gateway

Cluster Host

Super-computer

Partnersite

Participating PC's and workstations
Example

A is the root of the tree; all tasks start at A

Time for sending one task from A to B

Time for computing one task in C
Example
Example

A compute
A send
B receive
B compute
C receive
C compute
C send
D receive
D compute

Time→

1 2 3
Introduction

Who needs a scheduler?

Background: scheduling DAGs

Steady-state scheduling

Energy-aware scheduling

Scheduling with replication

Checkpointing strategies

Conclusion

Example

A compute
A send
B receive
B compute
C receive
C compute
C send
D receive
D compute

Time→

Yves.Robert@ens-lyon.fr
Example
Example
Example

Steady-state: 7 tasks every 6 time units
Rule of the game

- Master sends tasks **sequentially**, without preemption
- Full computation/communication overlap for each worker
- Worker P_i receives a task in c_i time-units
- Worker P_i processes a task in w_i time-units
Equations

- Worker P_i executes α_i tasks per time-unit
- Computations: $\alpha_i w_i \leq 1$
- One-port communications: $\sum_i \alpha_i c_i \leq 1$
- Objective: maximize throughput

$$\rho = \sum_i \alpha_i$$
Solution

- Faster-communicating workers first: \(c_1 \leq c_2 \leq \ldots \)
- Make full use of first \(q \) workers, where \(q \) largest index s.t.
 \[
 \sum_{i=1}^{q} \frac{c_i}{w_i} \leq 1
 \]
- Make partial use of next worker \(P_{q+1} \)
- **Discard** other workers

Bandwidth-centric strategy
- Delegate work to the fastest communicating workers
- It doesn’t matter if these workers are computing slowly
- Slow workers will not contribute much to overall throughput
Example

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Communication</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 tasks to P_1</td>
<td>$6c_1 = 6$</td>
<td>$6w_1 = 18$</td>
</tr>
<tr>
<td>3 tasks to P_2</td>
<td>$3c_2 = 6$</td>
<td>$3w_2 = 18$</td>
</tr>
<tr>
<td>2 tasks to P_3</td>
<td>$2c_3 = 6$</td>
<td>$2w_3 = 2$</td>
</tr>
</tbody>
</table>

11 tasks every 18 time-units ($\rho = 11/18 \approx 0.6$)
Example

Compare to purely greedy (demand-driven) strategy!

5 tasks every 36 time-units ($\rho = \frac{5}{36} \approx 0.14$)

Even if resources are cheap and abundant, resource selection is key to performance
Extension to trees

Resource selection based on local information (children)
Does this really work?

- Can we deal with arbitrary platforms (including cycles)?
- Can we deal with return messages?
- In fact, can we deal with more complex applications (arbitrary collections of DAGs)?
Does this really work?

- Can we deal with arbitrary platforms (including cycles)? Yes
- Can we deal with return messages?
- In fact, can we deal with more complex applications (arbitrary collections of DAGs)?
Does this really work?

- Can we deal with arbitrary platforms (including cycles)? Yes
- Can we deal with return messages?
 - In fact, can we deal with more complex applications (arbitrary collections of DAGs)?
Does this really work?

- Can we deal with arbitrary platforms (including cycles)? Yes
- Can we deal with return messages? Yes
- In fact, can we deal with more complex applications (arbitrary collections of DAGs)?
Does this really work?

- Can we deal with arbitrary platforms (including cycles)? Yes
- Can we deal with return messages? Yes
- In fact, can we deal with more complex applications (arbitrary collections of DAGs)?
Does this really work?

- Can we deal with arbitrary platforms (including cycles)? Yes
- Can we deal with return messages? Yes
- In fact, can we deal with more complex applications (arbitrary collections of DAGs)? Yes, I mean, almost!
LP formulation still works well . . .

\[\forall m, n \sum_j \text{sent}(P_j \rightarrow P_i, e_{mn}) + \text{executed}(P_i, T_m) = \text{executed}(P_i, T_n) + \sum_k \text{sent}(P_i \rightarrow P_k, e_{mn}) \]

Conservation law

\[\sum_m \text{executed}(P_i, T_m) \times \text{flops}(T_m) \times w_i \leq 1 \]

