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Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture 
with a cap of $200M and 20MW  
 Systems 2011 

K computer 
2019  Difference 

Today & 2019 

System peak 10.5 Pflop/s 1 Eflop/s O(100) 

Power 12.7 MW ~20 MW 

System memory 1.6 PB 32 - 64 PB O(10) 

Node performance 128 GF 1,2  or 15TF O(10) – O(100) 

Node memory BW 64 GB/s 2 - 4TB/s O(100) 

Node concurrency 8 O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10) 

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100) 

Total concurrency 705,024 O(billion) O(1,000) 

MTTI days O(1 day) - O(10) 
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Exascale platforms (courtesy C. Engelmann & S. Scott)
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Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Theorem: µp =
µ

p
for arbitrary distributions
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Even for today’s platforms (courtesy F. Cappello)
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Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs 

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of 
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware 
problems, albeit rarer, need 6.3-100.7 hours to solve.” 

•  In 2007 (Garth Gibson, ICPP Keynote): 

•  In 2008 (Oliner and J. Stearley, DSN Conf.): 
50% 

Hardware 

Conclusion: Both Hardware and Software failures have to be considered 

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. 

Hardware errors, Disks, processors, memory, network   
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A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably
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Failure distributions: (1) Exponential
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Exp(λ): Exponential distribution law of parameter λ:

Pdf: f (t) = λe−λtdt for t ≥ 0

Cdf: F (t) = 1− e−λt

Mean = 1
λ
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X random variable for Exp(λ) failure inter-arrival times:

P (X ≤ t) = 1− e−λtdt (by definition)

Memoryless property: P (X ≥ t + s |X ≥ s ) = P (X ≥ t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

Mean Time Between Failures (MTBF) µ = E (X ) = 1
λ
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Failure distributions: (2) Weibull
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Weibull(k, λ): Weibull distribution law of shape parameter k and
scale parameter λ:

Pdf: f (t) = kλ(tλ)k−1e−(λt)k dt for t ≥ 0

Cdf: F (t) = 1− e−(λt)k

Mean = 1
λΓ(1 + 1

k )
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Failure distributions: (2) Weibull
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X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time
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Values from the literature

MTBF of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)
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Tiled LU factorization

A A'

U

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y
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Tiled LU factorization

A A'

U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y
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L

U U

L

U

GETF2: factorize a
column block

TRSM - Update row block
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the trailing
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Transform A into a LU factorization
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Tiled LU factorization
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Failure of rank 2

2D Block Cyclic Distribution (here 2× 3)

A single failure ⇒ many data lost
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Algorithm Based Fault Tolerant LU decomposition
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Checksum: invertible operation on row/column data

Checksum replication avoided by dedicating additional
computing resources to checksum storage
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Algorithm Based Fault Tolerant LU decomposition
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Checksum: invertible operation on row/column data

Checksum blocks are doubled, to allow recovery when data
and checksum are lost together (no extra resource needed)
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Algorithm Based Fault Tolerant LU decomposition
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Checksum: invertible operation on row/column data

Key idea of ABFT: applying the operation on data and
checksum preserves the checksum properties
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Performance

As supercomputers grow ever larger in scale, the Mean Time to Failure becomes shorter and shorter, making the complete and 
successful execution of complex applications more and more difficult. FT-LA delivers a new approach, utilizing Algorithm-Based 
Fault Tolerance (ABFT), to help factorization algorithms survive fail-stop failures. The FT-LA software package extends 
ScaLAPACK with ABFT routines, and in sharp contrast with legacy checkpoint-based approaches, ABFT does not incur I/O overhead, 
and promises a much more scalable protection scheme.

ABFT THE IDEA

Cost of ABFT comes only from 
extra flops (to update checksums) 
and extra storage

Cost decreases with machine 
scale (divided by Q when using 
PxQ processes)

PROTECTION

Matrix protected by block row checksum

The algorithm updates both the 
trailing matrix AND the checksums

RECOVERY

Missing blocks reconstructed by inverting 
the checksum operation

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Least Squares

Cholesky, LU 

QR (with protection of the upper and lower factors)

FEATURES

WORK IN PROGRESS

Covering four precisions: double complex, single complex, double real, single real (ZCDS)

Deploys on MPI FT draft (ULFM), or with “Checkpoint-on-failure”

Allows toleration of permanent crashes

Hessenber Reduction, Soft (silent) Errors

Process grid: p x q
F: simultaneous failures tolerated

 

Protection against 2 faults on 
192x192 processes => 1% overhead

Usually F << q; 
Overheads in F/q

Protection cost is inversely 
proportional to machine scale!

