Other techniques

An overview of fault-tolerant techniques for HPC

Yves Robert

ENS Lyon & Institut Universitaire de France University of Tennessee Knoxville

yves.robert@ens-lyon.fr
http://graal.ens-lyon.fr/~yrobert/

Sophia Tech, November 5, 2013

< 3 > < 3 >

Other techniques

Conclusion

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture with a cap of \$200M and 20MW

Systems	2011 K computer	2019	Difference Today & 2019
System peak	10.5 Pflop/s	1 Eflop/s	O(100)
Power	12.7 MW	~20 MW	
System memory	1.6 PB	32 - 64 PB	O(10)
Node performance	128 GF	1,2 or 15TF	O(10) - O(100)
Node memory BW	64 GB/s	2 - 4TB/s	O(100)
Node concurrency	8	O(1k) or 10k	O(100) - O(1000)
Total Node Interconnect BW	20 GB/s	200-400GB/s	O(10)
System size (nodes)	88,124	O(100,000) or O(1M)	O(10) - O(100)
Total concurrency	705,024	O(billion)	O(1,000)
MTTI	days	O(1 day)	- O(10)

Conclusion

Exascale platforms (courtesy C. Engelmann & S. Scott)

Toward Exascale Computing (My Roadmap)

Based on proposed DOE roadmap with MTTI adjusted to scale linearly

Systems	2009	2011	2015	2018
System peak	2 Peta	20 Peta	100-200 Peta	1 Exa
System memory	0.3 PB	1.6 PB	5 PB	10 PB
Node performance	125 GF	200GF	200-400 GF	1-10TF
Node memory BW	25 GB/s	40 GB/s	100 GB/s	200-400 GB/s
Node concurrency	12	32	O(100)	O(1000)
Interconnect BW	1.5 GB/s	22 GB/s	25 GB/s	50 GB/s
System size (nodes)	18,700	100,000	500,000	O(million)
Total concurrency	225,000	3,200,000	O(50,000,000)	O(billion)
Storage	15 PB	30 PB	150 PB	300 PB
Ю	0.2 TB/s	2 TB/s	10 TB/s	20 TB/s
MTTI	4 days	19 h 4 min	3 h 52 min	1 h 56 min
Power	6 MW	~10MW	~10 MW	~20 MW

Exascale platforms

Hierarchical

- $\bullet~10^5~\text{or}~10^6~\text{nodes}$
- \bullet Each node equipped with $10^4~\textrm{or}~10^3~\textrm{cores}$

• Failure-prone

MTBF – one node	1 year	10 years	120 years
MTBF – platform	30sec	5mn	1h
of 10 ⁶ nodes			

More nodes \Rightarrow Shorter MTBF (Mean Time Between Failures)

Theorem:
$$\mu_p = rac{\mu}{p}$$
 for arbitrary distributions

3 K K 3 K

Exascale platforms

Hierarchical

- $\bullet~10^5~{\rm or}~10^6~{\rm nodes}$
- Each node equipped with 10^4 or 10^3 cores

• Failure-prone

MTBF – one node	1 year	10 years	120 years
MTBF – platform	30sec	5mn	1h
of 10 ⁶ nodes			

More nodes \Rightarrow Shorter MTBF (Mean Time Between Failures)

Theorem:
$$\mu_p = \frac{\mu}{p}$$
 for arbitrary distributions

3 K K 3 K

Other techniques

Conclusion

Even for today's platforms (courtesy F. Cappello)

ABFT for dense linear algebra kernels Other techniques Even for today's platforms (courtesy F. Cappello) Classic approach for FT: Ialanced System Approact Checkpoint-Restart Typical "Balanced Architecture" for PetaScale Computers Compute nodes 40 to 200 GB/s RoadRunner Parallel file system Total memory: 1 to 2 PB) 100-200 TB I/O nodes

Without optimization, Checkpoint-Restart needs about 1h! (~30 minutes each)

Systems	Perf.	Ckpt time	Source
RoadRunner	1PF	~20 min.	Panasas
LLNL BG/L	500 TF	>20 min.	LLNL
LLNL Zeus	11TF	26 min.	LLNL
YYY BG/P	100 TF	~30 min.	YYY

LLNL BG/L

Other techniques

Conclusion

Error sources (courtesy Franck Cappello)

Sources of failures

- Analysis of error and failure logs
- In 2005 (Ph. D. of CHARNG-DA LU) : "Software halts account for the most number of outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware problems, albeit rarer, need 6.3-100.7 hours to solve."