Computations

\[\sum_{m, n} \sum_j \text{sent}(P_j \rightarrow P_i, e_{mn}) \times \text{bytes}(e_{mn}) \times c_{ij} \leq 1 \]

Outgoing communications
...but schedule reconstruction is harder

- 😊 Actual (cyclic) schedule obtained in polynomial time
- 😊 Asymptotic optimality
- 😞 A couple of practical problems (large period, # buffers)
- 😞 No local scheduling policy
The beauty of steady-state scheduling

Rationale Maximize throughput

Simplicity Relaxation of makespan minimization problem
 - Ignore initialization and clean-up
 - Precise ordering of tasks/messages not needed
 - Characterize resource activity per time-unit:
 - fraction of time spent computing for each application
 - fraction of time spent receiving from / sending to each neighbor?

Efficiency Optimal throughput \Rightarrow optimal schedule (up to a constant number of tasks)

Periodic schedule, described in compact form
\Rightarrow compiling a loop instead of a DAG!
Lesson learnt?

Resource selection is mandatory
Outline

1. Who needs a scheduler?
2. Background: scheduling DAGs
3. Steady-state scheduling
4. Energy-aware scheduling
5. Scheduling with replication
6. Checkpointing strategies
7. Conclusion
Scheduling workflows

- **Data streams:** images, frames, matrices, etc.
- **Structured applications:** several steps to process each data set

Goal: “efficiently” use computing resources
Example

- 4 processing stages, 3 processors at our disposal
- Where/how can we execute the application?
Example

- 4 processing stages, 3 processors at our disposal
- Where/how can we execute the application?

![DAG diagram with processing stages and processors]

\[S_1: 5 \quad S_2: 2 \quad S_3: 3 \quad S_4: 20 \]

\[P_1: 10 \quad P_2: 1 \quad P_3: 20 \]
Example

- 4 processing stages, 3 processors at our disposal
- Where/how can we execute the application?

Use all resources **greedily**

Many communications to pay, **not efficient at all!**
Example

- 4 processing stages, 3 processors at our disposal
- Where/how can we execute the application?

Everything on fastest processor: no communication
Optimal execution time to process one single data
4 processing stages, 3 processors at our disposal

Where/how can we execute the application?

Optimal throughput: processing different data in parallel

Resource selection: do not use slowest processor
Optimization criteria

- **Period** P: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)
- **Latency** L: maximal time elapsed between beginning and end of execution of a data set
- **Reliability**: inverse of F, probability of failure of the application (i.e., some data sets will not be processed)
- **Energy** E: total power dissipated by platform
Optimization criteria

- **Period P**: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)
- **Latency L**: maximal time elapsed between beginning and end of execution of a data set
- **Reliability**: inverse of F, probability of failure of the application (i.e., some data sets will not be processed)
- **Energy E**: total power dissipated by platform
Optimization criteria

- **Period** \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)
- **Latency** \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set
- **Reliability**: inverse of \mathcal{F}, probability of failure of the application (i.e., some data sets will not be processed)
- **Energy** \mathcal{E}: total power dissipated by platform
Optimization criteria

- **Period** \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)
- **Latency** \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set
- **Reliability**: inverse of \mathcal{F}, probability of failure of the application (i.e., some data sets will not be processed)
- **Energy** \mathcal{E}: total power dissipated by platform

“The internet begins with coal”
A primer on energy consumption

Algorithmic techniques:

- **Shut down idle processors**
- **Dynamic speed scaling:** processors can run at variable speed, e.g., Intel XScale, Intel Speed Step, AMD PowerNow
- **VDD Hopping:** from discrete modes to continuous speed

Dissipated power

- The higher the speed, the higher the power consumption
- **Power** \(= f \times V^2\), and \(V\) (voltage) increases with \(f\) (frequency)
- Speed \(s\): \(P(s) = s^\alpha + P_{static}\), with \(2 \leq \alpha \leq 3\)
A primer on energy consumption

Algorithmic techniques:

- Shut down idle processors
- **Dynamic speed scaling**: processors can run at variable speed, e.g., Intel XScale, Intel Speed Step, AMD PowerNow
- **VDD Hopping**: from discrete modes to continuous speed

