An overview of fault-tolerant techniques for HPC

Yves Robert

ENS Lyon & Institut Universitaire de France
University of Tennessee Knoxville

yves.robert@ens-lyon.fr

http://graal.ens-1lyon.fr/~yrobert/
Sophia Tech, November 5, 2013

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 1/ 76

yves.robert@ens-lyon.fr
http://graal.ens-lyon.fr/~yrobert/

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW

Systems 2011 Difference
K computer Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s 0(100)
Power 12.7 MW ~20 MW

System memory 1.6 PB 32-64PB O(10)
Node performance 128 GF 1,2 or 15TF O(10) - O(100)
Node memory BW 64 GB/s 2-4TB/s O(100)
Node concurrency 8 O(1k) or 10k O(100) — O(1000)
Total Node Interconnect BW 20 GB/s 200-400GB/s 0o(10)
System size (nodes) 88,124 O(100,000) or O(1M) O(10) - O(100)
Total concurrency 705,024 Olbillion) O(1,000)
MTTI days o(1 day) -0(10)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Exascale platforms (courtesy C. Engelmann & S. Scott)

Toward Exascale Computing (My Roadmap)

Based on proposed DOE roadmap with MTTI adjusted to scale linearly

Systems 2009 2011 2015 2018
System peak 2 Peta 20 Peta 100-200 Peta 1 Exa
System memory 0.3PB 1.6 PB 5PB 10 PB
Node performance 125 GF 200GF 200-400 GF 1-10TF
Node memory BW 25 GB/s 40 GB/s 100 GB/s 200-400 GB/s
Node concurrency 12 32 0(100) 0O(1000)
Interconnect BW 1.5 GB/s 22 GB/s 25 GB/s 50 GB/s

I System size (nodes) 18,700 100,000 500,000 O(million)]
Total concurrency 225,000 3,200,000 0O(50,000,000) O(billion)
Storage 15PB 30PB 150 PB 300 PB
10 0.2 TB/s 2TB/s 10 TB/s 20 TB/s

[mTTI 4days 19h4min 3h52min 1h56min |
Power 6 MW ~10MW ~10 MW ~20 MW

Yves.Robert@ens-lyon.fr

Fault-tolerance for HPC

Exascale platforms

@ Hierarchical
e 10° or 109 nodes
e Each node equipped with 10* or 103 cores

o Failure-prone

MTBF — one node | 1 year | 10 years | 120 years
MTBF — platform 30sec 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 4/ 76

Exascale platforms

@ Hierarchical
e 10° or 109 nodes
e Each node equipped with 10* or 103 cores

o Failure-prone

MTBF — one node | 1 year | 10 years | 120 years
MTBF — platform 30sec 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)

Theorem: i, = H for arbitrary distributions
p

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 4/ 76

Even for today’s platforms (courtesy F. Cappello)

hl?;#f:&ﬂ‘%mwAfso.a’n issue at Petasc ABRN

28\ Fault tolerance becomes critical at Petascale (MTTI <= 1day)
Poor fault tolerance design may lead to huge overhead

Qverhead of checkpoint/restart

| Cost of non optimal checkpoint intervals: |'°*
Ir 710%

Today, 20% or more of the computing capacity in a large high-performance
computing system is wasted due to failures and recoveries.
Dr. E.N. (Mootaz) Elnozahyet al. System Resilience at Extreme Scale,

DARPA
30% \ ’,1 T;;:U L —
\ / 30min ckpt w0 |I0%
20% .

1min ckpt 0%
Smin ckpt
10% nee 0%
%
Checkpoint
o 0% Interval (min)
1d 1 10 100 1000 10000

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Even for today’s platforms (courtesy F. Cappello)

Typical “Balanced Architecture” for PetaScale Computers

Compute nodes

40 to 200 GB/s
Parallel file system

Total memory: (1to 2 PB)

100-200 TB

. 1/0 nodes
Tt R —

Without optimization, Checkpoint-Restart needs
__about 1h! (~30 minutes each) i

Systems Perf. Ckpt time Source t .
RoadRunner 1PF ~20 min. Panasas
LLNL BG/L 500 TF >20 min. LLNL LLNL BG/L
LLNL Zeus 11TF 26 min. LLNL =
YYY BG/P 100 TF ~30 min. YYY

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Error sources (courtesy Franck Cappello)