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered

A few definitions

- Many types of faults: software error, hardware malfunction, memory corruption
- Many possible behaviors: silent, transient, unrecoverable
- Restrict to faults that lead to application failures
- This includes all hardware faults, and some software ones
- Will use terms *fault* and *failure* interchangeably

Other techniques

Conclusion

Failure distributions: (1) Exponential

 $Exp(\lambda)$: Exponential distribution law of parameter λ :

• Pdf: $f(t) = \lambda e^{-\lambda t} dt$ for $t \ge 0$

• Cdf:
$$F(t) = 1 - e^{-\lambda t}$$

• Mean $= \frac{1}{\lambda}$

伺下 イヨト イヨト

3

Other techniques

Conclusion

Failure distributions: (1) Exponential

X random variable for $Exp(\lambda)$ failure inter-arrival times:

- $\mathbb{P}(X \leq t) = 1 e^{-\lambda t} dt$ (by definition)
- Memoryless property: $\mathbb{P}(X \ge t + s | X \ge s) = \mathbb{P}(X \ge t)$ at any instant, time to next failure does not depend upon time elapsed since last failure

• Mean Time Between Failures (MTBF) $\mu = \mathbb{E}(X) = \frac{1}{\lambda}$

Other techniques

Failure distributions: (2) Weibull

Weibull (k, λ) : Weibull distribution law of shape parameter k and scale parameter λ :

- Pdf: $f(t) = k\lambda(t\lambda)^{k-1}e^{-(\lambda t)^k}dt$ for $t \ge 0$
- Cdf: $F(t) = 1 e^{-(\lambda t)^k}$
- Mean $= \frac{1}{\lambda} \Gamma(1 + \frac{1}{k})$

伺下 イヨト イヨト

Failure distributions: (2) Weibull

X random variable for Weibull(k, λ) failure inter-arrival times:

- If k < 1: failure rate decreases with time "infant mortality": defective items fail early
- If k = 1: Weibull $(1, \lambda) = Exp(\lambda)$ constant failure time

< 3 > < 3 >

10/76

Values from the literature

- MTBF of one processor: between 1 and 125 years
- Shape parameters for Weibull: k = 0.5 or k = 0.7
- Failure trace archive from INRIA (http://fta.inria.fr)
- Computer Failure Data Repository from LANL (http://institutes.lanl.gov/data/fdata)

11/76

Outline

Checkpointing

- Young/Daly approximation
- Exponentially distributed failures advanced analysis
- Assessing checkpointing protocols
- In-memory checkpointing
- Fault prediction

∃ → (∃ →

Outline

Checkpointing

- Young/Daly approximation
- Exponentially distributed failures advanced analysis
- Assessing checkpointing protocols
- In-memory checkpointing
- Fault prediction

(日) (同) (三) (三)

Other techniques

Tiled LU factorization

- Solve $A \cdot x = b$ (hard)
- Transform A into a LU factorization
- Solve $L \cdot y = B \cdot b$, then $U \cdot x = y$

Tiled LU factorization

TRSM - Update row block

- Solve $A \cdot x = b$ (hard)
- Transform A into a LU factorization
- Solve $L \cdot y = B \cdot b$, then $U \cdot x = y$

Tiled LU factorization

TRSM - Update row block

- Solve $A \cdot x = b$ (hard)
- Transform A into a LU factorization
- Solve $L \cdot y = B \cdot b$, then $U \cdot x = y$

Other techniques

Conclusion

Tiled LU factorization

- 2D Block Cyclic Distribution (here 2×3)
- A single failure \Rightarrow many data lost

∃ ▶ ∢

Other techniques

Conclusion

Algorithm Based Fault Tolerant LU decomposition

• Checksum: invertible operation on row/column data

 Checksum replication avoided by dedicating additional computing resources to checksum storage

15/76

Other techniques

Conclusion

Algorithm Based Fault Tolerant LU decomposition

• Checksum: invertible operation on row/column data

• Checksum blocks are doubled, to allow recovery when data and checksum are lost together (no extra resource needed)

ABFT for dense linear algebra kernels

Checkpointing

Other techniques

Conclusion

Algorithm Based Fault Tolerant LU decomposition

• Checksum: invertible operation on row/column data

• Key idea of ABFT: applying the operation on data and checksum preserves the checksum properties

Other techniques

Conclusion

Performance

MPI-Next ULFM Performance

• Open MPI with ULFM; Kraken supercomputer;

Yves.Robert@ens-lyon.fr

Fault-tolerance for HPC

< A

16/76

∃ →

Outline

Checkpointing

- Young/Daly approximation
- Exponentially distributed failures advanced analysis
- Assessing checkpointing protocols
- In-memory checkpointing
- Fault prediction

イロト イ団ト イヨト イヨト

Outline

Checkpointing

Young/Daly approximation

- Exponentially distributed failures advanced analysis
- Assessing checkpointing protocols
- In-memory checkpointing
- Fault prediction

