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Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW

Systems 2011 Difference
K computer Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s 0(100)
Power 12.7 MW ~20 MW

System memory 1.6 PB 32-64PB O(10)
Node performance 128 GF 1,2 or 15TF O(10) - O(100)
Node memory BW 64 GB/s 2-4TB/s O(100)
Node concurrency 8 O(1k) or 10k O(100) — O(1000)
Total Node Interconnect BW 20 GB/s 200-400GB/s 0o(10)
System size (nodes) 88,124 O(100,000) or O(1M) O(10) - O(100)
Total concurrency 705,024 Olbillion) O(1,000)
MTTI days o(1 day) -0(10)
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Exascale platforms (courtesy C. Engelmann & S. Scott)

Toward Exascale Computing (My Roadmap)

Based on proposed DOE roadmap with MTTI adjusted to scale linearly

Systems 2009 2011 2015 2018
System peak 2 Peta 20 Peta 100-200 Peta 1 Exa
System memory 0.3PB 1.6 PB 5PB 10 PB
Node performance 125 GF 200GF 200-400 GF 1-10TF
Node memory BW 25 GB/s 40 GB/s 100 GB/s 200-400 GB/s
Node concurrency 12 32 0(100) 0O(1000)
Interconnect BW 1.5 GB/s 22 GB/s 25 GB/s 50 GB/s

I System size (nodes) 18,700 100,000 500,000 O(million) ]
Total concurrency 225,000 3,200,000 0O(50,000,000) O(billion)
Storage 15PB 30PB 150 PB 300 PB
10 0.2 TB/s 2TB/s 10 TB/s 20 TB/s

[mTTI 4days  19h4min 3h52min 1h56min |
Power 6 MW ~10MW ~10 MW ~20 MW
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Exascale platforms

@ Hierarchical
e 10° or 109 nodes
e Each node equipped with 10* or 103 cores

o Failure-prone

MTBF — one node | 1 year | 10 years | 120 years
MTBF — platform 30sec 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)
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Exascale platforms

@ Hierarchical
e 10° or 109 nodes
e Each node equipped with 10* or 103 cores

o Failure-prone

MTBF — one node | 1 year | 10 years | 120 years
MTBF — platform 30sec 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)

Theorem: i, = H for arbitrary distributions
p
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Even for today’s platforms (courtesy F. Cappello)

hl?;#f:&ﬂ‘%mwAfso.a’n issue at Petasc ABRN

28\ Fault tolerance becomes critical at Petascale (MTTI <= 1day)
Poor fault tolerance design may lead to huge overhead

Qverhead of checkpoint/restart

| Cost of non optimal checkpoint intervals: |'°*
Ir 710%

Today, 20% or more of the computing capacity in a large high-performance
computing system is wasted due to failures and recoveries.
Dr. E.N. (Mootaz) Elnozahyet al. System Resilience at Extreme Scale,

DARPA
30% \ ’,1 T;;:U L —
\ / 30min ckpt w0 |I0%
20% .

1min ckpt 0%
Smin ckpt
10% nee 0%
%
Checkpoint
o 0% Interval (min)
1d 1 10 100 1000 10000
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Even for today’s platforms (courtesy F. Cappello)

Typical “Balanced Architecture” for PetaScale Computers

Compute nodes

40 to 200 GB/s
Parallel file system

Total memory: (1to 2 PB)

100-200 TB

. 1/0 nodes
Tt R —

Without optimization, Checkpoint-Restart needs
__about 1h! (~30 minutes each) i

Systems Perf. Ckpt time Source t .
RoadRunner 1PF ~20 min. Panasas
LLNL BG/L 500 TF >20 min. LLNL LLNL BG/L
LLNL Zeus 11TF 26 min. LLNL =
YYY BG/P 100 TF ~30 min. YYY
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Error sources (courtesy Franck Cappello)

« Analysis of error and failure logs

* In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

* In 2007 (Garth Gibson, ICPP Keynote): um::> HHHH ——
Software
80| EINetwork
[JEnvironmend
- EHuman
t R
& 0,
g 50%
* In 2008 (Oliner and J. Stearley, DSN Conf.): 8 "
Raw Filtered ¢
Type Count % Count % 20)
Hardware 1745805161 004 1990 | 18.78
<__ Software 144,899 0.08 6,814 | 64, o8
Indeterminate 3350044 | 1.88 | 1,832 | 17.21 Pink Blue Red Green Black Al