« Analysis of error and failure logs

* In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

* In 2007 (Garth Gibson, ICPP Keynote): um::> HHHH ——
Software
80| EINetwork
[JEnvironmend
- EHuman
t R
& 0,
g 50%
* In 2008 (Oliner and J. Stearley, DSN Conf.): 8 "
Raw Filtered ¢
Type Count % Count % 20)
Hardware 1745805161 004 1990 | 18.78
<__ Software 144,899 0.08 6,814 | 64, o8
Indeterminate 3350044 | 1.88 | 1,832 | 17.21 Pink Blue Red Green Black Al

Relative frequency of root

cause by system type.
Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.
Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable
Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Failure distributions: (1) Exponential

Sequential Machine

Failure Probability

Exp(1/100) ——
0 200 400 600 800 1000
Time (years)

Exp(\): Exponential distribution law of parameter \:
o Pdf: f(t) = Ae dt for t >0
o Cdf: F(t)=1—e ¢

@ Mean = Y

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Failure distributions: (1) Exponential

Sequential Machine

Failure Probability
oo
oo
~

Exp(1/100) ——
0 200 400 600 800 1000
Time (years)

X random variable for Exp(\) failure inter-arrival times:
o P(X <t)=1- e dt (by definition)
e Memoryless property: P(X > t+s|X >s)=P(X > t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

@ Mean Time Between Failures (MTBF) p=E(X) =

>

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Failure distributions: (2) Weibull

Sequential Machine

Failure Probability
oo
=Y
g

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100) -

0 200

Weibull(k, X): Weibull distribution law of shape parameter k and

scale parameter \:

400 600 800 1000
Time (years)

o Pdf: f(t) = kA(tA)kLe=(ADdt for t > 0

o Cdf: F(t)=1— e (0"
@ Mean = %r(l + %)

Yves.Robert@ens-lyon.fr

Fault-tolerance for HPC

Failure distributions: (2) Weibull

Sequential Machine

Failure Probability
o
o
T,

Exp(1/100) ——
0.1 Weibull(0.7, 1/100)
Weibull(0.5, 1/100) -
0 200 400 600 800 1000
Time (years)

X random variable for Weibull(k, \) failure inter-arrival times:

o If k < 1: failure rate decreases with time
"infant mortality”: defective items fail early

o If k =1: Weibull(1,\) = Exp()\) constant failure time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Values from the literature

@ MTBF of one processor: between 1 and 125 years
@ Shape parameters for Weibull: kK = 0.5 or k = 0.7

@ Failure trace archive from INRIA
(http://fta.inria.fr)

@ Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

http://fta.inria.fr
http://institutes.lanl.gov/data/fdata

Outline

o ABFT for dense linear algebra kernels

Checkpointing

@ Young/Daly approximation

@ Exponentially distributed failures — advanced analysis
@ Assessing checkpointing protocols

@ In-memory checkpointing

@ Fault prediction

Other techniques
@ Replication
@ Silent errors

e Conclusion

ult-tolerance for HPC

ABFT for dense linear algebra kernels

Outline

o ABFT for dense linear algebra kernels

es.Robert@ens-lyon.fr ult-tolerance for HPC

ABFT for dense linear algebra kernels
Tiled LU factorization

@ Solve A- x = b (hard)
@ Transform A into a LU factorization
@ Solve L-y=B-b,then U-x=y

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

ABFT for dense linear algebra kernels

Tiled LU factorization

TRSM - Update row block

A op L

AI

— T —
GETF2: factorize a GEMM: Update
column block the trailing

matrix

@ Solve A-x = b (hard)
@ Transform A into a LU factorization
@ Solve L-y=B-b,then U-x=y

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

ABFT for dense linear algebra kernels

Tiled LU factorization

TRSM - Update row block

L ol "

GETF2: factorize a GEMM: Update
column block the trailing
matrix

@ Solve A-x = b (hard)
@ Transform A into a LU factorization
@ Solve L-y=B-b,then U-x=y

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

ABFT for dense linear algebra kernels
Tiled LU factorization

Failure of rank 2

w(24/0[2[4]0[2] ol 4/ofll4]o]
i8(5(13[5[1]3 i8/5/113]5[1]3
l4fo]2]4]0]2] 4 [0 Il 4 (0]
MEHNE > b 3]5]1/3
124102 an

@ 2D Block Cyclic Distribution (here 2 x 3)

@ A single failure = many data lost

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

ABFT for dense linear algebra kernels
Algorithm Based Fault Tolerant LU decomposition

