All publications sorted by year |
2009 |
2008 |
Abstract: | Grid middleware are the link between large scale (and distributed) platforms and applications. Managing such a software system and the grid environment itself can be a hard task when no dedicated (and integrated) tool exist. Some can be used through nice graphical interfaces, but they are usually dedicated to one or some limited tasks. They do not fulfill all the needs of a grid end-user who wants to deploy grid applications easily and rapidly. The aim of this paper is to present the case study of an all-in-one software system, designed for the management of a grid middleware and gathering user-friendly graphical interfaces answering to the various needs of end-users. Moreover the software system eases the use of the grid by avoiding the scripting layer under a nice GUI enabling the user a faster and more efficient use of the grid environment. By this means we demonstrate how the \ddb fulfills all the needs of a unified tool for grid management. This paper gives a comparison with existing and well-known tools dedicated to some specific tasks such as grid resources management, grid monitoring or middleware management. |
Abstract: | Nowadays large-scale, grid-aware applications are intended to run for days or even weeks over hundreds or thousands of nodes. This requires new, and often painful operations for the user in charge of deployment and monitoring. We claim that the applications should themselves manage their run in an autonomic way, by requesting new resources on-demand. In this paper, we introduce Co{RDAG}e, a third-party tool, standing between applications and lower-level grid management tools. It provides generic and application-specific facilities to dynamically expand and retract the deployment of a grid-aware application according to its actual needs. A prototype has been implemented and a preliminary testing has been conducted on the Grid'5000 testbed. |
Abstract: | The use of many distributed, heterogeneous resources as a large collective platform offers great potential. A key issue for these grid platforms is middleware scalability and how middleware services can be mapped on the available resources. Optimizing deployment is a difficult problem with no existing general solutions. In this paper, we address the following problem: how to perform out an adapted deployment for a hierarchy of servers and resource brokers on a heterogeneous system? Our objective is to generate a best platform from the available nodes so as to fulfill the clients demands. However, finding the best deployment among heterogeneous resources is a hard problem since it is close to find the best broadcast tree in a general graph, which is known to be NP-complete. Thus, in this paper, we present a heuristic for middleware deployment on heterogeneous resources. We apply our heuristic to automatically deploy a distributed Problem Solving Environment on a large scale grid. We present experiments comparing the automatically generated deployment against a number of other reasonable deployments. |
Abstract: | The use of many distributed, heterogeneous resources as a large collective platform offers great potential. A key issue for these grid platforms is middleware scalability and how middleware services can be mapped on the available resources. Optimizing deployment is a difficult problem with no existing general solutions. In this paper, we address the following problem: how to perform out an adapted deployment for a hierarchy of servers and resource brokers on a heterogeneous system? Our objective is to generate a best platform from the available nodes so as to fulfill the clients demands. However, finding the best deployment among heterogeneous resources is a hard problem since it is close to find the best broadcast tree in a general graph, which is known to be NP-complete. Thus, in this paper, we present a heuristic for middleware deployment on heterogeneous resources. We apply our heuristic to automatically deploy a distributed Problem Solving Environment on a large scale grid. We present experiments comparing the automatically generated deployment against a number of other reasonable deployments. |
Abstract: | Grid middleware are the link between large scale (and distributed) platforms and applications. Managing such a software system and the grid environment itself can be a hard task when no dedicated (and integrated) tool exist. Some can be used through nice graphical interfaces, but they are usually dedicated to one or some limited tasks. They do not fulfill all the needs of a grid end-user who wants to deploy grid applications easily and rapidly. The aim of this paper is to present the case study of an all-in-one software system, designed for the management of a grid middleware and gathering user-friendly graphical interfaces answering to the various needs of end-users. Moreover the software system eases the use of the grid by avoiding the scripting layer under a nice GUI enabling the user a faster and more efficient use of the grid environment. By this means we demonstrate how the \ddb fulfills all the needs of a unified tool for grid management. This paper gives a comparison with existing and well-known tools dedicated to some specific tasks such as grid resources management, grid monitoring or middleware management. |
Abstract: | The efficiency of service discovery is a crucial point in the development of fully decentralized middlewares intended to manage large scale computational grids. The work conducted on this issue led to the design of many peer-to-peer fashioned approaches. More specifically, the need for flexibility and complexity in the service discovery has seen the emergence of a new kind of overlays, based on tries, also known as lexicographic trees. Although these overlays are efficient and well designed, they require a costly maintenance and do not accurately take into account the heterogeneity of nodes and the changing popularity of the services requested by users. In this paper, we focus on reducing the cost of the maintenance of a particular architecture, based on a dynamic prefix tree, while enhancing it with some load balancing techniques that dynamically adapt the load of the nodes in order to maximize the throughput of the system. The algorithms developed couple a self-organizing prefix tree overlay with load balancing techniques inspired by similar previous works undertaken for distributed hash tables. After some simulation results showing how our load balancing heuristics perform in such an overlay and compare to other heuristics, we provide a fair comparison of this architecture and similar overlays recently proposed. |