Dissipated power

- The higher the speed, the higher the power consumption
- \(\text{Power} = f \times V^2 \), and \(V \) (voltage) increases with \(f \) (frequency)
- Speed \(s \): \(P(s) = s^\alpha + P_{\text{static}} \), with \(2 \leq \alpha \leq 3 \)
Example

\[T = 3 \]

\[L = 8 \]

Period: \(T = 3 \)
Latency: \(L = 8 \)
Example

\[T = 3 \]
\[L = 8 \]

- **Period:** \(T = 3 \)
- **Latency:** \(L = 8 \)
Example

\[P = 3^3 + 8^3 = 539 \]

\(P_1 \)

\(P_2 \)

- Period: \(T = 3 \)
- Latency: \(L = 8 \)
Example

- Period: $T = 3$
- Latency: $L = 8$

$P = 3^3 + 8^3 = 539$
Example

\[P = 3^3 + 8^3 = 539 \]

- Period: \(T = 3 \)
- Latency: \(L = 8 \)
Example

\[P = 3^3 + 8^3 = 539 \]

- Period: \(T = 3 \)
- Latency: \(L = 8 \)
Example

$P = 3^3 + 8^3 = 539$

- Period: $T = 3$
- Latency: $L = 8$
Example

$P = 3^3 + 8^3 = 539$

- Period: $T = 3$
- Latency: $L = 8$
Example

\[P = 3^3 + 8^3 = 539 \]

Period: \(T = 3 \)

Latency: \(L = 8 \)
Example

\[P = 3^3 + 8^3 = 539 \]

- Period: \(T = 3 \)
- Latency: \(L = 8 \)
Example

\[P = 3^3 + 8^3 = 539 \]

- Period: \(T = 3 \)
- Latency: \(L = 8 \)
Example

\[P = 3^3 + 8^3 = 539 \]

- Period: \(T = 3 \)
- Latency: \(L = 8 \)
Example

Period: \(T = 3 \)
Latency: \(L = 8 \)

\[P = 3^3 + 8^3 = 539 \]
Example

\[P = 3^3 + 8^3 = 539 \]

- Period: \(T = 3 \)
- Latency: \(L = 8 \)

\[\begin{align*}
&\text{Period: } T = 3 \\
&\text{Latency: } L = 8
\end{align*} \]
Example

\[P = 3^3 + 8^3 = 539 \]

- Period: \(T = 3 \)
- Latency: \(L = 8 \)
Example

\[P = 3^3 + 8^3 = 539 \]

- Period: \(T = 3 \)
- Latency: \(L = 8 \)
Example

\[P = 3^3 + 8^3 = 539 \]

- Period: \(T = 3 \)
- Latency: \(L = 8 \)
Example

\[P = 3^3 + 8^3 = 539 \]

- Period: \(T = 3 \)
- Latency: \(L = 8 \)
Example

Period: $T = 3$
Latency: $L = 8$
Example

\[P = 539 \]
\[P = 8 \]

- Period: \(T = 3 \) \(T = 15 \)
- Latency: \(L = 8 \)
Example

\[P = 539 \]
\[P = 8 \]

- **Period:** \(T = 3 \) \(T = 15 \)
- **Latency:** \(L = 8 \) \(L = 17 \)
Multi-criteria optimization

Performance-oriented objectives

- Minimize period (inverse of throughput)
- Minimize latency (time to process a data set)
- Minimize application failure probability

Environmental objectives

- Minimize energy consumption
- Minimize platform cost

Objective function

- Minimize $\alpha P + \beta L + \gamma E$
- Minimize period, given a response time bound and an energy budget!
Multi-criteria optimization

Performance-oriented objectives

- Minimize period (inverse of throughput) \(P \)
- Minimize latency (time to process a data set) \(L \)
- Minimize application failure probability

Environmental objectives

- Minimize energy consumption \(E \)
- Minimize platform cost

Objective function

- Minimize \(\alpha P + \beta L + \gamma E \)?
- Minimize period, given a response time bound and an energy budget!
Multi-criteria optimization

Performance-oriented objectives

- Minimize period (inverse of throughput) P
- Minimize latency (time to process a data set) L
- Minimize application failure probability