Relative frequency of root

cause by system type.
Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.
Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered
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A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable
Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably
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Failure distributions: (1) Exponential

Sequential Machine

Failure Probability

Exp(1/100) ——
0 200 400 600 800 1000
Time (years)

Exp(\): Exponential distribution law of parameter \:
o Pdf: f(t) = Ae dt for t >0
o Cdf: F(t)=1—e ¢

@ Mean = Y
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Failure distributions: (1) Exponential

Sequential Machine

Failure Probability
oo
oo
~

Exp(1/100) ——
0 200 400 600 800 1000
Time (years)

X random variable for Exp(\) failure inter-arrival times:
o P(X <t)=1- e dt (by definition)
e Memoryless property: P(X > t+s|X >s)=P(X > t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

@ Mean Time Between Failures (MTBF) p=E(X) =

>
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Failure distributions: (2) Weibull

Sequential Machine

Failure Probability
oo
=Y
g

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100) -

0 200

Weibull(k, X): Weibull distribution law of shape parameter k and

scale parameter \:

400 600 800 1000
Time (years)

o Pdf: f(t) = kA(tA)kLe=(ADdt for t > 0

o Cdf: F(t)=1— e (0"
@ Mean = %r(l + %)
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Failure distributions: (2) Weibull

Sequential Machine

Failure Probability
o
o
T,

Exp(1/100) ——
0.1 Weibull(0.7, 1/100)
Weibull(0.5, 1/100) -
0 200 400 600 800 1000
Time (years)

X random variable for Weibull(k, \) failure inter-arrival times:

o If k < 1: failure rate decreases with time
"infant mortality”: defective items fail early

o If k =1: Weibull(1,\) = Exp()\) constant failure time
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Values from the literature

@ MTBF of one processor: between 1 and 125 years
@ Shape parameters for Weibull: kK = 0.5 or k = 0.7

@ Failure trace archive from INRIA
(http://fta.inria.fr)

@ Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)
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Outline

o ABFT for dense linear algebra kernels

Checkpointing

@ Young/Daly approximation

@ Exponentially distributed failures — advanced analysis
@ Assessing checkpointing protocols

@ In-memory checkpointing

@ Fault prediction

Other techniques
@ Replication
@ Silent errors

e Conclusion
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ABFT for dense linear algebra kernels

Outline

o ABFT for dense linear algebra kernels
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ABFT for dense linear algebra kernels
Tiled LU factorization

@ Solve A- x = b (hard)
@ Transform A into a LU factorization
@ Solve L-y=B-b,then U-x=y
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ABFT for dense linear algebra kernels

Tiled LU factorization

TRSM - Update row block

A op L

AI

— T —
GETF2: factorize a GEMM: Update
column block the trailing

matrix

@ Solve A-x = b (hard)
@ Transform A into a LU factorization
@ Solve L-y=B-b,then U-x=y
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ABFT for dense linear algebra kernels

Tiled LU factorization

TRSM - Update row block

L ol "

GETF2: factorize a GEMM: Update
column block the trailing
matrix

@ Solve A-x = b (hard)
@ Transform A into a LU factorization
@ Solve L-y=B-b,then U-x=y
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ABFT for dense linear algebra kernels
Tiled LU factorization

Failure of rank 2

w(24/0[2[4]0[2] ol 4/ofll4]o]
i8(5(13[5[1]3 i8/5/113]5[1]3
l4fo]2]4]0]2] 4 [0 Il 4 (0]
MEHNE > b 3]5]1/3
124102 an

@ 2D Block Cyclic Distribution (here 2 x 3)

@ A single failure = many data lost
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ABFT for dense linear algebra kernels
Algorithm Based Fault Tolerant LU decomposition

N
o @ N/
o] | rNve
I Fo (2[4 [0]2]4]0]2] e (2]4lof2[4]0]2]A[A]Af
Ml 1 )3 [5(1[3[5]1[3] g |5[1][3[5[1]3[B]B[E]
bao[2]4]o[2] 0(2pao[2]4[o]2]A]A[A}
M i [3]5 113 . > | bt [3[5]1[3[B]B]H}
\ | AlAY
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+
+

@ Checksum: invertible operation on row/column data

o Checksum replication avoided by dedicating additional
computing resources to checksum storage

