
USER’S MANUAL

VERSION 2.4
DATE April 2010
PROJECT MANAGER Frédéric Desprez.
EDITORIAL STAFF Yves Caniou, Eddy Caron and David Loureiro.
AUTHORS STAFF Abdelkader Amar, Raphaël Bolze, Éric Boix, Yves Caniou, Eddy

Caron, Pushpinder Kaur Chouhan, Philippe Combes, Sylvain
Dahan, Holly Dail, Bruno Delfabro, Peter Frauenkron, Georg
Hoesch, Benjamin Isnard, Mathieu Jan, Jean-Yves L’Excellent,
Gal Le Mahec, Christophe Pera, Cyrille Pontvieux, Alan Su, Cédric
Tedeschi, and Antoine Vernois.

Copyright INRIA, ENS-Lyon, UCBL

DIET User’s Manual

Contents

Introduction 8

1 A Diet platform 11
1.1 Diet components . 12
1.2 Communications layer . 12
1.3 Diet initialization . 13
1.4 Solving a problem . 13
1.5 Diet Extensions . 14

1.5.1 Multi-MA . 14
1.5.2 FAST . 14
1.5.3 CoRI . 14

2 Diet installation 15
2.1 Dependencies . 15

2.1.1 General remarks on Diet platform dependencies 15
2.1.2 Hardware dependencies . 15
2.1.3 Supported compilers . 15
2.1.4 Operating system dependencies . 16
2.1.5 Software dependencies . 16

2.2 Compiling the platform . 16
2.2.1 Obtaining and installing cmake per se . 16
2.2.2 Configuring Diet’s compilation: cmake quick introduction 16
2.2.3 A ccmake walk-through for the impatients 18
2.2.4 Diet’s main configuration flags . 18
2.2.5 Diet’s extensions configuration flags . 19
2.2.6 Diet’s advanced configuration flags . 20
2.2.7 Compiling and installing . 21

2.3 Diet client/server examples . 22
2.3.1 Compiling the examples . 23

3 Diet data 25
3.1 Data types . 25

3.1.1 Base types . 25
3.1.2 Composite types . 25
3.1.3 Persistence mode . 26

3.2 Data description . 26
3.3 Data management . 26

c© INRIA, ENS-Lyon, UCBL Page 3

DIET User’s Manual

3.3.1 Data identifier . 26
3.3.2 Data file . 27

3.4 Manipulating Diet structures . 27
3.4.1 Set functions . 28
3.4.2 Access functions . 28

3.5 Data Management functions . 29
3.5.1 Free functions . 30

3.6 Problem description . 31
3.7 Examples . 31

3.7.1 Example 1: without persistency . 31
3.7.2 Example 2: using persistency . 32

4 Building a client program 35
4.1 Structure of a client program . 35
4.2 Client API . 36
4.3 Examples . 36

4.3.1 Synchronous call . 36
4.3.2 Asynchronous call . 37

4.4 Compilation . 39
4.4.1 Compilation using cmake . 39

5 Building a server application 41
5.1 Structure of the program . 41
5.2 Server API . 42
5.3 Example . 43
5.4 Compilation . 45

6 Batch and parallel submissions 47
6.1 Introduction . 47
6.2 Terminology . 47
6.3 Configuration for compilation . 48
6.4 Parallel systems . 48
6.5 Batch system . 48
6.6 Client extended API . 48
6.7 Batch server extended API and configuration file 49
6.8 Server API . 49

6.8.1 Registering the service . 50
6.8.2 Server configuration file . 50
6.8.3 Server API for writing services . 50
6.8.4 Example of the client/server ’concatenation’ problem 51

7 Scheduling in Diet 53
7.1 Introduction . 53
7.2 Default Scheduling Strategy . 53
7.3 Plugin Scheduler Interface . 54

7.3.1 Estimation Metric Vector . 54
7.3.2 Standard Estimation Tags . 54

c© INRIA, ENS-Lyon, UCBL Page 4

DIET User’s Manual

7.3.3 Estimation Function . 56
7.3.4 Aggregation Methods . 57

7.4 Example . 58
7.5 Scheduler at agents level . 59

7.5.1 Scheduling from the agents side. 60
7.5.2 Aggregation methods overloading . 61
7.5.3 The UserScheduler class . 61
7.5.4 Easy definition of a new scheduler class 65
7.5.5 Creation and usage of a scheduler module 70
7.5.6 SeD plugin schedulers and agent schedulers interactions 71
7.5.7 A complete example of scheduler . 71

7.6 Future Work . 73

8 Performance prediction 75
8.1 Introduction . 75
8.2 FAST: Fast Agent’s System Timer . 75

8.2.1 Building FAST . 76
8.2.2 Using FAST in the plug-in scheduler . 77
8.2.3 Building a server application with FAST 77
8.2.4 Example with convertors . 78

8.3 CoRI: Collectors of Ressource Information . 79
8.3.1 Functions and tags . 80
8.3.2 FAST . 80
8.3.3 CoRI-Easy . 81
8.3.4 CoRI batch . 81

8.4 Future Work . 81

9 Deploying a Diet platform 83
9.1 Deployment basics . 83

9.1.1 Using CORBA . 83
9.1.2 Diet configuration file . 85
9.1.3 Example . 89

9.2 GoDiet . 91

10 Diet dashboard 95
10.1 LogService . 95
10.2 VizDIET . 97

11 Multi-MA extension 101
11.1 Function of the Multi-MA extension . 101
11.2 Deployment example . 101
11.3 Search examples . 103

12 P2P Diet extension: DietJ 105
12.1 P2P and JXTA . 105
12.2 Description of the current architecture developed with JXTA 105

12.2.1 The JXTA components . 106
12.2.2 Interfacing JXTA and Diet with JNI . 108

c© INRIA, ENS-Lyon, UCBL Page 5

DIET User’s Manual

12.3 The future of DietJ . 109
12.3.1 Remaining problems . 109

12.4 Working with a DietJ platform . 109
12.4.1 Installation and configuration . 109
12.4.2 Deploying a DietJ platform . 110

13 JuxMem extension 113
13.1 Introduction . 113
13.2 Overview of JuxMem . 113
13.3 How to configure Diet to use JuxMem? . 113
13.4 Example . 114
13.5 Troubleshooting . 114

14 Workflow management in Diet 115
14.1 Overview . 115
14.2 Quick start . 116
14.3 Software architecture . 117
14.4 Workflow description languages . 118

14.4.1 MaDag language . 118
14.4.2 Gwendia language . 119

14.5 Client API . 124
14.5.1 Structure of client program . 124
14.5.2 The simplest example . 124

14.6 Scheduling . 127
14.6.1 Available schedulers . 128
14.6.2 SeD requirements for workflow scheduling 128

15 Dagda extension 131
15.1 Overview . 131
15.2 The Dagda configuration options . 133
15.3 Cache replacement algorithm . 134
15.4 The Dagda API . 134

15.4.1 Note on the memory management . 134
15.4.2 Synchronous data transfers . 134
15.4.3 Asynchronous data transfers. 136
15.4.4 Data checkpointing with Dagda . 138
15.4.5 Create data ID aliases. 138
15.4.6 Data replication . 139

15.5 On correct usage of Dagda . 139
15.6 Future works . 140

16 Dynamic management 141
16.1 Dynamically modifying the hierarchy . 141

16.1.1 Motivations . 141
16.1.2 “And thus it began to evolve” . 141
16.1.3 Example . 142

16.2 Changing offered services . 142

c© INRIA, ENS-Lyon, UCBL Page 6

DIET User’s Manual

16.2.1 Presentation . 142
16.2.2 Example . 143
16.2.3 Going further . 145

A Appendix 147
A.1 Configuration files . 147

c© INRIA, ENS-Lyon, UCBL Page 7

DIET User’s Manual

c© INRIA, ENS-Lyon, UCBL Page 8

DIET User’s Manual

Introduction

Resource management is one of the key issues for the development of efficient Grid environments.
Several approaches co-exist in today’s middleware platforms. The granularity of computation
(or communication) and dependencies between computations can have a great influence on the
software choices.

The first approach provides the user with a uniform view of resources. This is the case
of GLOBUS [8] which provides transparent MPI communications (with MPICH-G2) between
distant nodes but does not manage load balancing issues between these nodes. It’s the user’s
task to develop a code that will take into account the heterogeneity of the target architecture.
Grid extensions to classical batch processing provide an alternative approach with projects like
Condor-G [5] or Sun GridEngine [9]. Finally, peer-to-peer [18] or Global computing [7] can be
used for fine grain and loosely coupled applications.

A second approach provides a semi-transparent access to computing servers by submitting
jobs to servers offering specific computational services. This model is known as the Applica-
tion Service Provider (ASP) model where providers offer, not necessarily for free, computing
resources (hardware and software) to clients in the same way as Internet providers offer network
resources to clients. The programming granularity of this model is rather coarse. One of the
advantages of this approach is that end users do not need to be experts in parallel program-
ming to benefit from high performance parallel programs and computers. This model is closely
related to the classical Remote Procedure Call (RPC) paradigm. On a Grid platform, RPC
(or GridRPC [13, 15]) offers easy access to available resources from a Web browser, a Problem
Solving Environment (PSE), or a simple client program written in C, Fortran, or Java. It also
provides more transparency by hiding the selection and allocation of computing resources. We
favor this second approach.

In a Grid context, this approach requires the implementation of middleware to facilitate
client access to remote resources. In the ASP approach, a common way for clients to ask for
resources to solve their problem is to submit a request to the middleware. The middleware
will find the most appropriate server that will solve the problem on behalf of the client using
a specific software. Several environments, usually called Network Enabled Servers (NES), have
developed such a paradigm: NetSolve [1], Ninf [16], NEOS [6], OmniRPC [23], and more recently
Diet developed in the Graal project. A common feature of these environments is that they are
built on top of five components: clients, servers, databases, monitors and schedulers. Clients
solve computational requests on servers found by the NES. The NES schedules the requests
on the different servers using performance information obtained by monitors and stored in a
database.

Diet stands for Distributed Interactive Engineering Toolbox. It is a toolbox for easily
developing Application Service Provider systems on Grid platforms, based on the Client/Agen-
t/Server scheme. Agents are the schedulers of this toolbox. In Diet, user requests are served

c© INRIA, ENS-Lyon, UCBL Page 9

DIET User’s Manual

via RPC.
Diet follows the GridRPC API defined within the Open Grid Forum [10].

c© INRIA, ENS-Lyon, UCBL Page 10

DIET User’s Manual

Chapter 1

A Diet platform

Diet is built upon Server Daemons. The process of scheduling the requests is distributed
amongst a hierarchy of Local Agents and Master Agents. The scheduler can use resource avail-
ability information collected from three different tools: from NWS [26] sensors which are placed
on every node of the hierarchy, from the application-centric performance prediction tool FAST
[21], which relies on NWS information, or from CoRI Easy, which is based on simple system
calls and some basic performance tests (see Chapter 8). Figure 1.1 shows the hierarchical
organization of Diet.

MA: Master Agent

LA : Local Agent

SeD: Server Daemon

MA

MA

LA LA

Service

Client

MA MA

MA

LA

SeD

MA

Figure 1.1: A hierarchy of Diet agents

c© INRIA, ENS-Lyon, UCBL Page 11

DIET User’s Manual

1.1 Diet components

The different components of our software architecture are the following:

Client
A client is an application which uses Diet to solve problems. Many types of clients are
able to connect to Diet, from a web page, a PSE such as Matlab or Scilab, or from a
compiled program.