Computation

Memory

Flops for the checksum update

Matrix is extended with 
2F columns every q columns 

FIND OUT MORE AT http://icl.cs.utk.edu/ft-la
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MPI-Next ULFM Performance

Open MPI with ULFM; Kraken supercomputer;
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Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed
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Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors with MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

Waste: fraction of time not spent for useful computations
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Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

Waste[FF ] =
TimeFF −Timebase

TimeFF
=

C

T
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Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?
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Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures
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Nfaults number of failures during execution
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Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

⇒ Instants when periods begin and failures strike are independent
⇒ Valid for all distribution laws, regardless of their particular shape
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Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Waste[fail ] =
Timefinal −TimeFF

Timefinal
=

1

µ

(
D + R +

T

2

)
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Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail ]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

1−Waste = (1−Waste[FF ])(1−Waste[fail ])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
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Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C
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Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail ]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail ]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail ]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail ]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C
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How accurate?

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

of success

Probability

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach
Time needed

the work W and

to compute

checkpoint it

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Probability of failure

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

+

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time elapsed

before failure

stroke

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to perform

downtime

and recovery

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

Psucc(W + C ) (W + C )

E(T (W )) =
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Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to compute W
anew

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

Psucc(W + C ) (W + C )

E(T (W )) =
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Computation of E(T (W ,C ,D,R , λ))

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W )))

Psucc(W + C ) (W + C )

E(T (W )) =

Psuc(W + C ) = e−λ(W+C)

E(Tlost(W + C )) =
∫∞

0
xP(X = x |X < W + C )dx = 1

λ −
W+C

eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(T (W ,C ,D,R, λ)) = eλR
(

1
λ + D

)
(eλ(W+C) − 1)
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Checkpointing a sequential job

E(T (W )) = eλR
(

1
λ + D

) (∑K
i=1 eλ(Wi+C) − 1)

Optimal strategy uses same-size chunks (convexity)

K0 = λW
1+L(−e−λC−1)

where L(z)eL(z) = z (Lambert function)

Optimal number of chunks K ∗ is max(1, bK0c) or dK0e

Eopt(T (W )) = K ∗
(

eλR
(

1

λ
+ D

))(
eλ( W

K∗ +C)−1
)

Can also use Daly’s second-order approximation
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Background: coordinated checkpointing protocols

Coordinated checkpoints over all
processes

Global restart after a failure

P0

P1

P2

m1 m2 m3

m4 m5

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back
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Background: message logging protocols

Message content logging
(sender memory)

Restart of failed process only

P0

P1

P2

m1 m2 m3

m4 m5

, No cascading rollbacks

, Number of processes to roll back

/ Memory occupation

/ Overhead

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 35/ 76



ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Background: hierarchical protocols

Clusters of processes

Coordinated checkpointing
protocol within clusters

Message logging protocols
between clusters

Only processors from failed group
need to roll back

P0

P1

P2

P3

m1

m2

m3

m4

m5

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Faster re-execution with logged messages
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Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Rumor: May not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to roll back

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms
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Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407
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Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind
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Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind
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Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!
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Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!
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Checkpoint time

Name C

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

Large time to dump the memory

Using 1%C , and even 0.1%C for Exascale platforms?
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Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 1, 000
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Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 100
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Simulations – Platform: Titan

Stencil 2D Matrix product
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Simulations – Platform: Exascale with C = 100

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d

ay
s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated Daly
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind , C = 100

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 46/ 76



ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Outline

1 ABFT for dense linear algebra kernels

2 Checkpointing
Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
Silent errors

4 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 47/ 76



ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Motivation

Checkpoint transfer and storage
⇒ critical issues of rollback/recovery protocols

Stable storage: high cost

Distributed in-memory storage:

Store checkpoints in local memory ⇒ no centralized storage
, Much better scalability
Replicate checkpoints ⇒ application survives single failure
/ Still, risk of fatal failure in some (unlikely) scenarios
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Double checkpoint algorithm (Kale et al., UIUC)

1

1

d q s

f

f

P

Local checkpoint
done

Remote checkpoint
done

Period
done

Node p

Node p'

Platform nodes partitioned into pairs

Each node in a pair exchanges its checkpoint with its buddy

Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy’s data

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 49/ 76



ABFT for dense linear algebra kernels Checkpointing Other techniques Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Best trade-off between performance and risk?
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Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Application at risk until complete reception of both messages

Best trade-off between performance and risk?
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Framework

Predictor

Exact prediction dates (at least C seconds in advance)

Recall r : fraction of faults that are predicted

Precision p: fraction of fault predictions that are correct

Events

true positive: predicted faults

false positive: fault predictions that did not materialize as
actual faults

false negative: unpredicted faults
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Algorithm

1 While no fault prediction is available:
• checkpoints taken periodically with period T

2 When a fault is predicted at time t:
• take a checkpoint ALAP (completion right at time t)
• after the checkpoint, complete the execution of the period
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Computing the waste