Environmental objectives

- Minimize energy consumption E
- Minimize platform cost

Objective function

- Minimize $\alpha P + \beta L + \gamma E$?
- Minimize period, given a response time bound and an energy budget!
Research problems

Single workflow

- Performance (period/latency) vs. environment (energy, cost)
- Robust mappings (replication for performance vs. for reliability)

Several (concurrent) workflows

- Competition for CPU and network resources
- Fairness between applications:
 - max-min throughput
 - min-max stretch (slowdown factor)
- Sensitivity to application/platform parameter changes
Research problems

Single workflow
- Performance (period/latency) vs. environment (energy, cost)
- Robust mappings (replication for performance vs. for reliability)

Several (concurrent) workflows
- Competition for CPU and network resources
- Fairness between applications:
 - max-min throughput
 - min-max stretch (slowdown factor)
- Sensitivity to application/platform parameter changes
Introduction

Who needs a scheduler?

Background: scheduling DAGs

Steady-state scheduling

Energy-aware scheduling

Scheduling with replication

Checkpointing strategies

Conclusion
Cycle-stealing scenario (1/2)

- Execute 4 jobs A, B, C, D during week-end
- Replicate them on 3 machines P_1, P_2 and P_3
- Risk increases with time
- Machines reclaimed at 8am on Monday with probability 1
Cycle-stealing scenario (1/2)

- Execute 4 jobs \(A, B, C, D \) during week-end
- Replicate them on 3 machines \(P_1, P_2 \) and \(P_3 \)
- Risk increases **linearly** with time
- Machines reclaimed at 8am on Monday **with probability 1**
Cycle-stealing scenario (2/2)

\[P_1 \quad 1 \quad 2 \quad 3 \quad 4 \]
Cycle-stealing scenario (2/2)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cycle-stealing scenario (2/2)

\[
\begin{array}{cccc}
A & B & C & D \\
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
\end{array}
\]
Cycle-stealing scenario (2/2)

\[P_1 \begin{array}{cccc} A & B & C & D \\ 1 & 2 & 3 & 4 \end{array} \]

\[P_2 \begin{array}{cccc} 4 & 3 & 2 & 1 \end{array} \]

\[P_3 \]
Cycle-stealing scenario (2/2)

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
P_1 & 1 & 2 & 3 & 4 \\
P_2 & 4 & 3 & 2 & 1 \\
P_3 & 4 & 3 & 2 & 1 \\
\end{array}
\]
Cycle-stealing scenario (2/2)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Problem

- n chunks (divisible computational workload)
- p identical computers
- Replicate p times the execution of each chunk

Unrecoverable (fail-stop) interruptions

A-priori knowledge of risk (failure probability)

Goal: maximize expected amount of work done
Problem

- \(n \) chunks (divisible computational workload)
- \(p \) identical computers
- Replicate \(p \) times the execution of each chunk

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\hline
\text{Group 1} & \text{Group 1} & \text{Group 3} \\
\end{array} \]

- Unrecoverable (fail-stop) interruptions
- A-priori knowledge of risk (failure probability)

Goal: maximize expected amount of work done
Symmetric schedules (1/2)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P_4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Group 1

Group 3
Symmetric schedules (1/2)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P_4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Group 1

Group 1

Group 3
Symmetric schedules (1/2)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P_4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Symmetric schedules (1/2)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 1</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P_4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Symmetric schedules (1/2)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P_4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Symmetric schedules (1/2)
Symmetric schedules (1/2)

Diagram and Table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P_4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Group 1

Group 1

Group 3

Yves.Robert@ens-lyon.fr

Scheduling algorithms
Symmetric schedules (1/2)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P_4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Symmetric schedules (1/2)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>P2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Symmetric schedules (2/2)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>P_2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P_4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Group 1	Group 2	Group 3
1 | 2 | 3
6 | 5 | 4
9 | 8 | 7
12 | 11 | 10

Time-steps for group execution

$G_{ij} = i$-th execution of group j
Optimization problem (1/2)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>
Optimization problem (1/2)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

All four executions fail with probability prop. to $1 \times 6 \times 9 \times 12$
Optimization problem (1/2)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

All four executions fail with probability prop. to $1 \times 6 \times 9 \times 12$