Master Agent (MA)
An MA receives computation requests from clients. These requests refer to some Diet
problems listed on a reference web page. Then the MA collects computation abilities from
the servers and chooses the best one. The reference of the chosen server is returned to
the client. A client can be connected to an MA by a specific name server or a web page
which stores the various MA locations.

Local Agent (LA)
An LA transmits requests and information between MAs and servers. The information
stored on an LA is the list of services available in the subtree rooted at the LA; for each
service, LAs store a list of children (agents or servers) that can be contacted to find
the service. Depending on the underlying network topology, a hierarchy of LAs may be
deployed between an MA and the servers. Of course, the function of an LA is to do a
partial scheduling on its subtree, which reduces the workload at the MA.

Server Daemon (SeD)
A SeD encapsulates a computational server. For instance it can be located on the entry
point of a parallel computer. The information stored on a SeD is a list of the data
available locally, i.e., on the server), the list of problems that can be solved on it, and
performance-related information such as the amount of available memory or the number
of resources available. When it registers, a SeD declares the problems it can solve to its
parent LA or MA. A SeD can give perfomance and hardware information by using the
module CoRI or performance predictions for some types of problems by using the module
FAST. Both modules are described in Chapter 8.

1.2 Communications layer

NES environments can be implemented using a classic socket communication layer. Several
problems to this approach have been pointed out such as the lack of portability or limits on
the number of sockets that can be opened concurrently. Our aim is to implement and deploy
a distributed NES environment that works at a wider scale. Distributed object environments,
such as Java, DCOM or CORBA have proven to be a good base for building applications
that manage access to distributed services. They not only provide transparent communications
in heterogeneous networks, but they also offer a framework for the large scale deployment of
distributed applications. Being open and language independent, CORBA was chosen as the
communication layer in Diet.

As recent implementations of CORBA provide communication times close to that of sockets,
CORBA is well suited to support distributed applications in a large scale Grid environment.
New specialized services can be easily published and existing services can also be used. Diet

c© INRIA, ENS-Lyon, UCBL Page 12

DIET User’s Manual

is based upon OmniORB 3 [17] or later, a free CORBA implementation that provides good
communication performance.

1.3 Diet initialization

Figure 1.2 shows each step of the initialization of a simple Grid system. The architecture is
built in hierarchical order, each component connecting to its parent. The MA is the first entity
to be started (1). It waits for connections from LAs or requests from clients.

1

LA

MA

Cl

6

MA MA

LA LA

MA MA

LA

LA

LA

MA

Cl

LA

5432

LA

Figure 1.2: Initialization of a Diet system.

In step (2), an LA is launched and registers itself with the MA. At this step of system
initialization, two kinds of components can connect to the LA: a SeD (3), which manages some
computational resource, or another LA (4), to add a hierarchical level in this branch. When the
SeD registers to its parent LA, it submits a list of the services it offers. The agent then reports
the new service offering through its parent agent until the MA. If the service was previously
unavailable along that arm of the hierarchy the agents update their records. Finally, clients
can access the registered service by contacting the MA (5) to get a reference to the best server
available and then directly connect to it (6) to launch the computation.

The architecture of the hierarchy is described in configuration files (see Section 9.1.2) and
each component transmits the local configuration to its parent. Thus, the system administration
can also be hierarchical. For instance, an MA can manage a domain like a university, providing
prioritary access to users of this domain. Then each laboratory can run an LA, while each team
of the laboratory can run some other LAs to administrate its own servers. This hierarchical
administration of the system allows local changes in the configuration without interfering with
the whole platform.

1.4 Solving a problem

Assuming that the architecture described in Section 1.1 includes several servers able to solve
the same problem, the algorithm presented below lets an MA select a server for the computation
among those available. This decision is made in four steps.

• The MA propagates the client request through its subtrees down to the capable servers;
actually, the agents only forward the request on those subtrees offering the service.

c© INRIA, ENS-Lyon, UCBL Page 13

DIET User’s Manual

• Each server that can satisfy the request can send his performance and hardware infor-
mation or an estimation of the computation time necessary to process the request to its
“parent” (an LA) (via performance prediction tools: see Chapter 8).

• Each LA that receives one or more positive responses from its children sorts the servers
and forwards the best responses to the MA through the hierarchy.

• Once the MA has collected all the responses from its direct children, it chooses a pool of
fast servers and sends their references to the client.

1.5 Diet Extensions

1.5.1 Multi-MA

A standard Diet platform gives access to SeDs placed under the control of a MA as explained
at the beginning of this chapter. Sometime, it is useful to connect several MA together. This
happens when several organizations wish to share their resources to offer a larger set of service
types and more available servers. The Multi-MA extension allows this by creating a federation
which shares resources between several MA.

In multi-MA mode, the behavior of a Diet hierarchy does not change when a client requests
a service that is available under the queried MA. However, if a request sent to a MA does not
found a SeD that can resolve its problem, Diet will forward the request to other MAs of the
federation. To read more about multi-MA, see Chapter 11 and Chapter 12.

1.5.2 FAST

Fast Agent’s System Timer (FAST) [21] is a tool for dynamic performance forecasting in a Grid
environment. When Diet is compiled with the appropriate options and FAST has been config-
ured on the SeD machine, SeDs can access FAST to obtain dynamic performance predictions.
See Chapter 8 for details on using FAST.

1.5.3 CoRI

Collector of Resource Information (CoRI) is a manager for collecting hardware and performance
information. When Diet is compiled with the appropriate option, it is possible to get this
information via different sub-modules like FAST* or CoRI-Easy. (* if compiled and configured
on the SeD machine). See Chapter 8 for details on using CoRI.

c© INRIA, ENS-Lyon, UCBL Page 14

DIET User’s Manual

Chapter 2

Diet installation

2.1 Dependencies

2.1.1 General remarks on Diet platform dependencies

Diet is itself written in C/C++ and for limited parts in java. Diet is based on CORBA and
thus depends on the chosen CORBA implementation. Additionally, some of Diet extensions
make a strong use of libraries themselves written in C/C++ and java. Thus, we could expect
Diet to be effective on any platform offering decent version of such compilers.

Diet undergoes daily regression tests (see http://cdash.inria.fr/CDash/index.php?
project=DIET) on various hardwares, a couple of Un*x based operating systems (under dif-
ferent distributions), MacOSX and AIX, and mainly with GCC. But thanks to users reports
(punctual deployments and special tests conduced before every release), Diet is known to be
effective on a wide range of platforms.

Nevertheless, if you encounter installation difficulties don’t hesitate to post on Diet’s
users mailing list: diet-usr@listes.ens-lyon.fr (for the archives refer to http://graal.
ens-lyon.fr/DIET/mail-lists.html). If you find a bug in Diet, please don’t hesitate to
submit a bug report on http://graal.ens-lyon.fr/bugzilla. If you have multiple bugs
to report, please make multiple submissions, rather than submitting multiple bugs in a single
report.

2.1.2 Hardware dependencies

Diet is fully tested on Linux/i386 and Linux/i686 platforms. Diet is known to be effective
on Linux/Sparc, Linux/i64, Linux/amd64, Linux/Alpha, Linux/PowerPC, AIX/PowerPC, Ma-
cOS/PowerPC and Windows XP(Cygwin)/i386 platforms. At some point in Diet history, Diet
used to be tested on the Solaris/Sparc platform...

2.1.3 Supported compilers

Diet is supported on GCC with versions ranging from 3.2.X to 4.3.4. Note that due to omniORB
4 (see 2.1.5) requirements towards thread-safe management of exception handling, compiling
Diet with GCC requires at least the version 2.96. Diet is also supported on XL compiler
(IBM) and Intel compiler.

c© INRIA, ENS-Lyon, UCBL Page 15

http://cdash.inria.fr/CDash/index.php?project=DIET
http://cdash.inria.fr/CDash/index.php?project=DIET
http://graal.ens-lyon.fr/DIET/mail-lists.html
http://graal.ens-lyon.fr/DIET/mail-lists.html
http://graal.ens-lyon.fr/bugzilla

DIET User’s Manual

2.1.4 Operating system dependencies

Diet is fully tested on Linux [with varying distributions like Debian, Red Hat Enterprise Linux
(REL-ES-3), Fedora Core (5)], on AIX (5.3) on MacOSX (Darwin 8) and on Windows (Cygwin
1.5.25 and Cygwin 1.7.1).

2.1.5 Software dependencies

As explained in Section 1.2, CORBA is used for all communications inside the platform. The
implementations of CORBA currently supported in Diet is omniORB 4 which itself depends
on Python.
NB: We have noticed that some problems occur with Python 2.3: the C++ code generated
by idl could not be compiled. It has been patched in Diet, but some warnings may still appear.

omniORB 4 itself also depends on OpenSSL in case you wish to secure your Diet plat-
form. If you want to deploy a secure Diet platform, SSL support is not yet implemented in
Diet, but an easy way to do so is to deploy Diet over a VPN.

In order to deploy CORBA services with omniORB, a configuration file and a log direc-
tory are required: see Section 9.1.1 for a complete description of the services. Their paths
can be given to omniORB either at runtime (through the well-known environment variables
$OMNIORB CONFIG and $OMNINAMES LOGDIR), and/or at omniORB compile time (with the
--with-omniORB-config and --with-omniNames-logdir options.) Some examples provided
in the Diet sources depend on the BLAS and ScaLAPACK libraries. However the compilation
of those BLAS and ScaLAPACK dependent examples are optional.

2.2 Compiling the platform

Diet compilation process moved away from the traditional autotools way of things to a tool
named cmake (mainly to benefit from cmake’s built-in regression tests mechanism).

Before compiling Diet itself, first install the above mentioned (cf Section 2.1.5) dependen-
cies. Then untar the Diet archive and change current directory to its root directory.

2.2.1 Obtaining and installing cmake per se

Diet requires using cmake at least version 2.4.3. For many popular distributions cmake is
incorporated by default or at least apt-get (or whatever your distro package installer might
be) is cmake aware. Still, in case you need to install an up-to-date version cmake’s official
site distributes many binary versions (alas packaged as tarballs) which are made available
at http://www.cmake.org/HTML/Download.html. Optionally, you can download the sources
and recompile them: this simple process (./bootstrap; make; make install) is described at
http://www.cmake.org/HTML/Install.html.

2.2.2 Configuring Diet’s compilation: cmake quick introduc-
tion

If you are already experienced with cmake then using it to compile Diet should provide no
surprise. Diet respects cmake’s best practices e.g., by clearly separating the source tree from the

c© INRIA, ENS-Lyon, UCBL Page 16

http://www.cmake.org/HTML/Download.html
http://www.cmake.org/HTML/Install.html

DIET User’s Manual

binary tree (or compile tree), by exposing the main configuration optional flag variables prefixed
with DIET_ (and by hiding away the technical variables) and by not postponing configuration
difficulties (in particular the handling of external dependencies like libraries) to compile stage.

Cmake classically provides two ways for setting configuration parameters in order to generate
the makefiles in the form of two commands ccmake and cmake (the first one has an extra ”c”
character):

ccmake [options] <path-to-source>
in order to specify the parameters interactively through a GUI interface

cmake [options] <path-to-source> [-D<var>:<type>=<value>]
in order to define the parameters with the -D flag directly from the command line.

In the above syntax description of both commands, <path-to-source> specifies a path to the
top level of the source tree (i.e., the directory where the top level CMakeLists.txt file is to be
encountered). Also the current working directory will be used as the root of the build tree for
the project (out of source building is generally encouraged especially when working on a CVS
tree).
Here is a short list of cmake internal parameters that are worth mentioning:

• CMAKE_BUILD_TYPE controls the type of build mode among which Debug will produce
binaries and libraries with the debugging information

• CMAKE_VERBOSE_MAKEFILE is a Boolean parameter which when set to ON will generate
makefiles without the .SILENT directive. This is useful for watching the invoked com-
mands and their arguments in case things go wrong.