N
o @ N/
o] | rNve
I Fo (2[4 [0]2]4]0]2] e (2]4lof2[4]0]2]A[A]Af
Ml 1)3 [5(1[3[5]1[3] g |5[1][3[5[1]3[B]B[E]
bao[2]4]o[2] 0(2pao[2]4[o]2]A]A[A}
M i [3]5 113 . > | bt [3[5]1[3[B]B]H}
\ | AlAY
\ | JE |
\ | AlA
| H EIEE
™™ n r
+
+

@ Checksum: invertible operation on row/column data

o Checksum replication avoided by dedicating additional
computing resources to checksum storage

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

ABFT for dense linear algebra kernels
Algorithm Based Fault Tolerant LU decomposition

N

n a _l ,_< 2N/Q +nb
o [2[4[0]2]4]0]2] 'IIIEIIIEIEE 4]
[T)3 [STT[3[5[T]S] [S[1]3]5]1]

i [0]2]4]0]2] 'lﬂllﬂﬂﬂ
DLIB[S]1]3] * DL[3[5[1[3]5]1]

(&)

EaeRNE
EEEIEEEE
Y S Y

L A ANENENEN_ |

U'III }

E

@ Checksum: invertible operation on row/column data

o Checksum blocks are doubled, to allow recovery when data
and checksum are lost together (no extra resource needed)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

ABFT for dense linear algebra kernels
Algorithm Based Fault Tolerant LU decomposition

PN

GETF2 GEMM

@ Checksum: invertible operation on row/column data

o Key idea of ABFT: applying the operation on data and
checksum preserves the checksum properties

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

ABFT for dense linear algebra kernels

Performance

35 50
Overhead: FT-PDGETRF (w/1 recovery) ==
Overhead: FT-PDGETRF (no error) =m=
FT-PDGETRF (w/1 recovery) sss
28} FT-PDGETRF (no error) === 440
= ScalAPACK PDGETRF mem =
= 5
3 af {30 £
E [
3 g
S ur 10 £
< ©
e &
7L {10

0
.90k - 40K . g0k K
o 20 \L [\ <8, 20 83, 160 6, 220 A9k B0k

#Processors (PxQ grid); Matrix size (N)

MPI-Next ULFM Performance

@ Open MPI with ULFM; Kraken supercomputer;

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Outline

Checkpointing
@ Young/Daly approximation
@ Exponentially distributed failures — advanced analysis

@ Assessing checkpointing protocols
@ In-memory checkpointing
@ Fault prediction

ult-tolerance for HPC

Checkpointing
®000

Outline

Checkpointing
@ Young/Daly approximation

es.Robert@ens-lyon.fr ult-tolerance for HPC

Checkpointing
0000

Checkpointing cost

Time spent working
m——Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk Processing the second chunk

Blocking model: while a checkpoint is taken, no computation can
be performed

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
0000

Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF p = pjpg

Applies to a platform with p processors with MTBF p = %

e coordinated checkpointing
o tightly-coupled application
e progress <> all processors available

Waste: fraction of time not spent for useful computations J

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

(o] Jele]

Waste in fault-free execution

— @ TIMEp,e: application base time

ﬂ o TIMEfg: with periodic checkpoints
but failure-free

TIMEpr = TIMEpase + #checkpoints x C

(valid for large jobs)

. TIME TIME
#checkpoints = [base—‘ R base

T-C T-C

TIMEgg — TIME C
WASTE[FF] = FTFIMEFF base _ -

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
0000

Waste due to failures

@ TIMEpsse: application base time
o TIMEpg: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinal = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tiost: average time lost per failure

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
0000

Waste due to failures

@ TIMEpsse: application base time
o TIMEpg: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinal = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tiost: average time lost per failure

TIMEfinal
Nfaults =

7-|05t?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
0000

Computing Tjest

= Time spent working —— Time spent checkpointing
—— Downtime —— Recovery time Time
Py /

U
Pl
P2
Ps

Tiost D R T-C C
T
Tost =D+ R+ >

= Instants when periods begin and failures strike are independent
=- Valid for all distribution laws, regardless of their particular shape

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00®0

Waste due to failures

TIMEfinal = TIMEFF 4+ Neauies X Tiost

WASTE(fail] = =—(D+R+ —

TIME¢na — TIMEERE 1 T
TIMEfinal 0 2

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
0000

Total waste

[7c|d 7c | 7c |d 7 |d 7< |c_

TIMEgg =TIMEEjna (1-WASTE[Fail]) TIMEFha X WASTE[Fail]