イロト イ団ト イヨト イヨト

Blocking model: while a checkpoint is taken, no computation can be performed

A B F A B F

< 🗗 🕨

- Periodic checkpointing policy of period T
- Independent and identically distributed failures
- Applies to a single processor with MTBF $\mu = \mu_{ind}$
- Applies to a platform with p processors with MTBF $\mu = \frac{\mu_{ind}}{p}$
 - coordinated checkpointing
 - tightly-coupled application
 - progress ⇔ all processors available

Waste: fraction of time not spent for useful computations

Waste in fault-free execution

- $\bullet~\mathrm{TIME}_{\text{base}}:$ application base time
- $T{\rm IME}_{\mbox{\scriptsize FF}}{\rm :}$ with periodic checkpoints but failure-free

$$\mathrm{TIME}_{\mathsf{FF}} = \mathrm{TIME}_{\mathsf{base}} + \#\textit{checkpoints} \times \textit{C}$$

$$\#checkpoints = \left\lceil \frac{\text{TIME}_{\text{base}}}{T-C} \right\rceil pprox \frac{\text{TIME}_{\text{base}}}{T-C}$$
 (valid for large jobs)

$$WASTE[FF] = \frac{TIME_{FF} - TIME_{base}}{TIME_{FF}} = \frac{C}{T}$$

3 K K 3 K

æ

Waste due to failures

- $\bullet~T{\rm IME}_{\text{base}}:$ application base time
- $\bullet\ T{\rm IME}_{FF}{\rm :}$ with periodic checkpoints but failure-free
- $\bullet \ T{\rm IME}_{{\rm final}}:$ expectation of time with failures

 $\text{TIME}_{\text{final}} = \text{TIME}_{\text{FF}} + \textit{N}_{\textit{faults}} \times \textit{T}_{\text{lost}}$

 N_{faults} number of failures during execution T_{lost} : average time lost per failure

過 ト イ ヨ ト イ ヨ ト

Conclusion

Waste due to failures

- $\bullet~T{\rm IME}_{\text{base}}:$ application base time
- $\bullet~T{\scriptstyle\rm IME}_{FF}{:}$ with periodic checkpoints but failure-free
- $\bullet~{\rm TIME}_{{\rm final}}:$ expectation of time with failures

$$ext{TIME}_{\mathsf{final}} = ext{TIME}_{\mathsf{FF}} + \mathit{N}_{\mathsf{faults}} imes \mathit{T}_{\mathsf{lost}}$$

 N_{faults} number of failures during execution T_{lost} : average time lost per failure

$$N_{faults} = rac{\mathrm{TIME_{final}}}{\mu}$$

 T_{lost} ?

.

Computing T_{lost}

 \Rightarrow Instants when periods begin and failures strike are independent \Rightarrow Valid for all distribution laws, regardless of their particular shape

Waste due to failures

WASTE[fail] =
$$\frac{\text{TIME}_{\text{final}} - \text{TIME}_{\text{FF}}}{\text{TIME}_{\text{final}}} = \frac{1}{\mu} \left(D + R + \frac{T}{2} \right)$$

 $TIME_{final} = TIME_{EE} + N_{faults} \times T_{lost}$

Yves.Robert@ens-lyon.fr

3 24/76

A B F A B F

Total waste

$$\mathrm{WASTE} = rac{\mathrm{TIME}_{\mathsf{final}} - \mathrm{TIME}_{\mathsf{base}}}{\mathrm{TIME}_{\mathsf{final}}}$$
 $1 - \mathrm{WASTE} = (1 - \mathrm{WASTE}[\textit{FF}])(1 - \mathrm{WASTE}[\textit{fail}])$

WASTE =
$$\frac{C}{T} + \left(1 - \frac{C}{T}\right) \frac{1}{\mu} \left(D + R + \frac{T}{2}\right)$$

< 🗇 🕨

3

< ≥ > < ≥ >

Other techniques

Conclusion

Waste minimization

$$WASTE = \frac{C}{T} + \left(1 - \frac{C}{T}\right) \frac{1}{\mu} \left(D + R + \frac{T}{2}\right)$$
$$WASTE = \frac{u}{T} + v + wT$$
$$u = C\left(1 - \frac{D + R}{\mu}\right) \qquad v = \frac{D + R - C/2}{\mu} \qquad w = \frac{1}{2\mu}$$

WASTE minimized for $T = \sqrt{\frac{u}{w}}$

 $T = \sqrt{2(\mu - (D+R))C}$

イロト イヨト イヨト イヨト

Other techniques

Conclusion

Comparison with Young/Daly

$$(1 - \text{WASTE}[fail])$$
TIME_{final} = TIME_{FF}
 $\Rightarrow T = \sqrt{2(\mu - (D + R))C}$

Daly: TIME_{final} =
$$(1 + \text{WASTE}[fail])$$
TIME_{FF}
 $\Rightarrow T = \sqrt{2(\mu + (D + R))C} + C$

Young: TIME_{final} = (1 + WASTE[fail])TIME_{FF} and D = R = 0 $\Rightarrow T = \sqrt{2\mu C} + C$