Abstract: | The efficiency of service discovery is a crucial point in the development of fully decentralized middlewares intended to manage large scale computational grids. The work conducted on this issue led to the design of many peer-to-peer fashioned approaches. More specifically, the need for flexibility and complexity in the service discovery has seen the emergence of a new kind of overlays, based on tries, also known as lexicographic trees. Although these overlays are efficient and well designed, they require a costly maintenance and do not accurately take into account the heterogeneity of nodes and the changing popularity of the services requested by users. In this paper, we focus on reducing the cost of the maintenance of a particular architecture, based on a dynamic prefix tree, while enhancing it with some load balancing techniques that dynamically adapt the load of the nodes in order to maximize the throughput of the system. The algorithms developed couple a self-organizing prefix tree overlay with load balancing techniques inspired by similar previous works undertaken for distributed hash tables. After some simulation results showing how our load balancing heuristics perform in such an overlay and compare to other heuristics, we provide a fair comparison of this architecture and similar overlays recently proposed. |
2007 |
Abstract: | Within computational Grids, some services (typically software components, e.g., linear algebra libraries) are made available by some servers to some clients. In spite of the growing popularity of such Grids, the service discovery, although efficient in many cases, does not reach several requirements. Among them, the flexibility of the discovery and its efficiency on wide-area dynamic platforms are two major issues. Therefore, it becomes crucial to propose new tools coping with such platforms. Emerging peer-to-peer technologies provide algorithms allowing the distribution and the retrieval of data items while addressing the dynamicity of the underlying network. Whereas merging peer-to-peer technology and Grid infrastructures has been widely suggested, very few implementations are available. The contribution of this paper is twofold. First, we present the design, the implementation and the experimentation of the first architecture, to our knowledge, extending traditional Network-Enabled Servers (NES) systems with an unstructured peer-to-peer network. This extension allows to dynamically connect distributed agents thus providing to clients an entry point to servers geographically distributed. Our implementation is based on the Diet middleware and the JXTA toolbox and experimentation have been conducted on a high speed network. Then, we study the service discovery in a pure peer-to-peer environment. We describe a new trie-based approach for the peer-to-peer service discovery service, supporting range queries while providing fault-tolerance and taking into account the topology of the underlying network. We validate this approach both by analysis and simulation. |
Abstract: | Within computational grids, some services (software components, linear algebra libraries, etc.) are made available by some servers to some clients. In spite of the growing popularity of such grids, the service discovery, although efficient in many cases, does not reach several requirements. Among them, the flexibility of the discovery and its efficiency on wide-area dynamic platforms are two major issues. Therefore, it becomes crucial to propose new tools coping with such platforms. Emerging peer-to-peer technologies provide algorithms allowing the distribution and the retrieval of data items while addressing the dynamicity of the underlying network. We study in this paper the service discovery in a pure peer-to-peer environment. We describe a new trie-based approach for the service discovery that supports range queries and automatic completion of partial search strings, while providing fault-tolerance, and partially taking into account the topology of the underlying network. We validate this approach both by analysis and simulation. Traditional metrics considered in peer-to-peer systems exhibits interesting complexities within our architecture. The analysis' results are confirmed by some simulation experiments run using several grid's data sets. |
Abstract: | Within computational grids, some services (software components, linear algebra libraries, etc.) are made available by some servers to some clients. In spite of the growing popularity of such grids, the service discovery, although efficient in many cases, does not reach several requirements. Among them, the flexibility of the discovery and its efficiency on wide-area dynamic platforms are two major issues. Therefore, it becomes crucial to propose new tools coping with such platforms. Emerging peer-to-peer technologies provide algorithms allowing the distribution and the retrieval of data items while addressing the dynamicity of the underlying network. We study in this paper the service discovery in a pure peer-to-peer environment. We describe a new trie-based approach for the service discovery that supports range queries and automatic completion of partial search strings, while providing fault-tolerance, and partially taking into account the topology of the underlying network. We validate this approach both by analysis and simulation. Traditional metrics considered in peer-to-peer systems exhibits interesting complexities within our architecture. The analysis' results are confirmed by some simulation experiments run using several grid's data sets. |
2006 |
Abstract: | Les études d'algorithmes d'ordonnancement de tâches parallèles dans le contexte des grilles de calcul ignorent souvent les systèmes de réservation locaux qui gèrent les ressources parallèles, ou supposent qu'ils instancient {\it First Come First Served}. Nous décrivons donc dans cet article une API intégrée au simulateur de grille Simgrid. Elle offre les structures et fonctionnalités pour simuler de façon très réaliste les grappes de PCs et les systèmes de réservation batch pour les gérer. Les expériences montrent des erreurs de simulation inférieures à 1\0x4ar rapport aux résultats {\it réels} obtenus avec le système de réservation OAR. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.
This document was translated from BibTEX by bibtex2html