TIMEFinal

TIMEfinaI - TIMEbase

WASTE =
TIMEfinal

1 — WASTE = (1 — WASTE[FF])(1 — WASTE[fail])

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
0000

Waste minimization

C C\1 T

WASTE:%—i—v—I—WT

D+Ry , _D+R-C/2 1

! (% % 2p

WASTE minimized for T = \/%

T=2(u—(D+R))C

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
ocooe

Comparison with Young/Daly

[c|d 7c | 7c |d 7 |d 7< |c_

TIMEgg =TIMEEjna (1-WASTE[Fail]) TIMEFjha X WASTE[Fail]

TIMEFinal

(1 — WASTE[fail]) TIMEfina = TIMEFf
=T= \/2(/L —(D+R))C

Daly: TIMEfina = (1 4+ WASTE[fail]) TIMEF¢
= T=V2u+(D+R)C+C

Young: TIMEfina = (1 + WASTE[fail]) TIMEFr and D =R =0
=T =2uC+C

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
0000

How accurate?

@ Capping periods, and enforcing a lower bound on MTBF
= mandatory for mathematical rigor @

@ Not needed for practical purposes ©
e actual job execution uses optimal value
e account for multiple faults by re-executing work until success

e Approach surprisingly robust ©

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
o

Outline

9 Checkpointing

@ Exponentially distributed failures — advanced analysis

es.Robert@ens-lyon.fr

ult-tolerance for HPC

Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Probability
of success

Pace(W + C) (W + C)

E(T(W)) =

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach
Time needed
to compute
the work W and
checkpoint it

Pace(W + C) (W + C)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Pace(W + C) (W + C)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Pace(W + C) (W + C)
E(T(W))= +
(1 - ,Psu(:(‘(W + C)) (]E(T/ost(W + C)) + E(Trec) + E(T(W)))

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Pace(W + C) (W + C)
E(T(W))= +

(1 - ,Psu(:(‘(W + C)) (]E(T/ost(W + C)) + E(Trec) + E(T(W)))

Probability of failure

Yves.Robert@ens-lyon.fr

Fault-tolerance for HPC

Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Pace(W + C) (W + C)
E(T(W))= +
(1 - ,Psu(:(‘(W + C)) (]E(T/ost(W + C)) + E(Trec) + E(T(W)))

Time elapsed
before failure
stroke

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Psucc(W+ C) (W + C)

(1 = Pawce(W + C) (E(Tiost (W + C)) + E(Trec) + E(T(W)))

Time needed
to perform
downtime

and recovery

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Expected execution time for a single chunk

Compute the expected time E(T (W, C, D, R, X)) to execute a
work of duration W followed by a checkpoint of duration C.

Recursive Approach

Pace(W + C) (W + C)
E(T(W))= +
(1 - ,Psu(:(‘(W + C)) (]E(T/ost(W + C)) + E(Trec) + E(T(W)))

Time needed
to compute W
anew

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Computation of E(T(W, CO, D,R,)\))

Pouce(W + C) (W +)
E(TW) = +
(1 - Psu(:c(W + C)) (]E(T/ost(W + C)) + E(Trec) + E(T(W)))

o Psuc(W+C) = e MWHC)
® E(Tiost(W + C)) = [;°xP(X = x|X < W+ C)dx = § — s
0 E(Trec) = e R(D+R)+(1—e) (DHE(Tiost(R))+E(Trec))

E(T(W.C.D.R.\) = &R (1 4 D) (MW+O) 1)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Checkpointing a sequential job

o E(T(W)) = &% (% + D) (Tf, W) 1)

@ Optimal strategy uses same-size chunks (convexity)

°o Ky = ﬁ where L(z)e™?) = z (Lambert function)
@ Optimal number of chunks K* is max(1, |Kp|) or [Ko]