• CMAKE_C[XX]_FLAGS* is a family of parameters used for the setting and the customization
of various C/C++ compiler options.

• CMAKE_INSTALL_PREFIX variable defines the location of the install directory (defaulted to
/usr/local on Un*x). This is cmake’s portable equivalent of the autotools configure’s
--prefix= option.

Eventually, here is a short list of ccmake interface tips:

• when lost, look at the bottom lines of the interface which always summarizes ccmake’s
most pertinent options (corresponding keyboard shortcuts) depending on your current
context

• hitting the ”h” key will direct you ccmake embedded tutorial and a list of keyboard
shortcuts (as mentioned in the bottom lines, hit ”e” to exit)

• up/down navigation among parameter items can be achieved with the up/down arrows

• when on a parameter item, the line in inverted colors (close above the bottom of the
screen) contains a short description of the selected parameter as well as the set of possi-
ble/recommended values

• toggling of boolean parameters is made with enter

• press enter to edit path variables

c© INRIA, ENS-Lyon, UCBL Page 17

DIET User’s Manual

• when editing a PATH typed parameter the TAB keyboard shortcut provides an emacs-like
(or bash-like) automatic path completion.

• toggling of advanced mode (press ”t”) reveals hidden parameters

2.2.3 A ccmake walk-through for the impatients

Assume that CVS_DIET_HOME represents a path to the top level directory of Diet sources.
This Diet sources directories tree can be obtained by Diet users by expanding the Diet
current source level distribution tarball. But for the Diet developers this directories tree simply
corresponds to the directory GRAAL/devel/diet/diet of a cvs checkout of the Diet sources
hierarchy. Additionally, assume we created a build tree directory and cd to it (in the example
below we chose CVS_DIET_HOME/Bin as build tree, but feel free to follow your conventions):

• cd CVS_DIET_HOME/Bin

• ccmake .. to enter the GUI

– press c (equivalent of bootstrap.sh of the autotools)

– toggle the desired options e.g., DIET_BUILD_EXAMPLES or DIET_USE_JXTA.

– specify the CMAKE_INSTALL_PREFIX parameter (if you wish to install in a directory
different from /usr/local)

– press c again, for checking required dependencies

– check all the parameters preceded with the * (star) character whose value was au-
tomatically retrieved by cmake.

– provide the required information i.e., fill in the proper values for all parameters
whose value is terminated by NOT-FOUND

– iterate the above process of parameter checking, toggle/specification and configura-
tion until all configuration information is satisfied

– press g to generate the makefile

– press q to exit ccmake

• make in order to classically launch the compilation process

• make install when installation is required

2.2.4 Diet’s main configuration flags

Here are the main configuration flags:

• OMNIORB4_DIR is the path to the omniORB4 installation directory (only relevant when
omniORB4 was not installed in /usr/local).
Example: cmake .. -DOMNIORB4_DIR:PATH=$HOME/local/omniORB-4.0.7

• DIET_BUILD_EXAMPLES activates the compilation of a set of general client/server exam-
ples. Note that some specific examples (e.g., DIET_BUILD_BLAS_EXAMPLES) require some
additional flag to be activated too.

c© INRIA, ENS-Lyon, UCBL Page 18

DIET User’s Manual

• DIET_BUILD_LIBRARIES which is enabled by default, activates the compilation of the
Diet libraries. Disabling this option is only useful if you wish to restrict the compilation
to the construction of the documentation.

2.2.5 Diet’s extensions configuration flags

Diet has many extensions (some of them are still) experimental. These extensions most often
rely on external packages that need to be pre-installed. One should notice that some of those
extensions offer concurrent functionalities. This explains the usage of configuration flags in
order to obtain the compilation of the desired extensions.

• DIET_BUILD_BLAS_EXAMPLES option activates the compilation of the BLAS based Diet
examples, as a sub-module of examples. The BLAS 1 (Basic Linear Algebra Subpro-
grams) are high quality “building block” routines for performing basic vector and matrix
operations. Level 1 BLAS do vector-vector operations, Level 2 BLAS do matrix-vector
operations, and Level 3 BLAS do matrix-matrix operations. Because the BLAS are effi-
cient, portable, and widely available, they’re commonly used in the development of high
quality linear algebra software. Diet uses BLAS to build demonstration examples of clien-
t/server. Note that the option DIET_BUILD_BLAS_EXAMPLES can only be effective when
DIET_BUILD_EXAMPLES is enabled. DIET_BUILD_BLAS_EXAMPLES is disabled by default.

• DIET_USE_ALT_BATCH enables the transparent submission to batch servers. See Chapter 6
for more details.

• DIET_USE_CORI CoRI, which stands for COllector of Resource Information, provides a
framework for probing hardware and performance information about the SeD . CoRI also
yields a very basic set of probing resources which are heavily dependent on the system
calls available for the considered platform. When this option is activated (disabled by
default), the user can either define new collectors or use existing collectors (like FAST,
see the DIET_USE_FAST option) through CoRI’s interface. CoRI thus provides a possible
tactical approach for tuning the performance of your favorite plug-in scheduler. Chapter 8
describes in more details CoRI and its possible usage within Diet.

• DIET_USE_DAGDA enables the use of the new data management module of Diet. Dagda
offers to the Diet application developers a simple and efficient way to manage the data.
See Chapter15 for more details.

• DIET_USE_DYNAMICS enables a mode in which you can dynamically modify its shape using
CORBA calls. See chapter 16 for more details about the option and how it works.

• DIET_USE_FAST activates Diet support of FAST (refer to http://www.loria.fr/~quinson/
fast.html a grid aware dynamic forecasting library. Although the detection of FAST
should be correctly handled by cmake (since detection is based on the FAST provided
fast-config utility) the installation of FAST can be a lengthy process (and, depending
on your platform, potentially quite difficult). This is due to the dependency of FAST
towards numerous sub-libraries on which it relies (GSL, BDB, NWS, LDAP). Thus, the
activation of this option can only be recommended for advanced users. . . As already

1http://www.netlib.org/blas/

c© INRIA, ENS-Lyon, UCBL Page 19

http://www.loria.fr/~quinson/fast.html
http://www.loria.fr/~quinson/fast.html
http://www.netlib.org/blas/

DIET User’s Manual

mentioned, on activation of the DIET_USE_FAST option cmake will search among the well
known system path for the fast-config command and set the FAST_CONFIG_EXECUTABLE
with the result. Upon failure, it is up to the user to manually set the full path name to
this command (e.g., with [c]cmake command line argument
-DFAST_CONFIG_EXECUTABLE:PATH=$HOME/local/bin/fast-config.

• DIET_USE_FD for activating Fault Detector.

• DIET_USE_JUXMEM activates Diet support of JuxMem which allows the user to manage
persistent data. When this option is activated (disabled by default), a SeD can store data
blocks within JuxMem. Chapter 13 describes in more details JuxMem and its use inside
Diet.

• DIET_USE_JXTA activates the so called MULTI-Master-Agent support. This option is
which is based on the JXTA layer (refer to http://www.jxta.org/) allows the user to de-
ploy DIET JXTA architectures. Note that this is to be opposed with DIET_WITH_MULTI_MA
(see 2.2.5 below) which offers similar functionalities but based on CORBA.

• DIET_USE_WORKFLOW enables the support of workflow. For the support of workflows in-
side Diet, Xerces and Xqilla libraries are mandatory (see http://xerces.apache.org/
xerces-c/ and http://xqilla.sourceforge.net/HomePage). For more details about
the workflow support in Diet see chapter 14. Note that setting the DIET_USE_WORKFLOW
will force the option DIET_USE_DAGDA to be set.

• DIET_WITH_MULTI_MA activates the so called MULTI Master Agent support which allows
the user to connect several MA for them to act as bounded. When this option is activated,
such a bounded MA is allowed to search for a SeD into the MA hierarchies it is connected
to. Note that MULTI-Master-Agent support is based on the CORBA layer which is to
be opposed with DIET_USE_JXTA which offers similar functionalities but based on JXTA.

• DIET_WITH_STATISTICS enables the generation of statistics logs

2.2.6 Diet’s advanced configuration flags

Eventually, some configuration flags control the general result of the compilation or some
developers extensions:

• BUILD_TESTING is a conventional variable (which is not a cmake internal variable) which
specifies that the regression tests should also be compiled.

• BUILD_SHARED_LIBS is a cmake internal variable which specifies whether the libraries
should be dynamics as opposed to static (on Mac system this option is automatically set
to ON, as static compilation of binaries seems to be forbidden on these systems)

• DIET_USE_DART enables DART reporting system (refer to http://public.kitware.com/
Dart) which is used for constructing Diet’s dashboard (see http://graal.ens-lyon.fr/
DietDashboard). Note that setting the DIET_USE_DART will force the option
BUILD_TESTING to be set.

c© INRIA, ENS-Lyon, UCBL Page 20

http://www.jxta.org/
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://xqilla.sourceforge.net/HomePage
http://public.kitware.com/Dart
http://public.kitware.com/Dart
http://graal.ens-lyon.fr/DietDashboard
http://graal.ens-lyon.fr/DietDashboard

DIET User’s Manual

• Maintainer By default cmake offers four different build modes that one toggles by po-
sitioning CMAKE_BUILD_TYPE built-in variable (to Debug, Release, RelWithDebInfo and
MinSizeRel). Maintainer is an additional mode which fulfills two basic needs of the
task of the maintainer of Diet. The first preventive task is to provide code free from any
compilation and link warnings. The second corresponds to the snafu stage which is to
debug the code. For reaching those goals the Maintainer build type sets the compilers
flags, respectively the linker flags, with all the possible warning flags activated, resp. with
the additional debug flags.

2.2.7 Compiling and installing

Summarizing the configuration choices

Once the configuration is properly made one can check the choices made by looking the little
summary proposed by cmake. This summary should look like ([...] denotes eluded portions):

~/DIET > ./cmake ..
[...]
- XX
-- XXXXXXXXXXXXXXXXXXXXXX DIET configuration summary XXXXXXXXXXXXXXXXXXXXXX
-- XXXXXXXXXXXXXXXXXXXXXXXXXXX 2010/03/31-07:47:15 XXXXXXXXXXXXXXXXXXXXXXXXXX
-- XXX System name Linux
-- XXX - Install prefix: /home/diet/local/diet
-- XXX - C compiler : /usr/bin/gcc
-- XXX * version : 4.3.4
-- XXX * options : -Dinline="static __inline__" -Dconst="" -std=gnu99
-- XXX - CXX compiler : /usr/bin/c++
-- XXX * version : 4.3.4
-- XXX * options : -lpthread -g -D__linux__
-- XXX - OmniORB found: YES
-- XXX * OmniORB version: 4.1.2
-- XXX * OmniORB directory:
-- XXX * OmniORB includes: /usr/include
-- XXX * OmniORB libraries: [...]libomniDynamic4.so;[...]libomniORB4.so;[...]libomnithread.so
-- XXX - General options:
-- XXX * Dynamics Libraries: ON
-- XXX * Examples: ON
-- XXX * BLAS Examples: ON
-- XXX - Options set:
-- XXX * Batch: ON
-- XXX * CORI: ON
-- XXX * JXTA: ON
-- XXX * JuxMem: ON
-- XXX * Statistics: ON
-- XX
[...]