- First execution failure probability $\lambda \omega G_{11}$
 - $G_{11} = 1$
- Second execution failure probability $\lambda \omega G_{21}$
 - $G_{21} = 6$
- Third execution failure probability $\lambda \omega G_{31}$
 - $G_{31} = 9$
- Fourth execution failure probability $\lambda \omega G_{41}$
 - $G_{41} = 12$
- Whole schedule failure probability $\lambda^4 \omega^4 \prod_{i=1}^{4} G_{i1}$
 - $1 \times 6 \times 9 \times 12$
Optimization problem (1/2)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

All four executions fail with probability prop. to $2 \times 5 \times 8 \times 11$
Optimization problem (1/2)

All four executions fail with probability prop. to $3 \times 4 \times 7 \times 10$
Optimization problem (2/2)

\[\mathbb{E}(\text{jobdone}) = \sum_{j=1}^{n/p} p\omega \left(1 - \lambda^p \omega^p \prod_{i=1}^{p} G_{i,j} \right)\]

Problem

Minimize

\[K = \sum_{j=1}^{n/p} \prod_{i=1}^{p} G_{i,j}\]

where entries of \(G\) are a permutation of \([1..n]\)

Bound

\[K_{\text{min}} = \left\lceil \frac{n}{p} \frac{n^{p/2}}{\sqrt{n!}} \right\rceil\]
Heuristics (1/3)

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

(a) **Cyclic:** $K = 3104$

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

(b) **Reverse:** $K = 2368$
Heuristics (2/3)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

(c) **Mirror:** $K = 2572$

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

(d) **Snake:** $K = 2464$
Heuristics (3/3)

<table>
<thead>
<tr>
<th>Step 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>6</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>9</th>
<th>8</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP</td>
<td>54</td>
<td>80</td>
<td>84</td>
</tr>
</tbody>
</table>

| Step 4 | 12| 11| 10|

(e) **Greedy:** \(K = 2368 \)

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

(f) **Optimal** \(K = 2352 \geq K_{\text{min}} = \lceil 3^{\sqrt{12!}} \rceil = 2348 \)
Introduction

Who needs a scheduler?

Background: scheduling DAGs

- Steady-state scheduling
- Energy-aware scheduling

A nice little algorithmic challenge

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th></th>
<th>Group n/p</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>P_2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>P_3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>P_4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>P_p</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Fill up matrix with a **permutation of $[1..n]$**

minimizing the **sum of column products**

OK, OK, Greedy asymptotically optimal 😊

Still, this is a 😞 frustrating 😞 open 😞 problem 😞 😞 😞
A nice little algorithmic challenge

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>...</th>
<th>Group n/p</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>...</td>
<td>x</td>
</tr>
<tr>
<td>P_2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>...</td>
<td>x</td>
</tr>
<tr>
<td>P_3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>...</td>
<td>x</td>
</tr>
<tr>
<td>P_4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>...</td>
<td>x</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>P_p</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>...</td>
<td>x</td>
</tr>
</tbody>
</table>

Fill up matrix with a permutation of $[1..n]$ minimizing the sum of column products

OK, OK, Greedy asymptotically optimal 😊
Still, this is a 😞 frustrating 😞 open 😞 problem 😞 😞 😞
Many potential sources of heterogeneity

- Processor of different speeds
- Links of different bandwidths
- Resources obeying different risk functions
 - different owner categories?

Trade-off between speed and reliability
Mapping applications on volatile resources

Iterative applications
- Independent / tightly-coupled tasks within each iteration
- Synchronization (checkpoint) after each iteration

Master-worker paradigm
- Heterogeneous processors
- Limited available bandwidth from master to workers

Volatile desktop grids
- Resource availability: UP / RECLAIMED / DOWN
- Markov process (with different transition probabilities)

Goal: on-line policies for resource selection
- Which resources to enroll? fast or reliable?
- When to change configuration?
Outline

1. Who needs a scheduler?
2. Background: scheduling DAGs
3. Steady-state scheduling
4. Energy-aware scheduling
5. Scheduling with replication
6. Checkpointing strategies
7. Conclusion
Motivation

Framework

- **Very very** large number of processing elements (e.g., 2^{20})
- Failure-prone platform (like any realistic platform)
- Large application to be executed

\implies Failure(s) will indeed occur before completion!