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC



ABFT for dense linear algebra kernels
Algorithm Based Fault Tolerant LU decomposition

N

n a _l ,_< 2N/Q +nb
o [2[4[0]2]4]0]2] 'IIIEIIIEIEE 4]
[ T)3 [STT[3[5[T]S] [S[1]3]5]1]

i [0]2]4]0]2] 'lﬂllﬂﬂﬂ
DLIB[S]1]3] * DL[3[5[1[3]5]1]

(&)

EaeRNE
EEEIEEEE
Y S Y

L A ANENENEN_ |
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E

@ Checksum: invertible operation on row/column data

o Checksum blocks are doubled, to allow recovery when data
and checksum are lost together (no extra resource needed)
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ABFT for dense linear algebra kernels
Algorithm Based Fault Tolerant LU decomposition

PN

GETF2 GEMM

@ Checksum: invertible operation on row/column data

o Key idea of ABFT: applying the operation on data and
checksum preserves the checksum properties
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ABFT for dense linear algebra kernels

Performance

35 50
Overhead: FT-PDGETRF (w/1 recovery) ==
Overhead: FT-PDGETRF (no error) =m=
FT-PDGETRF (w/1 recovery) sss
28} FT-PDGETRF (no error) === 440
= ScalAPACK PDGETRF mem =
= 5
3 af {30 £
E [
3 g
S ur 10 £
< ©
e &
7L {10

0
.90k - 40K . g0k K
o 20 \L [\ <8, 20 83, 160 6, 220 A9k B0k

#Processors (PxQ grid); Matrix size (N)

MPI-Next ULFM Performance

@ Open MPI with ULFM; Kraken supercomputer;
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Checkpointing

Outline

Checkpointing
@ Young/Daly approximation
@ Exponentially distributed failures — advanced analysis

@ Assessing checkpointing protocols
@ In-memory checkpointing
@ Fault prediction
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Checkpointing
®000

Outline

Checkpointing
@ Young/Daly approximation
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Checkpointing
0000

Checkpointing cost

Time spent working
m——Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk Processing the second chunk

Blocking model: while a checkpoint is taken, no computation can
be performed
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Checkpointing
0000

Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF p = pjpg

Applies to a platform with p processors with MTBF p = %

e coordinated checkpointing
o tightly-coupled application
e progress <> all processors available

Waste: fraction of time not spent for useful computations J
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Checkpointing

(o] Jele]

Waste in fault-free execution

— @ TIMEp,e: application base time

ﬂ o TIMEfg: with periodic checkpoints
but failure-free

TIMEpr = TIMEpase + #checkpoints x C

(valid for large jobs)

. TIME TIME
#checkpoints = [ base—‘ R base

T-C T-C

TIMEgg — TIME C
WASTE[FF] = FTFIMEFF base _ -
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Checkpointing
0000

Waste due to failures

@ TIMEpsse: application base time
o TIMEpg: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinal = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tiost: average time lost per failure
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Checkpointing
0000

Waste due to failures

@ TIMEpsse: application base time
o TIMEpg: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinal = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tiost: average time lost per failure

TIMEfinal
Nfaults =

7-|05t?
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Checkpointing
0000

Computing Tjest

= Time spent working —— Time spent checkpointing
—— Downtime —— Recovery time Time
Py /

U
Pl
P2
Ps

Tiost D R T-C C
T
Tost =D+ R+ >

= Instants when periods begin and failures strike are independent
=- Valid for all distribution laws, regardless of their particular shape
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Checkpointing
00®0

Waste due to failures

TIMEfinal = TIMEFF 4+ Neauies X Tiost

WASTE(fail] = =—(D+R+ —

TIME¢na — TIMEERE 1 T
TIMEfinal 0 2
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Checkpointing
0000

Total waste

[ 7c|d 7c | 7c |d 7 |d 7< |c_

TIMEgg =TIMEEjna (1-WASTE[Fail])  TIMEFha X WASTE[Fail]

TIMEFinal

TIMEfinaI - TIMEbase

WASTE =
TIMEfinal

1 — WASTE = (1 — WASTE[FF])(1 — WASTE[fail])
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Checkpointing
0000

Waste minimization

C C\1 T

WASTE:%—i—v—I—WT

D+Ry , _D+R-C/2 1

! ( % % 2p

WASTE minimized for T = \/%

T=2(u—(D+R))C
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Checkpointing
ocooe

Comparison with Young/Daly

[ c|d 7c | 7c |d 7 |d 7< |c_

TIMEgg =TIMEEjna (1-WASTE[Fail]) TIMEFjha X WASTE[Fail]

TIMEFinal

(1 — WASTE[fail]) TIMEfina = TIMEFf
=T= \/2(/L —(D+R))C

Daly: TIMEfina = (1 4+ WASTE[fail]) TIMEF¢
= T=V2u+(D+R)C+C

Young: TIMEfina = (1 + WASTE[fail]) TIMEFr and D =R =0
=T =2uC+C
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Checkpointing
0000

How accurate?

