
ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

An overview of fault-tolerant techniques for HPC

Yves Robert

ENS Lyon & Institut Universitaire de France
University of Tennessee Knoxville

yves.robert@ens-lyon.fr

http://graal.ens-lyon.fr/~yrobert/

Sophia Tech, November 5, 2013

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 1/ 76

yves.robert@ens-lyon.fr
http://graal.ens-lyon.fr/~yrobert/

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW
 Systems 2011

K computer
2019 Difference

Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s O(100)

Power 12.7 MW ~20 MW

System memory 1.6 PB 32 - 64 PB O(10)

Node performance 128 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 64 GB/s 2 - 4TB/s O(100)

Node concurrency 8 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10)

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 705,024 O(billion) O(1,000)

MTTI days O(1 day) - O(10)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 2/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Exascale platforms (courtesy C. Engelmann & S. Scott)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 3/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Theorem: µp =
µ

p
for arbitrary distributions

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 4/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Theorem: µp =
µ

p
for arbitrary distributions

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 4/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Even for today’s platforms (courtesy F. Cappello)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 5/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Even for today’s platforms (courtesy F. Cappello)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 6/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

•  In 2007 (Garth Gibson, ICPP Keynote):

•  In 2008 (Oliner and J. Stearley, DSN Conf.):
50%

Hardware

Conclusion: Both Hardware and Software failures have to be considered

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.

Hardware errors, Disks, processors, memory, network

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 7/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 8/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

Exp(λ): Exponential distribution law of parameter λ:

Pdf: f (t) = λe−λtdt for t ≥ 0

Cdf: F (t) = 1− e−λt

Mean = 1
λ

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 9/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

X random variable for Exp(λ) failure inter-arrival times:

P (X ≤ t) = 1− e−λtdt (by definition)

Memoryless property: P (X ≥ t + s |X ≥ s) = P (X ≥ t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

Mean Time Between Failures (MTBF) µ = E (X) = 1
λ

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 9/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

Weibull(k, λ): Weibull distribution law of shape parameter k and
scale parameter λ:

Pdf: f (t) = kλ(tλ)k−1e−(λt)k dt for t ≥ 0

Cdf: F (t) = 1− e−(λt)k

Mean = 1
λΓ(1 + 1

k)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 10/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 10/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Values from the literature

MTBF of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 11/ 76

http://fta.inria.fr
http://institutes.lanl.gov/data/fdata

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 12/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 13/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Tiled LU factorization

A A'

U

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 14/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Tiled LU factorization

A A'

U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 14/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Tiled LU factorization

L

U U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 14/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Tiled LU factorization

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

Failure of rank 2

2D Block Cyclic Distribution (here 2× 3)

A single failure ⇒ many data lost

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 14/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Algorithm Based Fault Tolerant LU decomposition

M

P mb

nb
Q

N
N/Q

+
+
+

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

Checksum: invertible operation on row/column data

Checksum replication avoided by dedicating additional
computing resources to checksum storage

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 15/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Algorithm Based Fault Tolerant LU decomposition

M

P
mb

nb
Q

N
< 2N/Q + nb

+
+
+

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

Checksum: invertible operation on row/column data

Checksum blocks are doubled, to allow recovery when data
and checksum are lost together (no extra resource needed)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 15/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Algorithm Based Fault Tolerant LU decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

Checksum: invertible operation on row/column data

Key idea of ABFT: applying the operation on data and
checksum preserves the checksum properties

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 15/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Performance

As supercomputers grow ever larger in scale, the Mean Time to Failure becomes shorter and shorter, making the complete and
successful execution of complex applications more and more difficult. FT-LA delivers a new approach, utilizing Algorithm-Based
Fault Tolerance (ABFT), to help factorization algorithms survive fail-stop failures. The FT-LA software package extends
ScaLAPACK with ABFT routines, and in sharp contrast with legacy checkpoint-based approaches, ABFT does not incur I/O overhead,
and promises a much more scalable protection scheme.

ABFT THE IDEA

Cost of ABFT comes only from
extra flops (to update checksums)
and extra storage

Cost decreases with machine
scale (divided by Q when using
PxQ processes)

PROTECTION

Matrix protected by block row checksum

The algorithm updates both the
trailing matrix AND the checksums

RECOVERY

Missing blocks reconstructed by inverting
the checksum operation

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Least Squares

Cholesky, LU

QR (with protection of the upper and lower factors)

FEATURES

WORK IN PROGRESS

Covering four precisions: double complex, single complex, double real, single real (ZCDS)

Deploys on MPI FT draft (ULFM), or with “Checkpoint-on-failure”

Allows toleration of permanent crashes

Hessenber Reduction, Soft (silent) Errors

Process grid: p x q
F: simultaneous failures tolerated

Protection against 2 faults on
192x192 processes => 1% overhead

Usually F << q;
Overheads in F/q

Protection cost is inversely
proportional to machine scale!