通 ト イヨ ト イヨト
Capping periods, and enforcing a lower bound on MTBF
 ⇒ mandatory for mathematical rigor ☺

- Not needed for practical purposes \bigcirc
 - actual job execution uses optimal value
 - account for multiple faults by re-executing work until success

• Approach surprisingly robust \bigcirc

Outline

Checkpointing

Young/Daly approximation

Exponentially distributed failures – advanced analysis

- Assessing checkpointing protocols
- In-memory checkpointing
- Fault prediction

イロト イ団ト イヨト イヨト

Compute the expected time $\mathbb{E}(T(W, C, D, R, \lambda))$ to execute a work of duration W followed by a checkpoint of duration C.

Recursive Approach

 $\mathbb{E}(T(W)) =$

Compute the expected time $\mathbb{E}(T(W, C, D, R, \lambda))$ to execute a work of duration W followed by a checkpoint of duration C.

Recursive Approach

 $\mathbb{E}(\mathcal{T}(W)) = \frac{\Pr obability}{\mathcal{P}_{succ}(W+C)}(W+C)$

Compute the expected time $\mathbb{E}(T(W, C, D, R, \lambda))$ to execute a work of duration W followed by a checkpoint of duration C.

Recursive Approach

 $\begin{array}{c} \text{Time needed} \\ \text{to compute} \\ \text{the work } \mathcal{W} \text{ and} \\ \text{checkpoint it} \\ \mathcal{P}_{\text{succ}}(\mathcal{W} + \mathcal{C}) \overline{(\mathcal{W} + \mathcal{C})} \\ \mathbb{E}(\mathcal{T}(\mathcal{W})) = \end{array}$

Compute the expected time $\mathbb{E}(T(W, C, D, R, \lambda))$ to execute a work of duration W followed by a checkpoint of duration C.

$$\mathcal{P}_{ ext{succ}}(W+C)(W+C)$$

 $\mathbb{E}(T(W)) =$

Compute the expected time $\mathbb{E}(T(W, C, D, R, \lambda))$ to execute a work of duration W followed by a checkpoint of duration C.

$$\mathcal{P}_{succ}(W + C)(W + C) \\ \mathbb{E}(T(W)) = + \\ (1 - \mathcal{P}_{succ}(W + C))(\mathbb{E}(T_{lost}(W + C)) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(W)))$$

Compute the expected time $\mathbb{E}(T(W, C, D, R, \lambda))$ to execute a work of duration W followed by a checkpoint of duration C.

Recursive Approach

$$\mathbb{E}(T(W)) = \begin{array}{l} \mathcal{P}_{\text{succ}}(W+C)(W+C) \\ + \\ \underbrace{(1-\mathcal{P}_{\text{succ}}(W+C))}_{\text{Probability of failure}} (\mathbb{E}(T_{lost}(W+C)) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(W))) \end{array}$$

Compute the expected time $\mathbb{E}(T(W, C, D, R, \lambda))$ to execute a work of duration W followed by a checkpoint of duration C.

$$\mathcal{P}_{succ}(W + C)(W + C)$$

$$\mathbb{E}(T(W)) = + (1 - \mathcal{P}_{succ}(W + C))(\mathbb{E}(T_{lost}(W + C)) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(W)))$$
Time elapsed before failure stroke

Compute the expected time $\mathbb{E}(T(W, C, D, R, \lambda))$ to execute a work of duration W followed by a checkpoint of duration C.

$$\mathcal{P}_{succ}(W + C)(W + C)$$

$$\mathbb{E}(T(W)) = + (1 - \mathcal{P}_{succ}(W + C))(\mathbb{E}(T_{lost}(W + C)) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(W)))$$
Time needed to perform downtime and recovery

Compute the expected time $\mathbb{E}(T(W, C, D, R, \lambda))$ to execute a work of duration W followed by a checkpoint of duration C.

$$\mathcal{P}_{succ}(W + C)(W + C)$$

$$\mathbb{E}(T(W)) = + (1 - \mathcal{P}_{succ}(W + C))(\mathbb{E}(T_{lost}(W + C)) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(W)))$$

$$\text{Time needed}$$

$$\text{to compute } W$$

$$\text{anew}$$

ABFT for dense linear algebra kernels

Checkpointing

Other techniques

Conclusion

Computation of $\mathbb{E}(T(W, C, D, R, \lambda))$

$$\begin{aligned} & \mathcal{P}_{\text{succ}}(W+C)(W+C) \\ & \mathbb{E}(\mathcal{T}(W)) = + \\ & (1-\mathcal{P}_{\text{succ}}(W+C))\left(\mathbb{E}(\mathcal{T}_{lost}(W+C)) + \mathbb{E}(\mathcal{T}_{rec}) + \mathbb{E}(\mathcal{T}(W))\right) \end{aligned}$$