A more complete, yet technical, way of making sure is to check the content of the file named
CMakeCache.txt (generated by cmake in the directory from which cmake was invocated). When
exchanging with the developers list it is a recommendable practice to join the content of this
file which summarizes your options and also the automatic package/library detections made by
cmake.

c© INRIA, ENS-Lyon, UCBL Page 21

DIET User’s Manual

Compiling stage

You are now done with the configuration stage (equivalent of both the bootstrap.sh and
./configure stage of the autotools). You are now back to your platform level development
tools, i.e., make when working on Unices. Hence you can now proceed with the compiling
process by launching make.

Testing

If you configured Diet with the BUILD_TESTING you can easily run the regression tests by
invoking the make test. This is equivalent to invoking ctest command (ctest is part of cmake
package). ctest --help provides a summary of the advanced options of ctest among which
we recommend the --verbose option.

Installation stage

After compiling (linking, and testing) you can optionally proceed with the installation stage
with the make install command.

2.3 Diet client/server examples

A set of various examples of Diet server/client are provided within the Diet archive, here are
some of the provided examples:

• Batch: A simple basic example on how to use the batch API is given here: no IN or
INOUT args, the client receives as a result the number of processors on which the service
has been executed. The service only writes to a file, with batch-independent mnemonics,
some information on the batch system.

• BLAS: the server offers the dgemm BLAS functionality. We plan to offer all BLAS (Basic
Linear Algebraic Subroutines) in the future. Since this function computes C = αAB+βC,
it can also compute a matrix-matrix product, a sum of square matrices, etc. All these
services are offered by the BLAS server. Two clients are designed to use these services:
one (dgemm client.c) is designed to use the dgemm function only, and the other one
(client.c) to use all BLAS functions (but currently only dgemm) and sub-services, such
as MatPROD.

• dmat manips: the server offers matrix manipulation routines: transposition (T), product
(MatPROD) and sum (MatSUM, SqMatSUM for square matrices, and SqMatSUM opt for square
matrices but re-using the memory space of the second operand for the result). Any subset
of these operations can be specified on the command line. The last two of them are given
for compatibility with a BLAS server as explained below.

• file transfer: the server computes the sizes of two input files and returns them. A
third output parameter may be returned; the server decides randomly whether to send
back the first file. This is to show how to manage a variable number of arguments: the
profile declares all arguments that may be filled, even if they might not be all filled at
each request/computation.

c© INRIA, ENS-Lyon, UCBL Page 22

DIET User’s Manual

• ScaLAPACK: the server is designed to offer all ScaLAPACK (parallel version of the LA-
PACK library) functions but only manages the pdgemm function so far. The pdgemm
routine is the parallel version of the dgemm function, so that the server also offers all the
same sub-services. Two clients are designed to use these services: one (pdgemm client.c)
is designed to use the pdgemm function only, and the other one (client.c) to use all
ScaLAPACK functions and sub-services, such as MatPROD.

• workflow: The programs in this directory are examples that demonstrate how to use
the workflow feature of diet. The files representing the workflows that can be tested are
stored in xml sub-directory. For each workflow, you can find the required services in the
corresponding xml file (check the path attribute of each node element). For the scalar
manipulation example, you can use scalar server that gathers four different elementary
services.

2.3.1 Compiling the examples

Cmake will set the examples to be compiled when setting the DIET_BUILD_EXAMPLES to ON
which can be achieved by toggling the corresponding entry of ccmake GUI’s or by adding
-DDIET_BUILD_EXAMPLES:BOOL=ON to the command line arguments of [c]cmake invocation.
Note that this option is disabled by default.

The compilation of the examples, respectively the installation, is executed on the above
described invocation of make, resp. make install stages. The binary of the examples are
placed in the <install dir>/bin/examples sub-directory of the installation directory. Like-
wise, the samples of configuration files located in src/examples/cfgs are processed by make
install to create ready-to-use configuration files in src/examples/cfgs and then copied into
<install dir>/etc/cfgs.

c© INRIA, ENS-Lyon, UCBL Page 23

DIET User’s Manual

c© INRIA, ENS-Lyon, UCBL Page 24

DIET User’s Manual

Chapter 3

Diet data

It is important that Diet can manipulate data to optimize copies and memory allocation, to
estimate data transfer and computation time, etc. Therefore the data must be fully described
in terms of their data types and various attributes associated with these types.

3.1 Data types

Diet defines a precise set of data types to be used to describe the arguments of the services
(on the server side) and of the problems (on the client side).

The Diet data types are defined in the file <install dir>/include/DIET data.h. The
user will also find in this file various function prototypes to manipulate all Diet data types.
Please refer to this file for a complete and up-to-date API description.

To keep Diet type descriptions generic, two main sets are used: base and composite types.

3.1.1 Base types

Base types are defined in an enum type diet base type t and have the following semantics:

Type Description Size in octets
DIET CHAR Character 1
DIET SHORT Signed short integer 2
DIET INT Signed integer 4
DIET LONGINT Long signed integer 8
DIET FLOAT Simple precision real 4
DIET DOUBLE Double precision real 8
DIET SCOMPLEX Simple precision complex 8
DIET DCOMPLEX Double precision complex 16

NB: DIET SCOMPLEX and DIET DCOMPLEX are not implemented yet.

3.1.2 Composite types

Composite types are defined in an enum type diet type t:

c© INRIA, ENS-Lyon, UCBL Page 25

DIET User’s Manual

Type Possible base types
DIET SCALAR all base types
DIET VECTOR all base types
DIET MATRIX all base types
DIET STRING DIET CHAR
DIET PARAMSTRING DIET CHAR
DIET FILE DIET CHAR
DIET CONTAINER all base types

Each of these types requires specific parameters to completely describe the data (see Figure
3.1).

3.1.3 Persistence mode

Persistence mode is defined in an enum type diet persistence mode t

mode Description
DIET VOLATILE not stored
DIET PERSISTENT RETURN stored on server, movable and copy back to client
DIET PERSISTENT stored on server and movable
DIET STICKY stored and non movable
DIET STICKY RETURN stored, non movable and copy back to client

NB: DIET STICKY RETURN only works with Dagda.

3.2 Data description

Each parameter of a client problem is manipulated by Diet using the following structure:

typedef struct diet_arg_s diet_arg_t;
struct diet_arg_s{
diet_data_desc_t desc;
void *value;

};
typedef diet_arg_t diet_data_t;

The second field is a pointer to the memory zone where the parameter data are stored. The
first one consists of a complete Diet data description, which is better described by a figure
than with C code, since it can be set and accessed through API functions. Figure 3.1 shows the
data classification used in Diet. Every “class” inherits from the root “class” data, and could
also be a parent of more detailed classes of data in future versions of Diet.

3.3 Data management

3.3.1 Data identifier

The data identifier is generated by the MA. The data identifier is a string field that contains the
MA name, the number of the session plus the number of the data in the problem (incremental)
plus the string “id”. This is the id field of the diet data desc t structure.

c© INRIA, ENS-Lyon, UCBL Page 26

DIET User’s Manual

pointer to the ID

the array

pointer to

the first character
order

row− or col−major

number of columns

number of rows

pointer to the

 array

persistence

type

base type

argument

scalar vector

pointer to

the value

matrix

size
(without the ’\0’)

length

string/paramstringfile

path

container

pointer to

Figure 3.1: Argument/Data structure description.

typedef struct {
char* id;
diet_persistence_mode_t mode;
....

} diet_data_desc_t;

For example, id.MA1.1.1 will identify the first data in the first session submitted on the
Master Agent MA1.

NB: the field “id” of the identifier will be next replaced by a client identifier. This is not
implemented yet.

3.3.2 Data file

The name of the file is generated by a Master Agent. It is created during the diet initialize()
call. The name of the file is the aggregation of the string ID FILE plus the name of the MA
plus the number of the session.

A file is created only when there are some persistent data in the session.
For example, ID FILE.MA1.1 means the identifiers of the persistent data stored are in

the file corresponding to the first session in the Master Agent MA1.
The file is stored in the /tmp directory.

NB: for the moment, when a data item is erased from the platform, the file isn’t updated.

3.4 Manipulating Diet structures

The user will notice that the API to the Diet data structures consists of modifier and accessor
functions only: no allocation function is required, since diet profile alloc (see Section 3.6)
allocates all necessary memory for all argument descriptions. This avoids the temptation for
the user to allocate the memory for these data structures twice (which would lead to Diet

c© INRIA, ENS-Lyon, UCBL Page 27

DIET User’s Manual

errors while reading profile arguments). Please see the example in Section 3.7 for a typical use.

Moreover, the user should know that arguments of the set functions that are passed by
pointers are not copied, in order to save memory. This is true for the value arguments, but also
for the path in diet file set. Thus, the user keeps ownership of the memory zones pointed at
by these pointers, and he/she must be very careful not to alter it during a call to Diet.

3.4.1 Set functions

/**
* On the server side, these functions should not be used on arguments, but only
* on convertors (see section 5.5).
* If mode is DIET_PERSISTENCE_MODE_COUNT,
* or if base_type is DIET_BASE_TYPE_COUNT,
* or if order is DIET_MATRIX_ORDER_COUNT,
* or if size, nb_rows, nb_cols or length is 0,
* or if path is NULL,
* then the corresponding field is not modified.
*/

int
diet_scalar_set(diet_arg_t* arg, void* value, diet_persistence_mode_t mode,

diet_base_type_t base_type);
int
diet_vector_set(diet_arg_t* arg, void* value, diet_persistence_mode_t mode,

diet_base_type_t base_type, size_t size);

/* Matrices can be stored by rows or by columns */
typedef enum {
DIET_COL_MAJOR = 0,
DIET_ROW_MAJOR,
DIET_MATRIX_ORDER_COUNT

} diet_matrix_order_t;

int
diet_matrix_set(diet_arg_t* arg, void* value, diet_persistence_mode_t mode,

diet_base_type_t base_type,
size_t nb_rows, size_t nb_cols, diet_matrix_order_t order);

int
diet_string_set(diet_arg_t* arg, char* value, diet_persistence_mode_t mode);

/* The file size is computed and stocked in a field of arg
! Warning ! The path is not duplicated !!! */

int
diet_file_set(diet_arg_t* arg, diet_persistence_mode_t mode, char* path);

3.4.2 Access functions

/**
* A NULL pointer is not an error (except for arg): it is simply IGNORED.
* For instance,

c© INRIA, ENS-Lyon, UCBL Page 28

DIET User’s Manual

* diet_scalar_get(arg, &value, NULL),
* will only set the value to the value field of the (*arg) structure.
*
* NB: these are macros that let the user not worry about casting (int **)
* or (double **) etc. into (void **).
*/

/**
* Type: int diet_scalar_get((diet_arg_t *), (void *),
* (diet_persistence_mode_t *))
*/
#define diet_scalar_get(arg, value, mode) \

_scalar_get(arg, (void *)value, mode)
/**
* Type: int diet_vector_get((diet_arg_t *), (void **),
* (diet_persistence_mode_t *), (size_t *))
*/
#define diet_vector_get(arg, value, mode, size) \

_vector_get(arg, (void **)value, mode, size)
/**
* Type: int diet_matrix_get((diet_arg_t *), (void **),
* (diet_persistence_mode_t *),
* (size_t *), (size_t *), (diet_matrix_order_t *))
*/
#define diet_matrix_get(arg, value, mode, nb_rows, nb_cols, order) \

_matrix_get(arg, (void **)value, mode, nb_rows, nb_cols, order)
/**
* Type: int diet_string_get((diet_arg_t *), (char **),
* (diet_persistence_mode_t *))
*/
#define diet_string_get(arg, value, mode) \

_string_get(arg, (char **)value, mode)
/**
* Type: int diet_file_get((diet_arg_t *),
* (diet_persistence_mode_t *), (size_t *), (char **))
*/
#define diet_file_get(arg, mode, size, path) \

_file_get(arg, mode, size, (char **)path)

3.5 Data Management functions

• The store id method is used to store the identifier of persistent data. It also accepts a
description of the data stored. This method has to be called after the diet call() so
that the identifier exists.

store_id(char* argID,char *msg);

• The diet use data method allows the client to use a data item that is already stored in
the platform.

diet_use_data(diet_arg_t* arg,char* argID);

c© INRIA, ENS-Lyon, UCBL Page 29

DIET User’s Manual

This function replaces the set functions (see Section 3.4.1).