Computation

Memory

Flops for the checksum update

Matrix is extended with
2F columns every q columns

FIND OUT MORE AT http://icl.cs.utk.edu/ft-la

 0

 7

 14

 21

 28

 35

6x6; 20k
12x12; 40k

24x24; 80k
48x48; 160k

96x96; 320k
192x192; 640k 0

 10

 20

 30

 40

 50

Re
la

tiv
e

Ov
er

he
ad

 (%
)

Pe
rfo

rm
an

ce
 (T

Fl
op

/s
)

#Processors (PxQ grid); Matrix size (N)

ScaLAPACK PDGETRF
FT-PDGETRF (no error)

FT-PDGETRF (w/1 recovery)
Overhead: FT-PDGETRF (no error)

Overhead: FT-PDGETRF (w/1 recovery)

U

L

C’

GETF2 GEMM

TRSM

A’

L

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

C

PERFORMANCE ON KRAKEN

MPI-Next ULFM Performance

Open MPI with ULFM; Kraken supercomputer;

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 16/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 17/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 18/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 19/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors with MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

Waste: fraction of time not spent for useful computations

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 20/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

Waste[FF] =
TimeFF −Timebase

TimeFF
=

C

T

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 21/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 22/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 22/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

⇒ Instants when periods begin and failures strike are independent
⇒ Valid for all distribution laws, regardless of their particular shape

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 23/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Waste[fail] =
Timefinal −TimeFF

Timefinal
=

1

µ

(
D + R +

T

2

)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 24/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

1−Waste = (1−Waste[FF])(1−Waste[fail])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 25/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 26/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 27/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

How accurate?

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 28/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 29/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

E(T (W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 30/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

of success

Probability

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 30/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach
Time needed

the work W and

to compute

checkpoint it

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 30/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 30/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 30/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Probability of failure

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

+

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 30/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time elapsed

before failure

stroke

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 30/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to perform

downtime

and recovery

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 30/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to compute W
anew

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 30/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Computation of E(T (W ,C ,D,R , λ))

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

Psuc(W + C) = e−λ(W+C)

E(Tlost(W + C)) =
∫∞

0
xP(X = x |X < W + C)dx = 1

λ −
W+C

eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(T (W ,C ,D,R, λ)) = eλR
(

1
λ + D

)
(eλ(W+C) − 1)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 31/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Checkpointing a sequential job

E(T (W)) = eλR
(

1
λ + D

) (∑K
i=1 eλ(Wi+C) − 1)

Optimal strategy uses same-size chunks (convexity)

K0 = λW
1+L(−e−λC−1)

where L(z)eL(z) = z (Lambert function)

Optimal number of chunks K ∗ is max(1, bK0c) or dK0e

Eopt(T (W)) = K ∗
(

eλR
(

1

λ
+ D

))(
eλ(W

K∗ +C)−1
)

Can also use Daly’s second-order approximation

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 32/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 33/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Background: coordinated checkpointing protocols

Coordinated checkpoints over all
processes

Global restart after a failure

P0

P1

P2

m1 m2 m3

m4 m5

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 34/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Background: message logging protocols

Message content logging
(sender memory)

Restart of failed process only

P0

P1

P2

m1 m2 m3

m4 m5

, No cascading rollbacks

, Number of processes to roll back

/ Memory occupation

/ Overhead

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 35/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Background: hierarchical protocols

Clusters of processes

Coordinated checkpointing
protocol within clusters

Message logging protocols
between clusters

Only processors from failed group
need to roll back

P0

P1

P2

P3

m1

m2

m3

m4

m5

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Faster re-execution with logged messages

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 36/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Rumor: May not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to roll back

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 37/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 38/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 39/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 40/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 41/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 41/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Checkpoint time

Name C

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

Large time to dump the memory

Using 1%C , and even 0.1%C for Exascale platforms?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 42/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 1, 000

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 43/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 100

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 44/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Simulations – Platform: Titan