Can also use Daly’s second-order approximation

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
®0000

Outline

9 Checkpointing

@ Assessing checkpointing protocols

es.Robert@ens-lyon.fr

ult-tolerance for HPC

Checkpointing
00000

Background: coordinated checkpointing protocols

Py O e
e Coordinated checkpoints over all m /m2 \m3 <

processes P b SO __N--
. mgy ms
@ Global restart after a failure
P> O n

© No risk of cascading rollbacks
© No need to log messages

® All processors need to roll back

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00000

Background: message logging protocols

Py 0 0
@ Message content logging my /m2 \m3 <
P 1

(sender memory) ~-_7__\--
. ma msg
@ Restart of failed process only \ / \
P> O 0

© No cascading rollbacks

© Number of processes to roll back
® Memory occupation

® Overhead

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
©0®000

Background: hierarchical protocols

@ Clusters of processes Po —O /

@ Coordinated checkpointing

protocol within clusters L R e S -
. ma ms3 mxy
@ Message logging protocols <€

between clusters Po 2 My mmef - -
@ Only processors from failed group ma

need to roll back

@ Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

© Faster re-execution with logged messages

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00000

Which checkpointing protocol to use?

Coordinated checkpointing
© No risk of cascading rollbacks
© No need to log messages
® All processors need to roll back

® Rumor: May not scale to very large platforms

Hierarchical checkpointing

® Need to log inter-groups messages
e Slowdowns failure-free execution
e Increases checkpoint size/time

Only processors from failed group need to roll back

Faster re-execution with logged messages

© OO

Rumor: Should scale to very large platforms

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00000

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory 1/0 Network Bandwidth (bj,) 1/0 Bandwidth (bport)
cores PrOCessors proal | per processor | per processor | Read Write Read/Write per processor
Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 B 16GB 150GB/s 96GB/s 20GB/s
Exascale-Slim | 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s
Name Scenario G (C(q)) 3 for 3 for
2D-STENCIL | MATRIX-PRODUCT
COORD-10 1 (2,048s) / /
Titan HIERARCH-IO 136 (15s) 0.0001098 0.0004280
HIERARCH-PORT 1,246 (1.6s) 0.0002196 0.0008561
CoORD-IO 1 (14,688s)
K-Computer HIERARCH-IO 296 (50s) 0.0002858 0.001113
HIERARCH-PORT | 17,626 (0.83s) 0.0005716 0.002227
CoORD-IO 1 (64,000s)
Exascale-Slim HIERARCH-IO 1,000 (64s) 0.0002599 0.001013
HIERARCH-PORT | 200,0000 (0.32s) 0.0005199 0.002026
COORD-10 1 (64,000s)
Exascale-Fat HIERARCH-IO 316 (217s) 0.00008220 0.0003203
HIERARCH-PORT | 33,3333 (1.92s) 0.00016440 0.0006407

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00®00

Plotting formulas — Platform: Titan

Stencil 2D Matrix produc Stencil 3D

Part

o 20 S0 oo T 3 3 T 20 S0 100 T 3 3 o 20 S0 oo

Waste as a function of processor MTBF pjng

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00000

Platform: K-Computer

Stencil 2D

Matrix product Stencil 3D

o 20 S0 oo T 3 3 T 20 S0 100 T 3 3 o 20 S0 oo

Waste as a function of processor MTBF pjng

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00000

Plotting formulas — Platform: Exascale

WASTE = 1 for all scenarios!!! J

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00000

Plotting formulas — Platform: Exascale

Goodbye Exascale?!

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
000®0

Checkpoint time

Name C
K-Computer | 14,688s
Exascale-Slim | 64,000
Exascale-Fat | 64,000

@ Large time to dump the memory

@ Using 1%C, and even 0.1%C for Exascale platforms?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00000

Plotting formulas — Platform: Exascale with C = 1,000

Stencil 2D Matrix product Stencil 3D

N 0o 05 0o
1
QL . os
] 07 07 07
| 06 o6 06
0s os 0s
7 TN % o oo HE T % % Too 7 TN % o oo
\ I \
_— \ \
L o \ 0s \
q') \ \
o \ 07
= \ \
(9] \ A
S 06 06
0n o A\ o
(9])\
\ D
X 04 0
o o
02 o 02
T2 T 2 S5 Too T2 ERRRRT I ST Tho T3 T 2 S5 Too

Waste as a function of processor MTBF pjnq, C = 1,000

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00000

Plotting formulas — Platform: Exascale with C = 100

Exascale-Slim

Exascale-Fat

Stencil 2D

Matrix product Stencil 3D

1 2 s o 20 50 00 1 2 5 o 20 500100

Waste as a function of processor MTBF p,4, C = 100

Yves.Robert@ens-lyon.fr

Fault-tolerance for HPC

Checkpointing

O000e

Simulations — Platform: Titan

Stencil 2D Matrix product
Coordinated ——— Hierarchical ——— Hierarchical Port
Coordinated BestPer -------- Hierarchical BestPer ------- Hierarchical Port BestPer --------