•
$$\mathbb{P}_{suc}(W+C) = e^{-\lambda(W+C)}$$

• $\mathbb{E}(T_{lost}(W+C)) = \int_0^\infty x \mathbb{P}(X=x|X < W+C) dx = \frac{1}{\lambda} - \frac{W+C}{e^{\lambda(W+C)}-1}$
• $\mathbb{E}(T_{rec}) = e^{-\lambda R}(D+R) + (1-e^{-\lambda R})(D+\mathbb{E}(T_{lost}(R))+\mathbb{E}(T_{rec}))$

 $\mathbb{E}(T(W, C, D, R, \lambda)) = e^{\lambda R} \left(\frac{1}{\lambda} + D\right) \left(e^{\lambda(W+C)} - 1\right)$

· · · · · · · · ·

Checkpointing a sequential job

•
$$\mathbb{E}(T(W)) = e^{\lambda R} \left(\frac{1}{\lambda} + D\right) \left(\sum_{i=1}^{K} e^{\lambda(W_i + C)} - 1\right)$$

• Optimal strategy uses same-size chunks (convexity)

•
$$\mathcal{K}_0 = \frac{\lambda W}{1 + \mathbb{L}(-e^{-\lambda C - 1})}$$
 where $\mathbb{L}(z)e^{\mathbb{L}(z)} = z$ (Lambert function)

• Optimal number of chunks K^* is max $(1, \lfloor K_0 \rfloor)$ or $\lceil K_0 \rceil$

$$\mathbb{E}_{opt}(T(W)) = K^*\left(e^{\lambda R}\left(\frac{1}{\lambda} + D\right)\right)\left(e^{\lambda\left(\frac{W}{K^*} + C\right)} - 1\right)$$

• Can also use Daly's second-order approximation

Outline

Checkpointing

- Young/Daly approximation
- Exponentially distributed failures advanced analysis

Assessing checkpointing protocols

- In-memory checkpointing
- Fault prediction

イロト イ団ト イヨト イヨト

3

Background: coordinated checkpointing protocols

- Coordinated checkpoints over all processes
- Global restart after a failure

- ☺ No risk of cascading rollbacks
- \bigcirc No need to log messages
- ☺ All processors need to roll back

Other techniques

Background: message logging protocols

- Message content logging (sender memory)
- Restart of failed process only

- No cascading rollbacks
- (::)Number of processes to roll back
- (:)Memory occupation
- (\dot{z}) Overhead

Background: hierarchical protocols

- Clusters of processes
- Coordinated checkpointing protocol within clusters
- Message logging protocols between clusters
- Only processors from failed group need to roll back

- Need to log inter-groups messages
 - Slowdowns failure-free execution
 - Increases checkpoint size/time
- \bigcirc Faster re-execution with logged messages

Which checkpointing protocol to use?

Coordinated checkpointing

- \bigcirc No risk of cascading rollbacks
- \bigcirc No need to log messages
- ☺ All processors need to roll back
- 🙂 Rumor: May not scale to very large platforms

Hierarchical checkpointing

- Need to log inter-groups messages
 - Slowdowns failure-free execution
 - Increases checkpoint size/time
- $\ensuremath{\textcircled{\odot}}$ Only processors from failed group need to roll back
- \bigcirc Faster re-execution with logged messages
- $\ensuremath{\textcircled{\odot}}$ Rumor: Should scale to very large platforms

Four platforms: basic characteristics

Name	Number of	Number of	Number of cores	Memory	I/O Network Bandwidth (b _{io})		I/O Bandwidth (bport)
	cores	processors p _{total}	per processor	per processor	Read	Write	Read/Write per processor
Titan	299,008	16,688	16	32GB	300GB/s	300GB/s	20GB/s
K-Computer	705,024	88,128	8	16GB	150GB/s	96GB/s	20GB/s
Exascale-Slim	1,000,000,000	1,000,000	1,000	64GB	1TB/s	1TB/s	200GB/s
Exascale-Fat	1,000,000,000	100,000	10,000	640GB	1TB/s	1TB/s	400GB/s

Name	Scenario	G (C(q))	β for	β for
			2D-Stencil	MATRIX-PRODUCT
	Coord-IO	1 (2,048s)	/	/
Titan	HIERARCH-IO	136 (15s)	0.0001098	0.0004280
	HIERARCH-PORT	1,246 (1.6s)	0.0002196	0.0008561
K-Computer	Coord-IO	1 (14,688s)	/	/
	HIERARCH-IO	296 (50s)	0.0002858	0.001113
	HIERARCH-PORT	17,626 (0.83s)	0.0005716	0.002227
Exascale-Slim	Coord-IO	1 (64,000s)	/	/
	HIERARCH-IO	1,000 (64s)	0.0002599	0.001013
	HIERARCH-PORT	200,0000 (0.32s)	0.0005199	0.002026
Exascale-Fat	Coord-IO	1 (64,000s)	/	/
	HIERARCH-IO	316 (217s)	0.00008220	0.0003203
	HIERARCH-PORT	33,3333 (1.92s)	0.00016440	0.0006407