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100
M

ak
es

p
an

 (
d
ay

s)
MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k
e
s
p
a
n

(
d
a
y
s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k
e
s
p
a
n

(
d
a
y
s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 45/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Simulations – Platform: Exascale with C = 100

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d

ay
s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated Daly
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind , C = 100

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 46/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 47/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Motivation

Checkpoint transfer and storage
⇒ critical issues of rollback/recovery protocols

Stable storage: high cost

Distributed in-memory storage:

Store checkpoints in local memory ⇒ no centralized storage
, Much better scalability
Replicate checkpoints ⇒ application survives single failure
/ Still, risk of fatal failure in some (unlikely) scenarios

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 48/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Double checkpoint algorithm (Kale et al., UIUC)

1

1

d q s

f

f

P

Local checkpoint
done

Remote checkpoint
done

Period
done

Node p

Node p'

Platform nodes partitioned into pairs

Each node in a pair exchanges its checkpoint with its buddy

Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy’s data

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 49/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Best trade-off between performance and risk?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 50/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Application at risk until complete reception of both messages

Best trade-off between performance and risk?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 50/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 51/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Framework

Predictor

Exact prediction dates (at least C seconds in advance)

Recall r : fraction of faults that are predicted

Precision p: fraction of fault predictions that are correct

Events

true positive: predicted faults

false positive: fault predictions that did not materialize as
actual faults

false negative: unpredicted faults

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 52/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Algorithm

1 While no fault prediction is available:
• checkpoints taken periodically with period T

2 When a fault is predicted at time t:
• take a checkpoint ALAP (completion right at time t)
• after the checkpoint, complete the execution of the period

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 53/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Computing the waste

1 Fault-free execution: Waste[FF] = C
T

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

2 Unpredicted faults: 1
µNP

[
D + R + T

2

]
TimeT -C T -C Tlost T -C

Error

C C C D R C

Waste[fail] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 54/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C]

TimeT -C Wreg

Error Predicted failure

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted failure

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 54/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C]

TimeT -C Wreg

Error Predicted failure

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted failure

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 54/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Refinements

Use different value Cp for proactive checkpoints

Avoid checkpointing too frequently for false negatives
⇒ Only trust predictions with some fixed probability q
⇒ Ignore predictions with probability 1− q
Conclusion: trust predictor always or never (q = 0 or q = 1)

Trust prediction depending upon position in current period
⇒ Increase q when progressing
⇒ Break-even point

Cp

p

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 55/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

With prediction windows

TimeTR-C TR-C Tlost TR-C

Error
(Regular mode)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TP-Cp TR-C
-Wreg

(Prediction without failure)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TR-C
-Wreg

Error
(Prediction with failure)

C C C D R C

C C Cp Cp Cp Cp C

C C Cp Cp Cp D R C

Gets too complicated! /

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 56/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 58/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Replication

Systematic replication: efficiency < 50%

Can replication+checkpointing be more efficient than
checkpointing alone?

Study by Ferreira et al. [SC’2011]: yes

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 59/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Model by Ferreira et al. [SC’ 2011]

Parallel application comprising N processes

Platform with ptotal = 2N processors

Each process replicated → N replica-groups

When a replica is hit by a failure, it is not restarted

Application fails when both replicas in one replica-group have
been hit by failures

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 60/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday ?

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

Birthday(N) = 1 +

∫ +∞

0
e−x(1 + x/N)N−1dx

The analogy

Two people with same birthday
≡

Two failures hitting same replica-group

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 61/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure: can failed PE be hit?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Suppose failure hits replica-group i
If failure hits failed PE: application survives
If failure hits running PE: application killed
Not all failures hitting the same replica-group are equal:
this is not the birthday problem

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Suppose failure hits replica-group i
If failure hits failed PE: application survives
If failure hits running PE: application killed
Not all failures hitting the same replica-group are equal:
this is not the birthday problem

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Suppose failure hits replica-group i
If failure hits failed PE: application survives
If failure hits running PE: application killed
Not all failures hitting the same replica-group are equal:
this is not the birthday problem

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Correct analogy

� � � � . . . �
1 2 3 4 . . . n

⇑
• • • • • • • • • • • . . .