@ Capping periods, and enforcing a lower bound on MTBF
= mandatory for mathematical rigor @

@ Not needed for practical purposes ©
e actual job execution uses optimal value
e account for multiple faults by re-executing work until success

e Approach surprisingly robust ©
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Checkpointing
o

Outline

9 Checkpointing

@ Exponentially distributed failures — advanced analysis

es.Robert@ens-lyon.fr
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Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach
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Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Probability
of success

Pace(W + C) (W + C)

E(T(W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC



Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach
Time needed
to compute
the work W and
checkpoint it

Pace(W + C) (W + C)
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Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Pace(W + C) (W + C)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC



Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Pace(W + C) (W + C)
E(T(W))= +
(1 - ,Psu(:(‘(W + C)) (]E( T/ost(W + C)) + E( Trec) + E( T( W)))
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Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Pace(W + C) (W + C)
E(T(W))= +

(1 - ,Psu(:(‘(W + C)) (]E( T/ost(W + C)) + E( Trec) + E( T( W)))

Probability of failure

Yves.Robert@ens-lyon.fr
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Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Pace(W + C) (W + C)
E(T(W))= +
(1 - ,Psu(:(‘(W + C)) (]E( T/ost(W + C)) + E( Trec) + E( T( W)))

Time elapsed
before failure
stroke
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Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Psucc( W+ C) (W + C)

(1 = Pawce(W + C) (E(Tiost (W + C)) + E(Trec) + E(T(W)))

Time needed
to perform
downtime

and recovery
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Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Pace(W + C) (W + C)
E(T(W))= +
(1 - ,Psu(:(‘(W + C)) (]E( T/ost(W + C)) + E( Trec) + E( T( W)))

Time needed
to compute W
anew
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Checkpointing

Computation of E(T(W, CO, D,R,)\))

Pouce(W + C) (W + )
E(TW) = +
(1 - Psu(:c(W + C)) (]E( T/ost(W + C)) + E( Trec) + E( T( W)))

o Psuc(W+C) = e MWHC)
® E(Tiost(W + C)) = [;°xP(X = x|X < W+ C)dx = § — s
0 E(Trec) = e R(D+R)+(1—e ) (DHE( Tiost(R))+E( Trec))

E(T(W.C.D.R.\) = &R (1 4 D) (MW+O) 1)
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Checkpointing

Checkpointing a sequential job

o E(T(W)) = &% (% + D) (Tf, W) 1)

@ Optimal strategy uses same-size chunks (convexity)

°o Ky = ﬁ where L(z)e™?) = z (Lambert function)
@ Optimal number of chunks K* is max(1, |Kp|) or [Ko]

Can also use Daly’s second-order approximation
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Checkpointing
®0000

Outline

9 Checkpointing

@ Assessing checkpointing protocols

es.Robert@ens-lyon.fr
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Checkpointing
00000

Background: coordinated checkpointing protocols

Py O e
e Coordinated checkpoints over all m /m2 \m3 <

processes P b SO __N--
. mgy ms
@ Global restart after a failure
P> O n

© No risk of cascading rollbacks
© No need to log messages

® All processors need to roll back
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Checkpointing
00000

Background: message logging protocols

Py 0 0
@ Message content logging my /m2 \m3 <
P 1

(sender memory) ~-_7__\--
. ma msg
@ Restart of failed process only \ / \
P> O 0

© No cascading rollbacks

© Number of processes to roll back
® Memory occupation

® Overhead

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC



Checkpointing
©0®000

Background: hierarchical protocols

@ Clusters of processes Po —O /

@ Coordinated checkpointing

protocol within clusters L R e S -
. ma ms3 mxy
@ Message logging protocols <€

between clusters Po 2 My mmef - -
@ Only processors from failed group ma

need to roll back

@ Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

© Faster re-execution with logged messages

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC



Checkpointing
00000

Which checkpointing protocol to use?