Other techniques

Plotting formulas – Platform: Titan

Waste as a function of processor MTBF μ_{ind}

39/ 76

A B F A B F

ABFT for dense linear algebra kernels

Checkpointing

Other techniques

Conclusion

Platform: K-Computer

Waste as a function of processor MTBF μ_{ind}

40/76

B ▶ < B ▶

ABFT for dense linear algebra kernels

Checkpointing

Other techniques

Conclusion

Plotting formulas – Platform: Exascale

WASTE = 1 for all scenarios!!!

Yves.Robert@ens-lyon.fr

過 ト イヨ ト イヨト

Other techniques

Conclusion

Plotting formulas – Platform: Exascale

Checkpoint time

Name	С	
K-Computer	14,688s	
Exascale-Slim	64,000	
Exascale-Fat	64,000	

- Large time to dump the memory
- Using 1%C, and even 0.1%C for Exascale platforms?

Yves.Robert@ens-lyon.fr

Fault-tolerance for HPC

Other techniques

Conclusion

Plotting formulas – Platform: Exascale with C = 100

Yves.Robert@ens-lyon.fr

(日) (周) (三) (三)

3

Simulations – Platform: Titan

Makespan (in days) as a function of processor MTBF $\mu_{\textit{ind}}$

ABFT for dense linear algebra kernels

Checkpointing Other techniques

Simulations – Platform: Exascale with C = 100

Makespan (in days) as a function of processor MTBF μ_{ind} , C = 100< - 17 → - モト - モト

Yves.Robert@ens-lyon.fr

3

Outline

Checkpointing

- Young/Daly approximation
- Exponentially distributed failures advanced analysis
- Assessing checkpointing protocols

In-memory checkpointing

Fault prediction

イロト イ団ト イヨト イヨト

- Checkpoint transfer and storage
 - \Rightarrow critical issues of rollback/recovery protocols
- Stable storage: high cost
- Distributed in-memory storage:
 - Store checkpoints in local memory \Rightarrow no centralized storage $\textcircled{\sc S}$ Much better scalability
 - Replicate checkpoints ⇒ application survives single failure
 Still, risk of fatal failure in some (unlikely) scenarios

ABFT for dense linear algebra kernels

Checkpointing Oth

Other techniques

Conclusion

Double checkpoint algorithm (Kale et al., UIUC)

- Platform nodes partitioned into pairs
- Each node in a pair exchanges its checkpoint with its *buddy*
- Each node saves two checkpoints:
 - one locally: storing its own data
 - one remotely: receiving and storing its buddy's data

Yν

- After failure: downtime D and recovery from buddy node
- Two checkpoint files lost, must be re-sent to faulty processor

s.Robert@ens-lyon.fr	Fault-tolerance for HPC	50/76	

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

Failures

- After failure: downtime *D* and recovery from buddy node
- Two checkpoint files lost, must be re-sent to faulty processor
- Application at risk until complete reception of both messages

Best trade-off between performance and risk?

ves.Robert@ens-Iyon.fr	Fault-tolerance for HPC	50/76	

Outline

Checkpointing

- Young/Daly approximation
- Exponentially distributed failures advanced analysis
- Assessing checkpointing protocols
- In-memory checkpointing
- Fault prediction

イロト イヨト イヨト イヨト

3

Predictor

- Exact prediction dates (at least C seconds in advance)
- Recall r: fraction of faults that are predicted
- Precision p: fraction of fault predictions that are correct

Events

- true positive: predicted faults
- *false positive*: fault predictions that did not materialize as actual faults
- false negative: unpredicted faults

Algorithm

- While no fault prediction is available:
 - ullet checkpoints taken periodically with period ${\mathcal T}$
- When a fault is predicted at time t:
 - take a checkpoint ALAP (completion right at time t)
 - after the checkpoint, complete the execution of the period
Computing the waste

• Fault-free execution: WASTE $[FF] = \frac{C}{T}$

2 Unpredicted faults: $\frac{1}{\mu_{NP}} \left[D + R + \frac{T}{2} \right]$

WASTE[fail] =
$$\frac{1}{\mu} \left[(1-r)\frac{T}{2} + D + R + \frac{r}{p}C \right] \Rightarrow T_{opt} \approx \sqrt{\frac{2\mu C}{1-r}}$$

- 4 3 6 4 3 6

Computing the waste

S Predictions: $\frac{1}{\mu_P} \left[p(C+D+R) + (1-p)C \right]$

WASTE[fail] = $\frac{1}{\mu} \left[(1-r)\frac{T}{2} + D + R + \frac{r}{p}C \right] \Rightarrow T_{opt} \approx \sqrt{\frac{2\mu C}{1-r}}$