T (e — 4 T U —
Cordinated — Courtined —
v Curdied BesPer
rehicsl — erachieal —
s Hirachical BestPer
Hierrical Pot —— Hieanical Pt ——
Hierachical Port Besther -~ Hicrachical PortBesPer -~

0 L L L L L 0 L1 I L
1 | T R A T (R . EA] 1 DA TR S T A R [) L (R I]
NTBF (year NTBE (years)

Makespan (in days) as a function of processor MTBF fjng

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00000

Simulations — Platform: Exascale with C = 100

Stencil 2D Matrix product

Coordinated ——— Hierarchical ——— Hierarchical Port
Coordinated BestPer -------- Hierarchical BestPer -------- Hierarchical Port BestPer --------
(77 i) — T — T 1] — T e —
Coordinated —— Coordinated ——
ql) » \\ flwm;‘aﬂ\ﬂe; o o \ Cumnutd Btrlf‘t; o
— \ i
Il \ i — 2w
8] \ Hiaficd R BesPe H
2 \
X A :
L
n 2
' L —) .
1 ? 3405 1 K])
-
o
15 T T —T T 5 T L T —T T T T
! " " iy
KJ) ¥ 5 i
© 1] S AN kit
1
¢)
>< 8 i
L - H
6
| A .
1 Y3 o4s w5 W% 9 nom Y3 45 s w5 w 5 8 nom
B e MIBF)

Makespan (in days) as a function of processor MTBF 1y, C = 100

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
o

Outline

9 Checkpointing

@ In-memory checkpointing

es.Robert@ens-lyon.fr ult-tolerance for HPC

Checkpointing
°

Motivation

@ Checkpoint transfer and storage
= critical issues of rollback/recovery protocols

@ Stable storage: high cost

@ Distributed in-memory storage:

e Store checkpoints in local memory = no centralized storage
© Much better scalability

o Replicate checkpoints = application survives single failure
® Still, risk of fatal failure in some (unlikely) scenarios

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing

Double checkpoint algorithm (Po(ale et al., UIUC)

Local checkpoint Remote checkpoint Period
done done done
Node p | 1 |
Node p' | 1 |
->
) (] o
P

@ Platform nodes partitioned into pairs
@ Each node in a pair exchanges its checkpoint with its buddy

@ Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy's data

Fault-tolerance for HPC

Yves.Robert@ens-lyon.fr

Checkpointing
o

Failures

Risk Period
Node p' 1 1

- - — Checkpoint of Checkpoint of
3 0 G 3 0 tiost P P
P \ \
-— -—
D R 0 tiost

@ After failure: downtime D and recovery from buddy node

@ Two checkpoint files lost, must be re-sent to faulty processor

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
o

Failures

Risk Pej
Node p' 1 [1
L 1§
- - - Checkpoint of Checkpoint of
3 0 o 3 0 tost ? P

Node to replace p

o After failure: downtime D and recovery from buddy node
@ Two checkpoint files lost, must be re-sent to faulty processor

@ Application at risk until complete reception of both messages

Best trade-off between performance and risk? J

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
®0

Outline

9 Checkpointing

@ Fault prediction

es.Robert@ens-lyon.fr

ult-tolerance for HPC

Checkpointing
00

Framework

Predictor
e Exact prediction dates (at least C seconds in advance)
@ Recall r: fraction of faults that are predicted

@ Precision p: fraction of fault predictions that are correct

Events
@ true positive: predicted faults

@ false positive: fault predictions that did not materialize as
actual faults

o false negative: unpredicted faults

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00

Algorithm

© While no fault prediction is available:
e checkpoints taken periodically with period T
@ When a fault is predicted at time t:
e take a checkpoint ALAP (completion right at time t)
e after the checkpoint, complete the execution of the period

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
oce

Computing the waste

O Fault-free execution: WASTE[FF] = £

—_—

. .1 T
© Unpredicted faults: [D+ R+ L]

Error

<] & []

T-C T-C Tiost T-C Time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
oce

Computing the waste

@ Predictions: -1 [p(C + D + R)+ (1 p)C]

©p
Error
€] [BB [<]
T-C Wieg T-Wieg-C T-C Time

with actual fault (true positive)

<] B[4 & [

T-C Wieg T-Wieg-C T-C T-C Time

no actual fault (false negative)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
oce