N = nrg bins, red and blue balls

Mean Number of Failures to Interruption (bring down application)
MNFTI = expected number of balls to throw

until one bin gets one ball of each color

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 63/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Failure distribution

221218 219216 217 220215

number of processors

0

50

100

150

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 2
BestPeriod-g = 1
Daly-g = 2
Daly-g = 1

(a) Exponential

221218 219216 217 220215

number of processors

0

50

100

150

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 2
BestPeriod-g = 1
Daly-g = 2
Daly-g = 1

(b) Weibull, k = 0.7

Crossover point for replication when µind = 125 years

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 64/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Weibull distribution with k = 0.7

Dashed line: Ferreira et al. Solid line: Correct analogy

101 100

Processor MTBF (in years)

0

200000

400000

600000

800000

1000000
N

um
b

er
of

pr
o

ce
ss

or
s

C = 300

C = 2400
C = 1200
C = 900
C = 600

C = 150

Study by Ferrreira et al. favors replication

Replication beneficial if small µ + large C + big ptotal

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 65/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 66/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Silent errors

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Consider silent errors here

This includes some software faults, some hardware errors (soft
errors in L1 cache), bit flips (cosmic radiations)

Silent error detected when corrupt data is activated

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 67/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Detection latency

Instantaneous error detection ⇒ fail-stop failures

Silent errors (data corruption) ⇒ detection latency

TimeXe Xd

Error Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Even when saving k checkpoints: which one to roll back to?

Critical failure: all checkpoints contain corrupted data

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 68/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Coupling checkpointing and verification

Verification mechanism of cost V

Simplest idea: verify work before each checkpoint

Time

w V C w V C w V C w V C

V large compared to w ⇒ large Wasteff, can we improve that?

Is this better?

Time

w C w V C w C w V C w C

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 69/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Coupling checkpointing and verification

Verification mechanism of cost V

Simplest idea: verify work before each checkpoint

Time

w V C w V C w V C w V C

V large compared to w ⇒ large Wasteff, can we improve that?

Is this better?

Time

w C w V C w C w V C w C

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 69/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Coupling checkpointing and verification

Verification mechanism of cost V

Simplest idea: verify work before each checkpoint

Time

w V C w V C w V C w V C

V small in front of w ⇒ large Wastefail, can we improve that?

Is this better?

Time

w/2 V w/2 V C w/2 V w/2 V C w/2 V w/2 V C w/2 V

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 69/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Coupling checkpointing and verification

Verification mechanism of cost V

Simplest idea: verify work before each checkpoint

Time

w V C w V C w V C w V C

V small in front of w ⇒ large Wastefail, can we improve that?

Is this better?

Time

w/2 V w/2 V C w/2 V w/2 V C w/2 V w/2 V C w/2 V

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 69/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Coupling checkpointing and verification

Time

V C w V w V w V w V w V C

Small cost V : 5 verifications for 1 checkpoint

Time

V C w C w C w C w C w V C

Large cost V : 5 checkpoints for 1 verification

More complicated periodic patterns? Different-size chunks?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 70/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V R V R V

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 71/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V R V R V

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 71/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V R V R V

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 71/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V R V R V

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 71/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V R V R V

Re-Exec = 2(w + C) + (w + V)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 71/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

k checkpoints for 1 verification

Waste as function of k, using optimal period
(V = 100s,C = R = 6s and µ = 10years

105)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 72/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 73/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Conclusion

Multiple approaches to Fault Tolerance

Application-specific FT will always provide more benefits

General-purpose FT will always be needed

Not every computer scientist needs to learn how to write
fault-tolerant applications
Not all parallel applications can be ported to a fault-tolerant
version

Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 74/ 76

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Conclusion

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Need combine all these approaches!

Several challenging algorithmic/scheduling problems ,

Extended version of this talk: see SC’13 tutorial with Thomas
Hérault. Available at

http://graal.ens-lyon.fr/~yrobert/

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 75/ 76

http://graal.ens-lyon.fr/~yrobert/

ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Thanks

INRIA & ENS Lyon

Anne Benoit

Frédéric Vivien

PhD students (Guillaume Aupy, Dounia Zaidouni)

UT Knoxville

George Bosilca

Aurélien Bouteiller

Jack Dongarra

Thomas Hérault (joint tutorial at SC’13)

Others

Franck Cappello, UIUC-Inria joint lab

Henri Casanova, Univ. Hawai‘i

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 76/ 76

	ABFT for dense linear algebra kernels
	Checkpointing
	Young/Daly approximation
	Exponentially distributed failures – advanced analysis
	Assessing checkpointing protocols
	In-memory checkpointing
	Fault prediction

	Other techniques
	Replication
	Silent errors

	Conclusion