Coordinated checkpointing
© No risk of cascading rollbacks
© No need to log messages
® All processors need to roll back

® Rumor: May not scale to very large platforms

Hierarchical checkpointing

® Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

Only processors from failed group need to roll back

Faster re-execution with logged messages

© OO

Rumor: Should scale to very large platforms

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC



Checkpointing
00000

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory 1/0 Network Bandwidth (bj,) 1/0 Bandwidth (bport)
cores PrOCessors proal | per processor | per processor |  Read Write Read/Write per processor
Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 B 16GB 150GB/s 96GB/s 20GB/s
Exascale-Slim | 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s
Name Scenario G (C(q)) 3 for 3 for
2D-STENCIL | MATRIX-PRODUCT
COORD-10 1 (2,048s) / /
Titan HIERARCH-IO 136 (15s) 0.0001098 0.0004280
HIERARCH-PORT 1,246 (1.6s) 0.0002196 0.0008561
CoORD-IO 1 (14,688s)
K-Computer HIERARCH-IO 296 (50s) 0.0002858 0.001113
HIERARCH-PORT | 17,626 (0.83s) 0.0005716 0.002227
CoORD-IO 1 (64,000s)
Exascale-Slim HIERARCH-IO 1,000 (64s) 0.0002599 0.001013
HIERARCH-PORT | 200,0000 (0.32s) 0.0005199 0.002026
COORD-10 1 (64,000s)
Exascale-Fat HIERARCH-IO 316 (217s) 0.00008220 0.0003203
HIERARCH-PORT | 33,3333 (1.92s) 0.00016440 0.0006407
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Checkpointing
00®00

Plotting formulas — Platform: Titan

Stencil 2D Matrix produc Stencil 3D

Part

o 20 S0 oo T 3 3 T 20 S0 100 T 3 3 o 20 S0 oo

Waste as a function of processor MTBF pjng
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Checkpointing
00000

Platform: K-Computer

Stencil 2D

Matrix product Stencil 3D

o 20 S0 oo T 3 3 T 20 S0 100 T 3 3 o 20 S0 oo

Waste as a function of processor MTBF pjng
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Plotting formulas — Platform: Exascale

WASTE = 1 for all scenarios!!! J
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Plotting formulas — Platform: Exascale

Goodbye Exascale?!
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Checkpoint time

Name C
K-Computer | 14,688s
Exascale-Slim | 64,000
Exascale-Fat | 64,000

@ Large time to dump the memory

@ Using 1%C, and even 0.1%C for Exascale platforms?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC
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Plotting formulas — Platform: Exascale with C = 1,000

Stencil 2D Matrix product Stencil 3D
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Waste as a function of processor MTBF pjnq, C = 1,000
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Plotting formulas — Platform: Exascale with C = 100

Exascale-Slim

Exascale-Fat

Stencil 2D

Matrix product Stencil 3D
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Waste as a function of processor MTBF p,4, C = 100
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Simulations — Platform: Titan

Stencil 2D Matrix product
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Simulations — Platform: Exascale with C = 100

Stencil 2D Matrix product
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9 Checkpointing

@ In-memory checkpointing
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Motivation

@ Checkpoint transfer and storage
= critical issues of rollback/recovery protocols

@ Stable storage: high cost

@ Distributed in-memory storage:

e Store checkpoints in local memory = no centralized storage
© Much better scalability

o Replicate checkpoints = application survives single failure
® Still, risk of fatal failure in some (unlikely) scenarios

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC
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Double checkpoint algorithm (Po(ale et al., UIUC)

Local checkpoint Remote checkpoint Period
done done done
Node p | 1 |
Node p' | 1 |
->
) (] o
P

@ Platform nodes partitioned into pairs
@ Each node in a pair exchanges its checkpoint with its buddy

@ Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy's data

Fault-tolerance for HPC
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Failures

Risk Period
Node p' 1 1

- - — Checkpoint of Checkpoint of
3 0 G 3 0 tiost P P
P \ \
-— -—
D R 0 tiost

@ After failure: downtime D and recovery from buddy node

@ Two checkpoint files lost, must be re-sent to faulty processor
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Failures