Computing the waste

@ Predictions: -1 [p(C + D + R)+ (1 p)C]

©p
Error
€] [BB [<]
T-C Wieg T-Wieg-C T-C Time

with actual fault (true positive)

<] B[4 & [

T-C Wieg T-Wieg-C T-C T-C Time

no actual fault (false negative)

2uC

fail] =
WASTE(fail| T,

1 T
; (1—r)2+D+R+;C:|:>TOpt%

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00

Refinements

@ Use different value C, for proactive checkpoints

@ Avoid checkpointing too frequently for false negatives
= Only trust predictions with some fixed probability g
= Ignore predictions with probability 1 — g
Conclusion: trust predictor always or never (g =0 or g = 1)

@ Trust prediction depending upon position in current period
= Increase g when progressing
= Break-even point 7"

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Checkpointing
00

With prediction windows

E
(Regular mode) rror

<] [[[__F]]

Tr-C Tr-C Tiost Tr-C Time
(Prediction without failure) /
Q@ @ ECECE [
Tr-C Wieg| [Tp-Co Tp-Co, Tp-Cp |Tw-C Time
Regular mode Proactive mode Wieg
(Prediction with failure) Error
[EC R ER M
Tr-C Wieg| [Tp-Co Tp-Cp Tr-C Time
Regular mode Proactive mode “Wieeg

Gets too complicated! @

Fault-tolerance for HPC

Yves.Robert@ens-lyon.fr

Other techniques

Outline

Other techniques
@ Replication
@ Silent errors

es.Robert@ens-lyon.fr ult-tolerance for HPC

Other techniques
oo

Outline

Other techniques
@ Replication

es.Robert@ens-lyon.fr ult-tolerance for HPC

Other techniques
oo

Replication

@ Systematic replication: efficiency < 50%

@ Can replication+checkpointing be more efficient than
checkpointing alone?

@ Study by Ferreira et al. [SC'2011]: yes

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Model by Ferreira et al. [SC' 2011] -

Parallel application comprising N processes

Platform with piotsy = 2N processors

o

o

@ Each process replicated — N replica-groups

@ When a replica is hit by a failure, it is not restarted
o

Application fails when both replicas in one replica-group have
been hit by failures

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday 7

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

+oo
Birthday(N) = 1 +/ e (14 x/N)N=1dx
0

The analogy

Two people with same birthday

Two failures hitting same replica-group

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Differences with birthday problem

1 2 i N

@ N processes; each replicated twice

@ Uniform distribution of failures

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques

[e]e]

Differences with birthday problem

i

1 2 i N

@ N processes; each replicated twice
@ Uniform distribution of failures
e First failure: each replica-group has probability 1/N to be hit

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure: can failed PE be hit?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Differences with birthday problem

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Differences with birthday problem

-B

i

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)
o Probability that replica-group # i is hit by failure: 2/(2N — 1)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Differences with birthday problem

B -B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)
o Probability that replica-group # i is hit by failure: 2/(2N — 1)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques

[e]e]

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

Failure uniformly distributed over 2N — 1 PEs

Probability that replica-group i is hit by failure: 1/(2N — 1)
Probability that replica-group # i is hit by failure: 2/(2N — 1)
Failure not uniformly distributed over replica-groups:

this is not the birthday problem

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE

e Suppose failure hits replica-group 7

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Differences with birthday problem

i

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE

e Suppose failure hits replica-group 7
o If failure hits failed PE:

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Differences with birthday problem

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE

Suppose failure hits replica-group i

If failure hits failed PE:

If failure hits running PE: application killed

Not all failures hitting the same replica-group are equal:
this is not the birthday problem

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oce

Correct analogy

OO
1 2 3 4 n

ly

00000600000 _ .
N = n,g bins, red and blue balls
Mean Number of Failures to Interruption (bring down application)

MNFTI = expected number of balls to throw
until one bin gets one ball of each color

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
oo

Failure distribution

— BESTPERIOD-g = 1

— BestPE
— BESTPERIOD-g = 2

— BesTPERIOD-g

2

T T T T T T
16 o o o0 Py o

number of processors

(a) Exponential

T T T T T T
i Py e o 22 P

number of processors

(b) Weibull, k = 0.7

Crossover point for replication when g = 125 years

Yves.Robert@ens-lyon.fr

Fault-tolerance for HPC

Other techniques
oo

Weibull distribution with kK = 0.7

Dashed line: Ferreira et al. Solid line: Correct analogy
— C =150
1000000 | — C = 300
— C =600
— C =900
g 800000 + __ ¢ 1200
g — C =2400
S
& 600000 —
s
é 400000 —
2
200000 —
0 T T —————