Computing the waste

S Predictions: $\frac{1}{\mu_P} \left[p(C + D + R) + (1 - p)C \right]$

- Use different value C_p for proactive checkpoints
- Avoid checkpointing too frequently for false negatives
 ⇒ Only trust predictions with some fixed probability q
 ⇒ Ignore predictions with probability 1 q
 Conclusion: trust predictor always or never (q = 0 or q = 1)
- Trust prediction depending upon position in current period
 ⇒ Increase q when progressing
 ⇒ Break-even point ^{C_p}/_p

With prediction windows

Gets too complicated! 🙁

56/76

∃ →

Outline

Checkpointing

- Young/Daly approximation
- Exponentially distributed failures advanced analysis
- Assessing checkpointing protocols
- In-memory checkpointing
- Fault prediction

Conclusion

(日) (同) (三) (三)

› 🗎 57/ 76

Outline

Checkpointing

- Young/Daly approximation
- Exponentially distributed failures advanced analysis
- Assessing checkpointing protocols
- In-memory checkpointing
- Fault prediction

イロト イ団ト イヨト イヨト

Replication

- \bullet Systematic replication: efficiency < 50%
- Can replication+checkpointing be more efficient than checkpointing alone?
- Study by Ferreira et al. [SC'2011]: yes

59/76

4 3 > 4 3 >

Model by Ferreira et al. [SC' 2011]

- Parallel application comprising N processes
- Platform with $p_{total} = 2N$ processors
- Each process replicated $\rightarrow N$ replica-groups
- When a replica is hit by a failure, it is not restarted
- Application fails when both replicas in one replica-group have been hit by failures

The birthday problem

Classical formulation

What is the probability, in a set of m people, that two of them have same birthday ?

Relevant formulation

What is the average number of people required to find a pair with same birthday?

Birthday(N) =
$$1 + \int_0^{+\infty} e^{-x} (1 + x/N)^{N-1} dx$$

The analogy

Two people with same birthday =

Two failures hitting same replica-group

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure

62/76

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure: can failed PE be hit?

Conclusion

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure cannot hit failed PE
 - Failure uniformly distributed over 2N 1 PEs
 - Probability that replica-group *i* is hit by failure: 1/(2N-1)
 - Probability that replica-group $\neq i$ is hit by failure: 2/(2N-1)
 - Failure not uniformly distributed over replica-groups: this is not the birthday problem

Conclusion

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure cannot hit failed PE
 - Failure uniformly distributed over 2N 1 PEs
 - Probability that replica-group i is hit by failure: 1/(2N-1)
 - Probability that replica-group $\neq i$ is hit by failure: 2/(2N-1)
 - Failure not uniformly distributed over replica-groups: this is not the birthday problem

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure cannot hit failed PE
 - Failure uniformly distributed over 2N 1 PEs
 - Probability that replica-group i is hit by failure: 1/(2N-1)
 - Probability that replica-group $\neq i$ is hit by failure: 2/(2N-1)
 - Failure not uniformly distributed over replica-groups: this is not the birthday problem

Checkpointing Other techniques

Differences with birthday problem

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure cannot hit failed PE
 - Failure uniformly distributed over 2N 1 PEs
 - Probability that replica-group i is hit by failure: 1/(2N-1)
 - Probability that replica-group $\neq i$ is hit by failure: 2/(2N-1)
 - Failure not uniformly distributed over replica-groups: this is not the birthday problem

62/76

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure cannot hit failed PE
 - Failure uniformly distributed over 2N 1 PEs
 - Probability that replica-group i is hit by failure: 1/(2N-1)
 - Probability that replica-group $\neq i$ is hit by failure: 2/(2N-1)
 - Failure not uniformly distributed over replica-groups: this is not the birthday problem

Differences with birthday problem

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure can hit failed PE

62/76

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure can hit failed PE
 - Suppose failure hits replica-group *i*
 - If failure hits failed PE: application survives
 - If failure hits running PE: application killed
 - Not all failures hitting the same replica-group are equal: this is not the birthday problem

Conclusion

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure can hit failed PE
 - Suppose failure hits replica-group i
 - If failure hits failed PE: application survives
 - If failure hits running PE: application killed
 - Not all failures hitting the same replica-group are equal: this is not the birthday problem

ointing

Conclusion

- N processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/N to be hit
- Second failure can hit failed PE
 - Suppose failure hits replica-group *i*
 - If failure hits failed PE: application survives
 - If failure hits running PE: application killed
 - Not all failures hitting the same replica-group are equal: this is not the birthday problem

Correct analogy

 $N = n_{rg}$ bins, red and blue balls

Mean Number of Failures to Interruption (bring down application) MNFTI = expected number of balls to throw until one bin gets one ball of each color