1 Fault-free execution: Waste[FF ] = C
T

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

2 Unpredicted faults: 1
µNP

[
D + R + T

2

]
TimeT -C T -C Tlost T -C

Error

C C C D R C

Waste[fail ] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r
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Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C ]

TimeT -C Wreg

Error Predicted failure

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted failure

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail ] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r
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Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C ]

TimeT -C Wreg

Error Predicted failure

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted failure

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail ] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r
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Refinements

Use different value Cp for proactive checkpoints

Avoid checkpointing too frequently for false negatives
⇒ Only trust predictions with some fixed probability q
⇒ Ignore predictions with probability 1− q
Conclusion: trust predictor always or never (q = 0 or q = 1)

Trust prediction depending upon position in current period
⇒ Increase q when progressing
⇒ Break-even point

Cp

p
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With prediction windows

TimeTR-C TR-C Tlost TR-C

Error
(Regular mode)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TP-Cp TR-C
-Wreg

(Prediction without failure)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TR-C
-Wreg

Error
(Prediction with failure)

C C C D R C

C C Cp Cp Cp Cp C

C C Cp Cp Cp D R C

Gets too complicated! /
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Replication

Systematic replication: efficiency < 50%

Can replication+checkpointing be more efficient than
checkpointing alone?

Study by Ferreira et al. [SC’2011]: yes
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Model by Ferreira et al. [SC’ 2011]

Parallel application comprising N processes

Platform with ptotal = 2N processors

Each process replicated → N replica-groups

When a replica is hit by a failure, it is not restarted

Application fails when both replicas in one replica-group have
been hit by failures
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The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday ?

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

Birthday(N) = 1 +

∫ +∞

0
e−x(1 + x/N)N−1dx

The analogy

Two people with same birthday
≡

Two failures hitting same replica-group
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Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure
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Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure: can failed PE be hit?
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Differences with birthday problem

1 2

. . .

i

. . .

N

N processes; each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem
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Correct analogy

� � � � . . . �
1 2 3 4 . . . n

⇑
• • • • • • • • • • • . . .

N = nrg bins, red and blue balls

Mean Number of Failures to Interruption (bring down application)
MNFTI = expected number of balls to throw

until one bin gets one ball of each color
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Failure distribution
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(b) Weibull, k = 0.7

Crossover point for replication when µind = 125 years
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Weibull distribution with k = 0.7

Dashed line: Ferreira et al. Solid line: Correct analogy
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Study by Ferrreira et al. favors replication

Replication beneficial if small µ + large C + big ptotal
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1 ABFT for dense linear algebra kernels
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Young/Daly approximation
Exponentially distributed failures – advanced analysis
Assessing checkpointing protocols
In-memory checkpointing
Fault prediction

3 Other techniques
Replication
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Silent errors

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Consider silent errors here

This includes some software faults, some hardware errors (soft
errors in L1 cache), bit flips (cosmic radiations)

Silent error detected when corrupt data is activated
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Detection latency

Instantaneous error detection ⇒ fail-stop failures

Silent errors (data corruption) ⇒ detection latency

TimeXe Xd

Error Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Even when saving k checkpoints: which one to roll back to?

Critical failure: all checkpoints contain corrupted data
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Coupling checkpointing and verification

Verification mechanism of cost V

Simplest idea: verify work before each checkpoint

Time

w V C w V C w V C w V C

V large compared to w ⇒ large Wasteff, can we improve that?

Is this better?

Time

w C w V C w C w V C w C
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Coupling checkpointing and verification

Time

V C w V w V w V w V w V C

Small cost V : 5 verifications for 1 checkpoint

Time

V C w C w C w C w C w V C

Large cost V : 5 checkpoints for 1 verification

More complicated periodic patterns? Different-size chunks?
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k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V R V R V
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k checkpoints for 1 verification

Where did the error strike?

Time

Error

V C w C w C w C w C w V R V R V R V

Re-Exec = 2(w + C ) + (w + V )
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k checkpoints for 1 verification

Waste as function of k, using optimal period
(V = 100s,C = R = 6s and µ = 10years

105 )
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Conclusion

Multiple approaches to Fault Tolerance

Application-specific FT will always provide more benefits

General-purpose FT will always be needed

Not every computer scientist needs to learn how to write
fault-tolerant applications
Not all parallel applications can be ported to a fault-tolerant
version

Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?
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Conclusion

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Need combine all these approaches!

Several challenging algorithmic/scheduling problems ,

Extended version of this talk: see SC’13 tutorial with Thomas
Hérault. Available at

http://graal.ens-lyon.fr/~yrobert/
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