Risk Pej
Node p' 1 [ 1
L 1§
- - - Checkpoint of Checkpoint of
3 0 o 3 0 tost ? P

Node to replace p

o After failure: downtime D and recovery from buddy node
@ Two checkpoint files lost, must be re-sent to faulty processor

@ Application at risk until complete reception of both messages

Best trade-off between performance and risk? J
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9 Checkpointing

@ Fault prediction

es.Robert@ens-lyon.fr
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Framework

Predictor
e Exact prediction dates (at least C seconds in advance)
@ Recall r: fraction of faults that are predicted

@ Precision p: fraction of fault predictions that are correct

Events
@ true positive: predicted faults

@ false positive: fault predictions that did not materialize as
actual faults

o false negative: unpredicted faults

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC
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Algorithm

© While no fault prediction is available:
e checkpoints taken periodically with period T
@ When a fault is predicted at time t:
e take a checkpoint ALAP (completion right at time t)
e after the checkpoint, complete the execution of the period

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC
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Computing the waste

O Fault-free execution: WASTE[FF] = £

—_—

. .1 T
© Unpredicted faults: [D+ R+ L]

Error

<] & [ ]

T-C T-C Tiost T-C Time
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Computing the waste

@ Predictions: -1 [p(C + D + R)+ (1 p)C]

©p
Error
€] [ BB [ <]
T-C Wieg T-Wieg-C T-C Time

with actual fault (true positive)

<] B[4 & [

T-C Wieg T-Wieg-C T-C T-C Time

no actual fault (false negative)
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Computing the waste

@ Predictions: -1 [p(C + D + R)+ (1 p)C]

©p
Error
€] [ BB [ <]
T-C Wieg T-Wieg-C T-C Time

with actual fault (true positive)

<] B[4 & [

T-C Wieg T-Wieg-C T-C T-C Time

no actual fault (false negative)

2uC

fail] =
WASTE(fail| T,

1 T
; (1—r)2+D+R+;C:|:>TOpt%
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Refinements

@ Use different value C, for proactive checkpoints

@ Avoid checkpointing too frequently for false negatives
= Only trust predictions with some fixed probability g
= Ignore predictions with probability 1 — g
Conclusion: trust predictor always or never (g =0 or g = 1)

@ Trust prediction depending upon position in current period
= Increase g when progressing
= Break-even point 7"
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With prediction windows

E
(Regular mode) rror

<] [ [[__F] ]

Tr-C Tr-C Tiost Tr-C Time
(Prediction without failure) /
Q@ @ ECECE [
Tr-C Wieg| [Tp-Co  Tp-Co,  Tp-Cp |Tw-C Time
Regular mode Proactive mode Wieg
(Prediction with failure)  Error
[ EC R ER M
Tr-C Wieg| [Tp-Co  Tp-Cp Tr-C Time
Regular mode Proactive mode “Wieeg

Gets too complicated! @

Fault-tolerance for HPC
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Other techniques
@ Replication
@ Silent errors
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Other techniques
@ Replication
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Replication

@ Systematic replication: efficiency < 50%

@ Can replication+checkpointing be more efficient than
checkpointing alone?

@ Study by Ferreira et al. [SC'2011]: yes

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC



Model by Ferreira et al. [SC' 2011] -

Parallel application comprising N processes

Platform with piotsy = 2N processors

o

o

@ Each process replicated — N replica-groups

@ When a replica is hit by a failure, it is not restarted
o

Application fails when both replicas in one replica-group have
been hit by failures
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The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday 7

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

+oo
Birthday(N) = 1 +/ e (14 x/N)N=1dx
0

The analogy

Two people with same birthday

Two failures hitting same replica-group
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Differences with birthday problem

1 2 i N

@ N processes; each replicated twice

@ Uniform distribution of failures
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Other techniques

[e]e]

Differences with birthday problem

i

1 2 i N

@ N processes; each replicated twice
@ Uniform distribution of failures
e First failure: each replica-group has probability 1/N to be hit
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Other techniques
oo

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure: can failed PE be hit?
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oo

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
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Differences with birthday problem

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)
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Differences with birthday problem

-B

i

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)
o Probability that replica-group # i is hit by failure: 2/(2N — 1)
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Differences with birthday problem

B -B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)
o Probability that replica-group # i is hit by failure: 2/(2N — 1)
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[e]e]