63/76

- - E + - E +

Other techniques

Conclusion

Failure distribution

Crossover point for replication when $\mu_{\mathit{ind}}=$ 125 years

(日) (周) (三) (三)

3

- Study by Ferrreira et al. favors replication
- Replication beneficial if small μ + large C + big p_{total}

Processor MTBF (in years)

Outline

ABFT for dense linear algebra kernels

Checkpointing

- Young/Daly approximation
- Exponentially distributed failures advanced analysis
- Assessing checkpointing protocols
- In-memory checkpointing
- Fault prediction

イロト イ団ト イヨト イヨト

- Many types of faults: software error, hardware malfunction, memory corruption
- Many possible behaviors: silent, transient, unrecoverable
- Consider silent errors here
- This includes some software faults, some hardware errors (soft errors in L1 cache), bit flips (cosmic radiations)
- Silent error detected when corrupt data is activated

- Instantaneous error detection \Rightarrow fail-stop failures
- Silent errors (data corruption) \Rightarrow detection latency

Error and detection latency

- Last checkpoint may have saved an already corrupted state
- Even when saving k checkpoints: which one to roll back to?
- Critical failure: all checkpoints contain corrupted data

• Verification mechanism of cost V

Yves.Robert@ens-lyon.fr

• Simplest idea: verify work before each checkpoint

V large compared to $w \Rightarrow$ large WASTEff, can we improve that?

- Verification mechanism of cost V
- Simplest idea: verify work before each checkpoint

V large compared to $w \Rightarrow$ large WASTE_{ff}, can we improve that?

Yves.Robert@ens-Iyon.fr	Fault-tolerance for HPC	69/76	

(日) (同) (日) (日) (日)

- Verification mechanism of cost V
- Simplest idea: verify work before each checkpoint

V small in front of $w \Rightarrow$ large WASTE_{fail}, can we improve that?

- Verification mechanism of cost V
- Simplest idea: verify work before each checkpoint

′ves.Robert@ens-Iyon.fr	Fault-tolerance for HPC	69/76	

(日) (同) (日) (日) (日)

ting Other techniques

Conclusion

Coupling checkpointing and verification

Small cost V: 5 verifications for 1 checkpoint

Large cost V: 5 checkpoints for 1 verification

More complicated periodic patterns? Different-size chunks?

Yves.Robert@ens-Iyon.fr	Fault-tolerance for HPC	70/76	

イロト イポト イヨト イヨト

k checkpoints for 1 verification

Where did the error strike?

3 🕨 🖌 3

ABFT for dense linear algebra kernels

Other techniques

Conclusion

k checkpoints for 1 verification

Where did the error strike?

3 🕨 🖌 3

71/76

ABFT for dense linear algebra kernels

Other techniques

Conclusion

k checkpoints for 1 verification

Where did the error strike?

3 🕨 🖌 3

pointing

k checkpoints for 1 verification

Where did the error strike?

3 🕨 🖌 3

k checkpoints for 1 verification

Where did the error strike?

Re-ExeC = 2(w + C) + (w + V)

Checkpointing

Other techniques ○○○○● Conclusion

k checkpoints for 1 verification

Waste as function of k, using optimal period $(V = 100s, C = R = 6s \text{ and } \mu = \frac{10years}{10^5})$

3 K K 3 K

Outline

Checkpointing

- Young/Daly approximation
- Exponentially distributed failures advanced analysis
- Assessing checkpointing protocols
- In-memory checkpointing
- Fault prediction

イロト イ団ト イヨト イヨト

Conclusion

- Multiple approaches to Fault Tolerance
- Application-specific FT will always provide more benefits
- General-purpose FT will always be needed
 - Not every computer scientist needs to learn how to write fault-tolerant applications
 - Not all parallel applications can be ported to a fault-tolerant version
- Faults are a feature of the platform. Why should it be the role of the programmers to handle them?

Conclusion

- Software/hardware techniques to reduce checkpoint, recovery, migration times and to improve failure prediction
- Multi-criteria scheduling problem execution time/energy/reliability add replication best resource usage (performance trade-offs)
- Need combine all these approaches!

Several challenging algorithmic/scheduling problems $\textcircled{\odot}$

Extended version of this talk: see SC'13 tutorial with Thomas Hérault. Available at http://graal.ens-lyon.fr/~yrobert/

Thanks

INRIA & ENS Lyon

- Anne Benoit
- Frédéric Vivien
- PhD students (Guillaume Aupy, Dounia Zaidouni)

UT Knoxville

- George Bosilca
- Aurélien Bouteiller
- Jack Dongarra
- Thomas Hérault (joint tutorial at SC'13)

Others

- Franck Cappello, UIUC-Inria joint lab
- Henri Casanova, Univ. Hawai'i

3 K K 3 K