NB: a mechanism for data identifier publication hasn’t been implemented yet. So, ex-
changes of identifiers between end-users that want to share data must be done ex-
plicitly.

• The diet free persistent data method allows the client to remove a persistent data
item from the platform.

diet_free_persistent_data(char *argID);

/***
* Add handler argID and text message msg in the identifier file *
**/

void
store_id(char* argID, char* msg);

/** sets only identifier : data is present inside the platform */

void
diet_use_data(diet_arg_t* arg, char* argID);

/**
* Free persistent data identified by argID *
***/
int
diet_free_persistent_data(char* argID);

3.5.1 Free functions

The amount of data pointed at by value fields should be freed through a Diet API function:

/**/
/* Free the amount of data pointed at by the value field of an argument. */
/* This should be used ONLY for VOLATILE data, */
/* - on the server for IN arguments that will no longer be used */
/* - on the client for OUT arguments, after the problem has been solved, */
/* when they will no longer be used. */
/* NB: for files, this function removes the file and frees the path (since */
/* it has been dynamically allocated by DIET in both cases) */
/**/

int
diet_free_data(diet_arg_t* arg);

c© INRIA, ENS-Lyon, UCBL Page 30

DIET User’s Manual

3.6 Problem description

For Diet to match the client problem with a service, servers and clients must “speak the same
language”, ie they must use the same problem description. A unified way to describe problems
is to use a name and define its profile with the type diet profile t:

typedef struct {
char* pb_name;
int last_in, last_inout, last_out;
diet_arg_t *parameters;

} diet_profile_t;

The field parameters consists of a diet arg t array of size last out+ 1. Arguments can be

IN: The data are sent to the server. The memory is allocated by the user.

INOUT: The data are allocated by the user as for the IN arguments, then sent to the server and
brought back into the same memory zone after the computation has completed, without
any copy. Thus freeing this memory at the client while the computation is performed on
the server would result in a segmentation fault when the data are brought back onto the
client.

OUT: The data are created on the server and brought back into a newly allocated zone on the
client. This allocation is performed by Diet. After the call has returned, the user can
find the result in the zone pointed at by the value field. Of course, Diet cannot guess
how long the user will need these data, so the user must free the memory him/herself
with diet free data.

The fields last in, last inout and last out of the diet profile t structure respectively point
at the indexes in the parameters array of the last IN, INOUT and OUT arguments.

Functions to create and destroy such profiles are defined with the prototypes below:

diet_profile_t *diet_profile_alloc(char* pb_name, int last_in, int last_inout, int last_out);
int diet_profile_free(diet_profile_t *profile);

The values of last in, last inout and last out are respectively:

last in: −1 + number of input data.

last inout : last in + number of inout data.

last out : last inout + number of out data.

3.7 Examples

3.7.1 Example 1: without persistency

Let us consider the product of a scalar by a matrix: the matrix must be multiplied in-place,
and the computation time must be returned. This problem has one IN argument (the scalar
factor), one INOUT argument (the matrix) and one OUT argument (the computation time),
so its profile will be built as follows:

c© INRIA, ENS-Lyon, UCBL Page 31

DIET User’s Manual

DIET_ROW_MAJOR

type =

base_type =

type =

base_type =

type =

base_type =

last_in = 0
last_inout = 1
last_out = 2

DIET_SCALARDIET_SCALAR

DIET_DOUBLE DIET_FLOATDIET_DOUBLE

DIET_MATRIX

value = value = nb_r =

nb_c =

order =

&factor

0 1 2

profile

&time5

6

Here are the lines of C code to generate such a profile:

double factor;
double *matrix;
float *time;
// Init matrix at least, factor and time too would be better ...
// ...
diet_profile_t profile = diet_profile_alloc(0, 1, 2); // last_in, last_inout, last_out
diet_scalar_set(diet_parameter(profile,0), &factor, 0, DIET_DOUBLE);
diet_matrix_set(diet_parameter(profile,1), matrix, 0, DIET_DOUBLE, 5, 6, DIET_ROW_MAJOR);
diet_scalar_set(diet_parameter(profile,2), NULL, 0, DIET_FLOAT);

NB1: If there is no IN argument, last in must be set to -1, if there is no INOUT argument,
last inout must be equal to last in, and if there is no OUT argument, last out must be
equal to last inout.

NB2: The value argument for set functions (3.4.1) is ignored for OUT arguments, since Diet
allocates the necessary memory space when the corresponding data are transferred from
the server, so set value to NULL.

3.7.2 Example 2: using persistency

Let us consider the following problem : C = A ∗B, with A,B and C persistent matrices.

double *A, *B, *C;
// matrices initialization
...
diet_initialize();
strcpy(path,"MatPROD");
profile = diet_profile_alloc(path, 1, 1, 2);
diet_matrix_set(diet_parameter(profile,0),

A, DIET_PERSISTENT, DIET_DOUBLE, mA, nA, oA);
print_matrix(A, mA, nA, (oA == DIET_ROW_MAJOR));
diet_matrix_set(diet_parameter(profile,1),

B, DIET_PERSISTENT, DIET_DOUBLE, mB, nB, oB);
print_matrix(B, mB, nB, (oB == DIET_ROW_MAJOR));
diet_matrix_set(diet_parameter(profile,2),

NULL, DIET_PERSISTENT_RETURN, DIET_DOUBLE, mA, nB, oC);

c© INRIA, ENS-Lyon, UCBL Page 32

DIET User’s Manual

if (!diet_call(profile)) {
diet_matrix_get(diet_parameter(profile,2),&C, NULL, &mA, &nB, &oC);
store_id(profile->parameters[2].desc.id,"matrix C of doubles");
store_id(profile->parameters[1].desc.id,"matrix B of doubles");
store_id(profile->parameters[0].desc.id,"matrix A of doubles");
print_matrix(C, mA, nB, (oC == DIET_ROW_MAJOR));

}
diet_profile_free(profile);
// free matrices memory
...
diet_finalize();

Then, a client submits the problem : D = E + C with C already present in the platform.
We consider that the handle of C is “id.MA1.1.3”.

double *C, *D, *E;
// matrices initialization
...
diet_initialize();

strcpy(path,"MatSUM");
profile2 = diet_profile_alloc(path, 1, 1, 2);

printf("second pb\n\n");
diet_use_data(diet_parameter(profile2,0), "id.MA1.1.3");
diet_matrix_set(diet_parameter(profile2,1),

E, DIET_PERSISTENT, DIET_DOUBLE, mA, nB, oE);
print_matrix(E, mA, nB, (oE == DIET_ROW_MAJOR));
diet_matrix_set(diet_parameter(profile2,2),

NULL, DIET_PERSISTENT_RETURN, DIET_DOUBLE, mA, nB, oD);

if (!diet_call(profile2)) {
diet_matrix_get(diet_parameter(profile2,2), &D, NULL, &mA, &nB, &oD);
print_matrix(D, mA, nB, (oD == DIET_ROW_MAJOR));
store_id(profile2->parameters[2].desc.id,"matrix D of doubles");
store_id(profile2->parameters[1].desc.id,"matrix E of doubles");

}
diet_profile_free(profile2);
diet_free_persistent_data("id.MA1.1.3");
// free matrices memory
...
diet_finalize();

Note that when a single client creates persistent data with a first Diet call and uses that
data with a second Diet call, we will not know in advance the identifier of the data. However,
the identifier is stored in the structure of the first profile. For example, consider a matrix A
built with diet matrix set() method as follows:

...
diet_profile_t *profile;
...

c© INRIA, ENS-Lyon, UCBL Page 33

DIET User’s Manual

diet_matrix_set(diet_parameter(profile,0),
E, DIET_PERSISTENT, DIET_DOUBLE, mA, nA, oA);

...

After the first diet call, the identifier of A is stored in the profile
(in profile->parameters[0].desc.id). So, for the second call we will have the following
instruction in order to use A:

...
diet_profile_t *profile2;
...
diet_use_data(diet_parameter(profile2,0),profile->parameters[0].desc.id);
...

NB: when using this method, the first profile (here profile) must not be freed before using
or making a copy of the data identifier.

c© INRIA, ENS-Lyon, UCBL Page 34

DIET User’s Manual

Chapter 4

Building a client program

The most difficult part of building a client program is to understand how to describe the problem
interface. Once this step is done, it is fairly easy to build calls to Diet.

4.1 Structure of a client program

Since the client side of Diet is a library, a client program has to define a main function that
uses Diet through function calls. The complete client-side interface is described in the files
DIET data.h (see Chapter 3) and DIET client.h found in <install dir>/include. Please
refer to these two files for a complete and up-to-date API 1 description, and include at least the
latter at the beginning of your source code (DIET client.h includes DIET data.h):

#include <stdio.h>
#include <stdlib.h>

#include "DIET_client.h"

int main(int argc, char *argv[])
{
diet_initialize(configuration_file, argc, argv);
// Successive DIET calls ...
diet_finalize();

}

The client program must open its Diet session with a call to diet initialize, which
parses the configuration file to set all options and get a reference to the Diet Master Agent.
The session is closed with a call to diet finalize, which frees all resources associated with this
session on the client. Note that memory allocated for all INOUT and OUT arguments brought
back onto the client during the session is not freed during diet finalize; this allows the user
to continue to use the data, but also requires that the user explicitly free the memory. The user
must also free the memory he or she allocated for IN arguments.

1Application programming interface

c© INRIA, ENS-Lyon, UCBL Page 35

DIET User’s Manual

4.2 Client API

The client API follows the GridRPC definition [24]: all diet functions are “duplicated” with
grpc functions. Both diet initialize/grpc initialize and diet finalize/grpc finalize
belong to the GridRPC API.

A problem is managed through a function handle, that associates a server to a problem
name. For compliance with GridRPC Diet accepts diet function handle init, but the server
specified in the call will be ignored; Diet is designed to automatically select the best server.
The structure allocation is performed through the function diet function handle default.

The function handle returned is associated to the problem description, its profile, in the call
to diet call.

4.3 Examples

Let us consider the same example as in Section 3.7, but for synchronous and asynchronous calls.
Here, the client configuration file is given as the first argument on the command line, and we
decide to hardcode the matrix, its factor, and the name of the problem.