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

Failure uniformly distributed over 2N — 1 PEs

Probability that replica-group i is hit by failure: 1/(2N — 1)
Probability that replica-group # i is hit by failure: 2/(2N — 1)
Failure not uniformly distributed over replica-groups:

this is not the birthday problem
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Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE
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Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE

e Suppose failure hits replica-group 7
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Differences with birthday problem

i

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE

e Suppose failure hits replica-group 7
o If failure hits failed PE:
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Differences with birthday problem

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE

Suppose failure hits replica-group i

If failure hits failed PE:

If failure hits running PE: application killed

Not all failures hitting the same replica-group are equal:
this is not the birthday problem
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Correct analogy

OO
1 2 3 4 n

ly

00000600000 _ .
N = n,g bins, red and blue balls
Mean Number of Failures to Interruption (bring down application)

MNFTI = expected number of balls to throw
until one bin gets one ball of each color
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Failure distribution

— BESTPERIOD-g = 1

— BestPE
— BESTPERIOD-g = 2

— BesTPERIOD-g

2

T T T T T T
16 o o o0 Py o

number of processors

(a) Exponential

T T T T T T
i Py e o 22 P

number of processors

(b) Weibull, k = 0.7

Crossover point for replication when g = 125 years
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Weibull distribution with kK = 0.7

Dashed line: Ferreira et al. Solid line: Correct analogy
— C =150
1000000 | — C = 300
— C =600
— C =900
g 800000 + __ ¢ 1200
g — C =2400
S
& 600000 —
s
é 400000 —
2
200000 —
0 T T —————

T T T
1 10 100
Processor MTBF (in years)

@ Study by Ferrreira et al. favors replication

@ Replication beneficial if small u + large C + big piotar
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e Other techniques

@ Silent errors
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Silent errors

@ Many types of faults: software error, hardware malfunction,
memory corruption

@ Many possible behaviors: silent, transient, unrecoverable
o Consider silent errors here

@ This includes some software faults, some hardware errors (soft
errors in L1 cache), bit flips (cosmic radiations)

@ Silent error detected when corrupt data is activated
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Detection latency

Instantaneous error detection = fail-stop failures

Silent errors (data corruption) = detection latency

Errorj 2 Detection

X. Xy Time

Error and detection latency

Last checkpoint may have saved an already corrupted state

Even when saving k checkpoints: which one to roll back to?

Critical failure: all checkpoints contain corrupted data
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Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

Time

V' large compared to w = large WASTE¢, can we improve that?
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OoeO0

Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

Time

V' large compared to w = large WASTE¢, can we improve that?
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Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

[« Md g« M« fd

Time

V small in front of w = large WASTEs,j, can we improve that?
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Other techniques
0e0

Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

[« Md g« M« fd

Time

V small in front of w = large WASTEs,j, can we improve that?
Is this better?

[z [ w2 el wrz 1 wrz e wrz ] w2 el wiz 1

Time
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Coupling checkpointing and verification

Large cost V: 5 checkpoints for 1 verification

More complicated periodic patterns? Different-size chunks?
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k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w Te[ w Je[ w Jef w Je] w V]

Time
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k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w e[ w Je[ w e w Je] w TvIr[ V]

Time
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k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w e[ w Je[ w Je] w Je] w TVIrRTVIRI V]

Time
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k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w e[ w Je] w Jc] w Je] w JVIR[VIR[V]R]

Time
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k checkpoints for 1 verification

Where did the error strike?

Error

[e[ w Je[ w e w Jef w Je] w TvIRIVIR[V]A]

Time

RE-EXEC =2(w + C) + (w + V)
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k checkpoints for 1 verification

0.120
0.118
0.116
o 0-114

T 0.112

Wi

0.110.
0.108.

0.106

0.104

1 2 3 4 5 6 7 8 9 10
k

Waste as function of k, using optimal period

(V=100s,C =R =6sand u = loi’g?rs)
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Conclusion

Conclusion

Multiple approaches to Fault Tolerance

Application-specific FT will always provide more benefits
General-purpose FT will always be needed

o Not every computer scientist needs to learn how to write
fault-tolerant applications

o Not all parallel applications can be ported to a fault-tolerant
version

Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?
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Conclusion
Conclusion

@ Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

@ Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

@ Need combine all these approaches!

Several challenging algorithmic/scheduling problems © J

Extended version of this talk: see SC’13 tutorial with Thomas
Hérault. Available at
http://graal.ens-1lyon.fr/~yrobert/
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Conclusion
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