T T T
1 10 100
Processor MTBF (in years)

@ Study by Ferrreira et al. favors replication

@ Replication beneficial if small u + large C + big piotar

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
®00

Outline

e Other techniques

@ Silent errors

es.Robert@ens-lyon.fr ult-tolerance for HPC

Other techniques
000

Silent errors

@ Many types of faults: software error, hardware malfunction,
memory corruption

@ Many possible behaviors: silent, transient, unrecoverable
o Consider silent errors here

@ This includes some software faults, some hardware errors (soft
errors in L1 cache), bit flips (cosmic radiations)

@ Silent error detected when corrupt data is activated

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
000

Detection latency

Instantaneous error detection = fail-stop failures

Silent errors (data corruption) = detection latency

Errorj 2 Detection

X. Xy Time

Error and detection latency

Last checkpoint may have saved an already corrupted state

Even when saving k checkpoints: which one to roll back to?

Critical failure: all checkpoints contain corrupted data

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
0e0

Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

Time

V' large compared to w = large WASTE¢, can we improve that?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques

OoeO0

Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

Time

V' large compared to w = large WASTE¢, can we improve that?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
0e0

Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

[« Md g« M« fd

Time

V small in front of w = large WASTEs,j, can we improve that?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
0e0

Coupling checkpointing and verification

@ Verification mechanism of cost V

@ Simplest idea: verify work before each checkpoint

[« Md g« M« fd

Time

V small in front of w = large WASTEs,j, can we improve that?
Is this better?

[z [w2 el wrz 1 wrz e wrz] w2 el wiz 1

Time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
000

Coupling checkpointing and verification

Large cost V: 5 checkpoints for 1 verification

More complicated periodic patterns? Different-size chunks?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
000

k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w Te[w Je[w Jef w Je] w V]

Time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
000

k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w e[w Je[w e w Je] w TvIr[V]

Time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
000

k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w e[w Je[w Je] w Je] w TVIrRTVIRI V]

Time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
000

k checkpoints for 1 verification

Where did the error strike?

Error

[e] »w e[w Je] w Jc] w Je] w JVIR[VIR[V]R]

Time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
000

k checkpoints for 1 verification

Where did the error strike?

Error

[e[w Je[w e w Jef w Je] w TvIRIVIR[V]A]

Time

RE-EXEC =2(w + C) + (w + V)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Other techniques
ooe

k checkpoints for 1 verification

0.120
0.118
0.116
o 0-114

T 0.112

Wi

0.110.
0.108.

0.106

0.104

1 2 3 4 5 6 7 8 9 10
k

Waste as function of k, using optimal period

(V=100s,C =R =6sand u = loi’g?rs)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Conclusion

Outline

e Conclusion

es.Robert@ens-lyon.fr ult-tolerance for HPC

Conclusion

Conclusion

Multiple approaches to Fault Tolerance

Application-specific FT will always provide more benefits
General-purpose FT will always be needed

o Not every computer scientist needs to learn how to write
fault-tolerant applications

o Not all parallel applications can be ported to a fault-tolerant
version

Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

Conclusion
Conclusion

@ Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

@ Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

@ Need combine all these approaches!

Several challenging algorithmic/scheduling problems © J

Extended version of this talk: see SC’13 tutorial with Thomas
Hérault. Available at
http://graal.ens-1lyon.fr/~yrobert/

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

http://graal.ens-lyon.fr/~yrobert/

Conclusion
Thanks

INRIA & ENS Lyon

@ Anne Benoit

o Frédéric Vivien

@ PhD students (Guillaume Aupy, Dounia Zaidouni)
UT Knoxville

o George Bosilca

@ Aurélien Bouteiller

@ Jack Dongarra

@ Thomas Hérault (joint tutorial at SC'13)

Others
@ Franck Cappello, UIUC-Inria joint lab

@ Henri Casanova, Univ. Hawai'i

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC

	ABFT for dense linear algebra kernels
	Checkpointing
	Young/Daly approximation
	Exponentially distributed failures – advanced analysis
	Assessing checkpointing protocols
	In-memory checkpointing
	Fault prediction

	Other techniques
	Replication
	Silent errors

	Conclusion