4.3.1 Synchronous call

smprod for scalar by matrix product.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "DIET_client.h"

int main(int argc, char **argv)
{
int i;
double factor = M_PI; /* Pi, why not ? */
double *matrix; /* The matrix to multiply */
float *time = NULL; /* To check that time is set by the server */

diet_profile_t *profile;

/* Allocate the matrix: 60 lines, 100 columns */
matrix = malloc(60 * 100 * sizeof(double));
/* Fill in the matrix with dummy values (who cares ?) */
for (i = 0; i < (60 * 100); i++) {
matrix[i] = 1.2 * i;

}

/* Initialize a DIET session */
diet_initialize("./client.cfg", argc, argv);

/* Create the profile as explained in Chapter 3 */
profile = diet_profile_alloc("smprod",0, 1, 2); // last_in, last_inout, last_out

/* Set profile arguments */

c© INRIA, ENS-Lyon, UCBL Page 36

DIET User’s Manual

diet_scalar_set(diet_parameter(profile,0), &factor, 0, DIET_DOUBLE);
diet_matrix_set(diet_parameter(profile,1), matrix, 0, DIET_DOUBLE, 60, 100, DIET_COL_MAJOR);
diet_scalar_set(diet_parameter(profile,2), NULL, 0, DIET_FLOAT);

if (!diet_call(profile)) { /* If the call has succeeded ... */

/* Get and print time */
diet_scalar_get(diet_parameter(profile,2), &time, NULL);
if (time == NULL) {
printf("Error: time not set !\n");

} else {
printf("time = %f\n", *time);

}

/* Check the first non-zero element of the matrix */
if (fabs(matrix[1] - ((1.2 * 1) * factor)) > 1e-15) {
printf("Error: matrix not correctly set !\n");

}
}

/* Free profile */
diet_profile_free(profile);
diet_finalize();
free(matrix);
free(time);

}

4.3.2 Asynchronous call

smprod for scalar by matrix product.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "DIET_client.h"

int main(int argc, char **argv)
{
int i, j;
double factor = M_PI; /* Pi, why not ? */
size_t m, n; /* Matrix size */
double *matrix[5]; /* The matrix to multiply */
float *time = NULL; /* To check that time is set by the server */

diet_profile_t *profile[5];
diet_reqID_t rst[5] = {0,0,0,0,0};

m = 60;
n = 100;

/* Initialize a DIET session */
diet_initialize("./client.cfg", argc, argv);

c© INRIA, ENS-Lyon, UCBL Page 37

DIET User’s Manual

/* Create the profile as explained in Chapter 3 */
for (i = 0; i < 5; i++){
/* Allocate the matrix: m lines, n columns */
matrix[i] = malloc(m * n * sizeof(double));
/* Fill in the matrix with dummy values (who cares ?) */
for (j = 0; j < (m * n); j++) {
matrix[i][j] = 1.2 * j;

}
profile[i] = diet_profile_alloc("smprod",0, 1, 2); // last_in, last_inout, last_out

/* Set profile arguments */
diet_scalar_set(diet_parameter(profile[i],0), &factor, 0, DIET_DOUBLE);
diet_matrix_set(diet_parameter(profile[i],1), matrix[i], 0, DIET_DOUBLE,

m, n, DIET_COL_MAJOR);
diet_scalar_set(diet_parameter(profile[i],2), NULL, 0, DIET_FLOAT);

}

/* Call Diet */
int rst_call = 0;

for (i = 0; i < 5; i++){
if ((rst_call = diet_call_async(profile[i], &rst[i])) != 0)

printf("Error in diet_call_async return -%d-\n", rst_call);
else {
printf("request ID value = -%d- \n", rst[i]);
if (rst[i] < 0) {
printf("error in request value ID\n");
return 1;

}
}
rst_call = 0;

}

/* Wait for Diet answers */
if ((rst_call = diet_wait_and((diet_reqID_t*)&rst, (unsigned int)5)) != 0)

printf("Error in diet_wait_and\n");
else {
printf("Result data for requestID");
for (i = 0; i < 5; i++) printf(" %d ", rst[i]);
for (i = 0; i < 5; i++){
/* Get and print time */
diet_scalar_get(diet_parameter(profile[i],2), &time, NULL);
if (time == NULL) {
printf("Error: time not set !\n");

} else {
printf("time = %f\n", *time);

}

/* Check the first non-zero element of the matrix */
if (fabs(matrix[i][1] - ((1.2 * 1) * factor)) > 1e-15) {
printf("Error: matrix not correctly set !\n");

}
}

c© INRIA, ENS-Lyon, UCBL Page 38

DIET User’s Manual

}
/* Free profiles */
for (i = 0; i < 5; i++){
diet_cancel(rst[i]);
diet_profile_free(profile[i]);
free(matrix[i]);

}
free(time);
diet_finalize();
return 0;

}

4.4 Compilation

After compiling the client program, the user must link it with the Diet libraries and the CORBA
libraries.

4.4.1 Compilation using cmake

The doc/ExternalExample directory also contains a CMakeFile.txt file which illustrates the
cmake way of compiling this simple client/server example:

PROJECT(DIETSIMPLEEXAMPLE)

SET(CMAKE_MODULE_PATH ${DIETSIMPLEEXAMPLE_SOURCE_DIR}/Cmake)
FIND_PACKAGE(Diet)

On success use the information we just recovered:
INCLUDE_DIRECTORIES(${DIET_INCLUDE_DIR})
LINK_DIRECTORIES(${DIET_LIBRARY_DIR})

Define a simple server...
ADD_EXECUTABLE(simple_server simple_server.c)
TARGET_LINK_LIBRARIES(simple_server ${DIET_SERVER_LIBRARIES})
INSTALL(TARGETS simple_server DESTINATION bin)

... and it’s associated simple client.
ADD_EXECUTABLE(simple_client simple_client.c)
TARGET_LINK_LIBRARIES(simple_client ${DIET_CLIENT_LIBRARIES})
INSTALL(TARGETS simple_client DESTINATION bin)

In order to test drive the cmake configuration of this example, and assuming the DIET HOME
points to a directory containing an installation of Diet, simply try:

export DIET_HOME=<path_to_a_DIET_instal_directory>
cd doc/ExternalExample
mkdir Bin
cd Bin
cmake -DDIET_DIR:PATH=$DIET_HOME -DCMAKE_INSTALL_PREFIX:PATH=/tmp/DIETSimple ..
make
make install

c© INRIA, ENS-Lyon, UCBL Page 39

DIET User’s Manual

c© INRIA, ENS-Lyon, UCBL Page 40

DIET User’s Manual

Chapter 5

Building a server application

A Diet server program is the link between the Diet Server Deamon (SeD) and the libraries
that implement the service to offer.

5.1 Structure of the program

As for the client side, the Diet SeD is a library. So the server developer needs to define the main
function. Within the main, the Diet server will be launched with a call to diet SeD which will
never return (except if some errors occur). The complete server side interface is described in
the files DIET data.h (see Chapter 3) and DIET server.h found in <install dir>/include.
Do not forget to include the DIET server.h (DIET server.h includes DIET data.h) at the
beginning of your server source code.

#include <stdio.h>
#include <stdlib.h>

#include "DIET_server.h"

The second step is to define a function whose prototype is “Diet-normalized” and which
will be able to convert the function into the library function prototype. Let us consider a library
function with the following prototype:

int service(int arg1, char *arg2, double *arg3);

This function cannot be called directly by Diet, since such a prototype is hard to manip-
ulate dynamically. The user must define a “solve” function whose prototype only consists of a
diet profile t. This function will be called by the Diet SeD through a pointer.

int solve_service(diet_profile_t *pb)
{

int *arg1;
char *arg2;
double *arg3;

diet_scalar_get(diet_parameter(pb,0), &arg1, NULL);
diet_string_get(diet_parameter(pb,1), &arg2, NULL);
diet_scalar_get(diet_parameter(pb,2), &arg3, NULL);
return service(*arg1, arg2, arg3);

}

c© INRIA, ENS-Lyon, UCBL Page 41

DIET User’s Manual

Several API functions help the user to write this “solve” function, particularly for getting
IN arguments as well as setting OUT arguments.

Getting IN, INOUT and OUT arguments

The diet * get functions defined in DIET data.h are still usable here. Do not forget that the
necessary memory space for OUT arguments is allocated by Diet. So the user should call the
diet * get functions to retrieve the pointer to the zone his/her program should write to.

Setting INOUT and OUT arguments

To set INOUT and OUT arguments, use the diet * desc set defined in DIET server.h, these
are helpful for writing “solve” functions only. Using these functions, the server developer must
keep in mind the fact that he cannot alter the memory space pointed to by value fields on the
server. Indeed, this would make Diet confused about how to manage the data1.

/**
* If value is NULL,
* or if order is DIET_MATRIX_ORDER_COUNT,
* or if nb_rows or nb_cols is 0,
* or if path is NULL,
* then the corresponding field is not modified.
*/

int
diet_scalar_desc_set(diet_data_t* data, void* value);

// No use of diet_vector_desc_set: size should not be altered by server

// You can alter nb_r and nb_c, but the total size must remain the same
int
diet_matrix_desc_set(diet_data_t* data,

size_t nb_r, size_t nb_c, diet_matrix_order_t order);

// No use of diet_string_desc_set: length should not be altered by server

int
diet_file_desc_set(diet_data_t* data, char* path);

5.2 Server API

Defining services

First, declare the service(s) that will be offered2. Each service is described by a profile descrip-
tion called diet profile desc t since the service does not specify the sizes of the data. The
diet profile desc t type is defined in DIET server.h, and is very similar to diet profile t.

1And the server developer should not be confused by the fact that diet scalar desc set uses a
value, since scalar values are copied into the data descriptor.

2It is possible to declare several services for one single SeD.

c© INRIA, ENS-Lyon, UCBL Page 42

DIET User’s Manual

The difference is that the prototype is described with the generic parts of diet data desc only,
whereas the client description uses full diet data.

file DIET_data.h:
struct diet_data_generic {
diet_data_type_t type;
diet_base_type_t base_type;

};

file DIET_server.h:
typedef struct diet_data_generic diet_arg_desc_t;

typedef struct {
char* path;
int last_in, last_inout, last_out;
diet_arg_desc_t* param_desc;

} diet_profile_desc_t;

diet_profile_desc_t* diet_profile_desc_alloc(const char* path,
int last_in, int last_inout, int last_out);

int diet_profile_desc_free(diet_profile_desc_t* desc);

diet_profile_desc_t *diet_profile_desc_alloc(int last_in, int last_inout, int last_out);

int diet_profile_desc_free(diet_profile_desc_t *desc);

Each profile can be allocated with diet profile desc alloc with the same semantics as for
diet profile alloc. Every argument of the profile will then be set with diet generic desc set
defined in DIET server.h.

Declaring services

Every service must be added in the service table before the server is launched. The complete
service table API is defined in DIET server.h:

typedef int (* diet_solve_t)(diet_profile_t *);
int diet_service_table_init(int max_size);
int diet_service_table_add(diet_profile_desc_t *profile,

diet_convertor_t *cvt,
diet_solve_t solve_func);

void diet_print_service_table();

The parameter diet solve t solve func is the type of the solve service function: a
function pointer used by Diet to launch the computation.

The parameter diet convertor t *cvt is to be used in combination with FAST (if avail-
able). It is there to allow profile conversion (for multiple services, or when differences occur
between the Diet and the FAST profile). Profile conversion is complicated and will be treated
separately in Chapter 8.

5.3 Example

Let us consider the same example as in Chapter 4, where a function scal mat prod performs
the product of a matrix and a scalar and returns the time required for the computation:

c© INRIA, ENS-Lyon, UCBL Page 43

DIET User’s Manual

int scal_mat_prod(double alpha, double *M, int nb_rows, int nb_cols, float *time);

Our program will first define the solve function that consists of the link between Diet and
this function. Then, the main function defines one service and adds it in the service table with
its associated solve function.