Questions

- When to checkpoint the application?
- Always use all processors?
Notations

- Overall size of work: W
- Checkpoint cost: C
- Downtime: D
 - software rejuvenation via rebooting
 - replacement by spare
- Recovery cost after failure: R
Makespan vs. NextFailure

- **Makespan**: Minimize job’s expected makespan
- **NextFailure**: Maximize expected amount of work completed before next failure

Rationale:
- **NextFailure**: optimization on a “failure-by-failure” basis
- Hopefully a good approximation, at least for large job sizes \mathcal{W}
Makespan

\[
T(0|\tau) = 0 \\
T(\omega|\tau) = \\
\begin{cases}
\omega_1 + C + T(\omega - \omega_1|\tau + \omega_1 + C) \\
\quad \text{if the processor does not fail during} \\
\quad \text{the next } \omega_1 + C \text{ units of time} \\
T_{\text{wasted}}(\omega_1 + C|\tau) + T(\omega|R) \\
\quad \text{otherwise.}
\end{cases}
\]

Makespan: find \(\omega_1 = f(\omega|\tau) \leq \omega \) that minimizes \(\mathbb{E}(T(\mathcal{W}|0)) \)
NextFailure

\[
W(0|\tau) = 0 \\
W(\omega|\tau) = \\
\begin{cases}
\omega_1 + W(\omega - \omega_1|\tau + \omega_1 + C) \\
\text{if the processor does not fail during} \\
\text{the next } \omega_1 + C \text{ units of time,} \\
0 \quad \text{otherwise.}
\end{cases}
\]

NextFailure: find \(\omega_1 = f(\omega|\tau) \leq \omega \) that maximizes \(E(\mathcal{W}(0)) \)
Single-processor jobs

Makespan

- Exponential $F(t) = 1 - e^{-\lambda t}$: periodic strategy optimal
- Other (Weibull $F(t) = 1 - e^{-\frac{t^k}{\lambda^k}}$): open

NextFailure

- Open for all failure laws

Accurate dynamic programming approximations
Parallel jobs

Models

- Embarrassingly parallel jobs: $\mathcal{W}(p) = \mathcal{W}/p$
- Amdahl parallel jobs: $\mathcal{W}(p) = \mathcal{W}/p + \gamma \mathcal{W}$
- Numerical kernels: $\mathcal{W}(p) = \mathcal{W}/p + \gamma \mathcal{W}^{2/3}/\sqrt{p}$

Accurate dynamic programming approximations
Parallel jobs

\[\text{loss}(p_{\text{used}}) \text{ vs } p_{\text{used}} \text{ for jobs obeying Amdahl’s law on Jaguar} \]
Problems

- Software/hardware techniques to reduce checkpoint, recovery, migration times and to improve failure prediction
- "Self-fault-tolerant" algorithms (e.g. asynchronous iterative)
- Multi-criteria scheduling problem throughpt/energy/reliability
- Add replication and group execution

Need combine all these approaches! 😞
Tools for the road

- Forget absolute makespan minimization
- Resource selection mandatory
- Divisible load (fractional tasks)
- Single application: period / latency / energy / robustness
- Several applications: max-min fairness, MAX stretch
- Linear programming: absolute bound to assess heuristics
- Probabilities and stochastic models . . . unavoidable
Scheduling for large-scale platforms

- If platform is well identified and relatively stable, try to:
 (i) accurately model hierarchical structure
 (ii) design efficient/robust/energy-aware scheduling algorithms

- If platform is not stable enough, or if it evolves too fast, dynamic schedulers are the only option

- Otherwise, grab any opportunity to

 inject static knowledge into dynamic schedulers

- 🙁 Is this opportunity a niche?
- 😊 Does it encompass a wide range of applications?
Scheduling for large-scale platforms

- If platform is well identified and relatively stable, try to:
 (i) accurately model hierarchical structure
 (ii) design efficient/robust/energy-aware scheduling algorithms

- If platform is not stable enough, or if it evolves too fast, dynamic schedulers are the only option

- Otherwise, grab any opportunity to

 inject static knowledge into dynamic schedulers

- Is this opportunity a niche?
- Does it encompass a wide range of applications?