#include "DIET_server.h"
#include "scal_mat_prod.h"

int solve_smprod(diet_profile_t *pb)
{
double *alpha;
double *M;
float time;
size_t m, n;
int res;

/* Get arguments */
diet_scalar_get(diet_parameter(pb,0), &alpha, NULL);
diet_matrix_get(diet_parameter(pb,1), &M, NULL, &m, &n, NULL);
/* Launch computation */
res = scal_mat_prod(*alpha, M, m, n, &time);
/* Set OUT arguments */
diet_scalar_desc_set(diet_parameter(pb,2), &time);
/* Free IN data */
diet_free_data(diet_parameter(pb,0));

return res;
}

int main(int argc, char* argv[])
{
diet_profile_desc_t *profile;

/* Initialize table with maximum 1 service */
diet_service_table_init(1);
/* Define smprod profile */
profile = diet_profile_desc_alloc("smprod",0, 1, 2);
diet_generic_desc_set(diet_param_desc(profile,0), DIET_SCALAR, DIET_DOUBLE);
diet_generic_desc_set(diet_param_desc(profile,1), DIET_MATRIX, DIET_DOUBLE);
diet_generic_desc_set(diet_param_desc(profile,2), DIET_SCALAR, DIET_FLOAT);
/* Add the service (the profile descriptor is deep copied) */
diet_service_table_add(profile, NULL, solve_smprod);
/* Free the profile descriptor, since it was deep copied. */
diet_profile_desc_free(profile);

/* Launch the SeD: no return call */
diet_SeD("./SeD.cfg", argc, argv);

/* Dead code */
return 0;

}

c© INRIA, ENS-Lyon, UCBL Page 44

DIET User’s Manual

5.4 Compilation

After compiling her/his server program, the user must link it with the Diet and CORBA
libraries. This process is very similar to the one described for the client in section 4.4. Please
refer to this section for details.

c© INRIA, ENS-Lyon, UCBL Page 45

DIET User’s Manual

c© INRIA, ENS-Lyon, UCBL Page 46

DIET User’s Manual

Chapter 6

Batch and parallel submissions

6.1 Introduction

Most of resources in a grid are parallel, either clusters of workstations or parallel machines.
Computational grids are even considered as hierachical sets of parallel resources, as we can see
in ongoing project like the french research grid project, Grid’5000 [2] (for the moment, 9 sites
are involved), or like the Egee1 project (Enabling Grids for E-science in Europe), composed of
more than a hundred centers in 48 countries. Then, in order to provide transparent access to
resources, grid middleware must supply efficient mechanisms to provide parallel services.

Because parallel resources are managed differently on each site, it is neither the purpose of
Diet to deal with the deployment of parallel tasks inside the site, nor manage copies of data
which can possibly be on NFS. Diet implements mechanisms for a SeD programmer to easily
provide a service that can be portable on different sites; for clients to request services which can
be explicitly sequential, parallel or solved in the real transparent and efficient metacomputing
way: only the name of the service is given and Diet chooses the best resource where to solve
the problem.

6.2 Terminology

Servers provide services, e.g., instanciation of problems that a server can solve: for example,
two services can provide the resolution of the same problem, one being sequential and the other
parallel. A Diet task, also called a job, is created by the request of a client: it refers to the
resolution of a service on a given server.

A service can be sequential or parallel, in which case its resolution requires numerous proces-
sors of a parallel resource (a parallel machine or a cluster of workstations). If parallel, the task
can be modeled with the MPI standard, or composed of multiple sequential tasks (deployed for
example with ssh) resolving a single service: it is often the case with data parallelism problems.

Note that when dealing with batch reservation systems, we will likely speak about jobs
rather than about tasks.

1http://public.eu-egee.org/

c© INRIA, ENS-Lyon, UCBL Page 47

http://public.eu-egee.org/

DIET User’s Manual

6.3 Configuration for compilation

You must enable the batch flag in cmake arguments. Typically, if you build Diet from the
command line, you can use the following:

ccmake $diet src path \\
−DDIETUSEALTBATCH:BOOL=ON

6.4 Parallel systems

Single parallel systems are surely the less deployed in actual computing grids. They are usually
composed of a frontal node where clients log in, and from which they can log on numerous
nodes and execute their parallel jobs, without any kind of reservation (time and space). Some
problems occur with such a use of parallel resources: multiple parallel tasks can share a single
processor, hence delaying the execution of all applications using it; during the deployment, the
application must at least check the connectivity of the resources; if performance is wanted, some
monitoring has to be performed by the application.

6.5 Batch system

Generally, a parallel resource is managed by a batch system, and jobs are submitted to a site
queue. The batch system is responsible for managing parallel jobs: it schedules each job and,
it determines and allocates the resources needed for its execution.

There are many batch system, among which Torque2 (a fork of PSB3), Loadleveler4 (devel-
opped by IBM), SunGrid Engine5 (SGE, developped by Sun), OAR6 (developped at the IMAG
lab). Each one implements its own language syntax (with its own mnemonics), as well as its
own scheduler. Jobs can generally access the identity of the reserved nodes through a file during
their execution, and are assured to exclusively possess them.

6.6 Client extended API

Even if older client codes must be recompiled (because internal structures have evolved), they
do not necessarily need modifications.

Diet provides means to request exclusively sequential services, parallel services, or let Diet
choose the best implementation of a problem for efficiency purposes (according to the scheduling
metric and the performance function).

/∗ To exp l ic i t ly ca l l a sequential service ∗/
diet error t

2http://old.clusterresources.com/products/torque/
3http://www.clusterresources.com/pages/products/torque-resource-manager.php
4http://www-03.ibm.com/servers/eserver/clusters/software/loadleveler.html
5http://www.sun.com/software/gridware/
6http://oar.imag.fr

c© INRIA, ENS-Lyon, UCBL Page 48

http://old.clusterresources.com/products/torque/
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www-03.ibm.com/servers/eserver/clusters/software/loadleveler.html
http://www.sun.com/software/gridware/
http://oar.imag.fr

DIET User’s Manual

diet paral le l cal l (diet profi le t ∗ profi le) ;

diet error t
diet sequential call async(diet profi le t∗ profile , diet reqID t∗ reqID);

/∗ To exp l ic i t ly ca l l a paral le l service in sync or async way ∗/
diet error t
diet sequential call (diet profi le t ∗ profi le) ;

diet error t
diet parallel call async (diet profi le t∗ profile , diet reqID t∗ reqID);

/∗ To mark a profi le as paral le l or sequential . The default ca l l to
die t ca l l () or diet call async () wi l l perform a cal l to the correct
previous ca l l ∗/

int
diet profi le set paral lel (diet profi le t ∗ profi le) ;
int
diet profile set sequential (diet profi le t ∗ profi le) ;

/∗ To le t the user choose a given amount of resources ∗/
int
diet profile set nbprocs (diet profi le t ∗ profile , int nbprocs) ;

6.7 Batch server extended API and configuration file

There are too many diverse scenarii about the communication and execution of parallel appli-
cations: the code can be a MPI code or composed of different interacting programs possibly
launched via ssh on every nodes; input and output files can use NFS if this file system is present,
or they can be splitted and uploaded to each node participating to the calculus.

Then, we will see: what supplementary information has to be provided in the server con-
figuration file; how to write a batch submission meta-script in a SeD ; and how to record the
parallel/batch service.

6.8 Server API

/∗ Set the status of the SeD among SERIAL and BATCH ∗/
void
diet set server status (diet server status t st) ;

/∗ Set the nature of the service to be registered to the SeD ∗/
int
diet profile desc set sequential (diet profile desc t ∗ profi le) ;

c© INRIA, ENS-Lyon, UCBL Page 49

DIET User’s Manual

int
diet profile desc set parallel (diet profile desc t ∗ profi le) ;

/∗ A service MUST cal l this command to perform the submission to the batch system ∗/
int
diet submit parallel (diet profi le t ∗ profile , const char ∗ command) ;

6.8.1 Registering the service

A server is mostly built like described in section 5. In order to let the SeD know that the service
defined within the profile is a parallel one, the SeD programmer must use the function:

void diet profi le desc set parallel (diet profile desc t∗ profi le)

By default, a service is registered as sequential. Nevertheless, for code readability reasons,
we also give the pendant function to explicitly register a sequential service:

void diet profile desc set sequential (diet profile desc t∗ profi le)

6.8.2 Server configuration file

The programmer of a batch service available in a SeD has not to worry to which batch system to
submit except for its name, because Diet provides all the mechanisms to transparently submit
the job to them.

Diet is able to submit batch scripts to OAR (version 1.6 and 2.0), PBS/Torque and
loadleveler. The name of the batch scheduler managing the parallel resource where the SeD is
running has to be incorporated with the keyword batchName in the server configuration file.
Only this makes the SeD know how to submit a job correctly.

Furthermore, if there is no default queue, the Diet deployer must also provide the queue
on which jobs have to be submitted, with the keyword batchQueue.

You also have to provide a directory where the SeD can read and write data on the parallel
resource. Please note that this directory is used by Diet to store the new built script that is
submitted to the batch scheduler. In consequence, because certain batch schedulers (like OAR)
need the script to be available on all resources, this directory might be on NFS (remember that
Diet cannot replicate the script on all resources before submission because of access rights).
Note that concerning OAR (v1.6), in order to use the CoRI batch features for 0AR 1.6 (see
Section 8.3.4), the Batch SeD deployer must also provide the keyword internQueue with the
corresponding name. For example, the server configuration file can contain the following lines:

batchName = oar
batchQueue = queue 9 13
pathToNFS = /home/ycaniou/tmp/nfs
pathToTmp = /tmp/YC/
internOARbatchQueueName = 913

6.8.3 Server API for writing services

The writing of a service corresponding to a parallel or batch job is very simple. The SeD
programmer builds a shell script that he would have normally used to execute the job, i.e., a
script that must take care of data replication and executable invocation depending on the site.

c© INRIA, ENS-Lyon, UCBL Page 50

DIET User’s Manual

In order for the service to be system independent, the SeD API provides some meta-variables
which can be used in the script.

• $DIET_NAME_FRONTALE: frontale name

• $DIET_USER_NBPROCS: number of processors

• $DIET_BATCH_NODESLIST: list of reserved nodes

• $DIET_BATCH_NBNODES: number of reserved nodes

• $DIET_BATCH_NODESFILE: name of the file containing the identity of the reserved nodes

• $DIET_BATCH_JOBID: batch job ID

• $DIET_BATCHNAME: name of the batch system

Once the script written in a string, it is given as an argument to the following function:

int
diet submit parallel (diet profi le t ∗ pb, char ∗ script)

6.8.4 Example of the client/server ’concatenation’ problem

There are fully commented client/server examples in <diet_src>/src/examples/Batch direc-
tory. The root directory contains a simple example, and TestAllBatch and Cori_cycle_stealing
are more practical, the latter being a code to explain the CoRI_batch API.

The root directory contains a simple basic example on how to use the batch API is given
here: no IN or INOUT args, the client receives as a result the number of processors on which the
service has been executed. The service only writes to a file, with batch-independent mnemonics,
some information on the batch system.

The <diet_src>/src/examples/Batch/file_transfer directory contains 3 servers, one
sequential, one parallel and one batch, and one synchronous and one asynchronous client. The
client is configurable to simply ask for only sequential, or explicitly parallel services, or to let
Diet choose the best (by default, two processors are used and the scheduling algorithm is
Round-Robin). We consequently give the MPI code which is called from the batch SeD , which
realizes the concatenation of two files sent by the client. Note that the user must change some
paths in the SeD codes, according to the site where he deploys Diet.

c© INRIA, ENS-Lyon, UCBL Page 51

DIET User’s Manual

c© INRIA, ENS-Lyon, UCBL Page 52

DIET User’s Manual

Chapter 7

Scheduling in Diet

7.1 Introduction

We introduce a plugin scheduling facility, designed to allow Diet service developers to define
application-specific performance measures and to implement corresponding scheduling strate-
gies. This section describes the default scheduling policy in Diet and the interface to the plugin
scheduling facility.

7.2 Default Scheduling Strategy

The Diet scheduling subsystem is based on the notion that, for the sake of system efficacy
and scalability, the work of determining the appropriate schedule for a parallel workload should
be distributed across the computational platform. When a task in such a parallel workload
is submitted to the system for processing, each Server Daemon (SeD) provides a performance
estimate – a collection of data pertaining to the capabilities of a particular server in the context
of a particular client request – for that task. These estimates are passed to the server’s parent
agent; agents then sort these responses in a manner that optimizes certain performance criteria.
Effectively, candidate SeDs are identified through a distributed scheduling algorithm based on
pairwise comparisons between these performance estimations; upon receiving server responses
from its children, each agent performs a local scheduling operation called server response aggre-
gation. The end result of the agent’s aggregation phase is a list of server responses (from servers
in the subtree rooted at said agent), sorted according to the aggregation method in effect. By
default, the aggregation phase implements the following ordered sequence of tests:

1. FAST/NWS data: SeDs compiled and properly configured with FAST [21] and NWS [26]
are capable of making dynamic performance estimates. If such data were generated by
the SeDs, these are the metrics on which agents select servers.

2. Round-robin: In the absence of application- and platform-specific performance data,
the Diet scheduler attempts to probabilistically achieve load balance by assigning client
requests on a round-robin basis. Essentially each server records a timestamp indicating
the last time at which it was assigned a job for execution. Each time a request is received,
the SeD computes the time elapsed since its last execution, and among the responses it
receives, Diet agents select SeDs with a longer elapsed time.

c© INRIA, ENS-Lyon, UCBL Page 53

DIET User’s Manual

3. Random: If the SeD is unable to store timestamps, the Diet scheduler will chose
randomly when comparing two otherwise equivalent SeD performance estimations.

Warning: If Diet is compiled with option DIET USE CORI, FAST/NWS Scheduling is de-
activated (See Chapter 8 for more information about CoRI).

In principle, this scheduling policy prioritizes servers that are able to provide useful perfor-
mance prediction information (as provided by the FAST and NWS facilities). In general, this
approach works well when all servers in a given Diet hierarchy are capable of making such es-
timations. However, in platforms composed of SeDs with varying capabilities, load imbalances
may occur: since Diet systematically prioritizes server responses containing FAST and/or NWS
data, servers that do not respond with such performance data will never be chosen.

We have designed a plugin scheduler facility to enable the application developer to tailor
the Diet scheduling to the targeted application. This functionality provides the application
developer the means to extend the notion of a performance estimation to include metrics that
are application-specific, and to instruct Diet how to treat those data in the aggregation phase.
We describe these interfaces in the following sections.

7.3 Plugin Scheduler Interface

Distributed applications are varied and often exhibit performance behavior specific to the do-
main from which they arise. Consequently, application-specific scheduling approaches are often
necessary to achieve high-performance execution. We propose an extensible framework to build
plugin schedulers, enabling application developers to specify performance estimation metrics
that are tailored to their individual needs.

7.3.1 Estimation Metric Vector

The new type estVector t represents an estimation vector, logically a structure that can man-
age a dynamic collection of performance estimation values. It contains values that represent the
performance profile provided by a SeD in response to a Diet service request. This collection
of values may include either standard performance measures that are available through Diet,
or developer-defined values that are meaningful solely in the context of the application being
developed.

7.3.2 Standard Estimation Tags

To access to the different fields of the estVector t, it is necessary to specify the tag that
correspond to a specific information type. Table 7.1 describes this correspondence. Some tags
represent a list of values, one has to use the diet est array * functions to have access to them.
In Table 7.1, the second column marks these multi-value tags.

The tag ALLINFOS is a special: his field is always empty, but it allows to fill the vector
with all known tags by the particular collector.

Standard Performance Metrics

To access to the existing default performance estimation routines (as described in Chapter 8), the
following functions are available to facilitate the construction of custom performance estimation

c© INRIA, ENS-Lyon, UCBL Page 54

DIET User’s Manual

Information tag multi- Explication

starts with EST value

TCOMP the predicted time to solve a problem

TIMESINCELASTSOLVE time since last solve has been made (sec)

FREECPU amount of free CPU power between 0 and 1

FREEMEM amount of free memory (Mb)

NBCPU number of available processors

CPUSPEED x frequency of CPUs (MHz)

TOTALMEM total memory size (Mb)

AVGFREECPU average amount of free CPU power in [0..1]

BOGOMIPS x CPUs’ bogomips

CACHECPU x cache size CPUs (Kb)

TOTALSIZEDISK size of the partition (Mb)

FREESIZEDISK amount of free place on partition (Mb)

DISKACCESREAD average time to read on disk (Mb/sec)

DISKACCESWRITE average time to write to disk (sec)

ALLINFOS x [empty] fill all possible fields

PARAL NB FREE RESOURCES IN DEFAULT QUEUE number of idle resources

Table 7.1: Explication of the estimation tags

functions:

• FAST- and NWS-based performance estimation metrics can be used in the plugin sched-
uler. See the Section 8.2.2 for information on how to use them.

• The time elapsed since the last execution (to enable the round-robin scheduler) is stored
in an estimation metric vector by calling

int diet estimate lastexec(estVector t ev,
const diet profile t* const profilePtr);

with an appropriate value for ev and the profilePtr corresponding to the current Diet
request.

• The number of waiting jobs when using the maximum concurrent jobs limit is stored in
an estimation metric vector by calling

int diet estimate waiting jobs(estVector t ev);

• CoRI allows to access in an easy way to basic performance prediction. See Chapter 8.3
to know more about the use of it.

In the future, we plan to expand the suite of default estimation metrics to include dynamic
internal Diet system state information (e.g., queue lengths).

Developer-defined Performance Metrics

Application developers may also define performance values to be included in a SeD response to
a client request. For example, a Diet SeD that provides a service to query particular databases

c© INRIA, ENS-Lyon, UCBL Page 55

DIET User’s Manual

may need to include information about which databases are currently resident in its disk cache,
in order that an appropriate server be identified for each client request. To store such values,
the SeD developer should first choose a unique integer identifier, referred to as the tag to denote
each logical datum to be stored. Values are associated with tags using the following interface:

int diet est set(estVector t ev, int userTag, double value);

The ev parameter is the estimation vector where the value will be stored, the userTag parameter
denotes the chosen tag, and value indicates the value to be associated with the tag. Tagged data
are used to effect scheduling policies by defining custom server response aggregation methods,
described in Section 7.3.4.

7.3.3 Estimation Function

The default behavior of a SeD when a service request arrives from its parent agent is to store
the following information in the request profile:

1. FAST-based execution time predictions: DietSeDs attempt to call FAST routines
to obtain execution time predictions based on the type of service requested, if FAST was
available at compilation time. If available, such predictions are stored in the performance
estimate.

2. NWS-based dynamic resource information: If NWS library functions are available,
performance estimates may include dynamic resource performance information about
CPU availability, free memory, and network bandwidth.

3. Elapsed time since last execution: To implement the default round-robin behavior in
absence of FAST and NWS facilities, each SeD stores a timestamp of its last execution.
When a service request arrives, the difference between that timestamp and the current
time is added to the performance estimate.

This is accomplished by using the diet estimate fast and diet estimate lastexec functions
described in Section 7.3.1.

To implement a plugin scheduler, we define an interface that admits customizable perfor-
mance estimation routines:

typedef void (* diet perfmetric t)(diet profile t*,
estVector t);

diet perfmetric t
diet service use perfmetric(diet perfmetric t perfmetric fn);

Thus, the type diet perfmetric t is a function pointer that takes as arguments a performance
estimation (represented by the estVector t object) and a Diet service request profile. The
application developer can associate such a function, or performance estimation routine, with
Diet services via the diet service use perfmetric interface. This interface returns the pre-
viously registered performance estimation routine, if one was defined (and NULL otherwise). At
this point, a service added using the diet service table add function will be associated with

c© INRIA, ENS-Lyon, UCBL Page 56

DIET User’s Manual

the declared performance estimation routine. Additionally, a performance estimation routine
so specified will be associated with all services added into the service table until another call to
the diet service use perfmetric interface is made. In the performance estimation routine,
the SeD developer should store in the provided estimation vector any performance data used
in the server response aggregation methods (described in the next section).

7.3.4 Aggregation Methods

At the time a Diet service is defined, an aggregation method – the logical mechanism by which
SeD responses are sorted – is associated with the service; the default behavior was described in
Section 7.2.

If application-specific data are supplied (i.e., the estimation function has been redefined),
an alternative method for aggregation is needed. Currently, a basic priority scheduler has been
implemented, enabling an application developer to specify a series of performance values that
are to be optimized in succession. A developer may implement a priority scheduler using the
following interface:

diet aggregator desc t*
diet profile desc aggregator(diet profile desc t* profile);

int diet aggregator set type(diet aggregator desc t* agg,
diet aggregator type t atype);

int diet aggregator priority max(diet aggregator desc t* agg,
diet est tag t tag);

int diet aggregator priority min(diet aggregator desc t* agg,
diet est tag t tag);

int diet aggregator priority maxuser(diet aggregator desc t* agg,
int val);

int diet aggregator priority minuser(diet aggregator desc t* agg,
int val);

The diet profile desc aggregator and diet aggregator set type functions fetch and con-
figure the aggregator corresponding to a Diet service profile, respectively. In particular, a
priority scheduler is declared by invoking the latter function with DIET AGG PRIORITY as the
agg parameter. Recall that from the point of view of an agent, the aggregation phase is essen-
tially a sorting of the server responses from its children. A priority scheduler logically uses a
series of user-specified tags to perform the pairwise server comparisons needed to construct the
sorted list of server responses.

To define the tags and the order in which they should be compared, four functions are
introduced. These functions, of the form diet aggregator priority *, serve to identify the
estimation values to be optimized during the aggregation phase. The min and max forms
indicate that a standard performance metric (e.g., time elapsed since last execution, from the

c© INRIA, ENS-Lyon, UCBL Page 57

DIET User’s Manual

diet estimate lastexec function) is to be either minimized or maximized, respectively. Sim-
ilarly, the minuser and maxuser forms indicate the analogous operations on user-supplied
estimation values. Calls to these functions indicate the order of precedence of the tags.

Each time two server responses need to be compared, the values associated with the tags
specified in the priority aggregator are retrieved. In the specified order, pairs of corresponding
values are successively compared, passing to the next tag only if the values for the current tag
are identical. If one server response contains a value for the metric currently being compared,
and another does not, the response with a valid value will be selected. If at any point during
the treatment of tags both responses lack the necessary tag, the comparison is declared indeter-
minate. This process continues until one response is declared superior to the other, or all tags
in the priority aggregator are exhausted (and the responses are judged equivalent).

7.4 Example

A new example has been added to the Diet distribution to illustrate the usage of the plugin
scheduler functionality; this code is available in the directory

src/examples/plugin example/

A Diet server and client corresponding to a simulation of a database research application are
provided. If the construction of examples was enabled during Diet configuration, two binaries
server and client will be built in this directory. Having deployed a Diet agent hierarchy, the
server may be instantiated:

$ server <SeD config> <DB> [<DB> ...]

where <DB> are string(s) that represent the existence of a particular database at the SeD ’s site.
A client would pose a query against a set of databases:

$ client <client config> <DB> [<DB> ...]

The application uses the plugin scheduling facility to prioritize the existence of databases in
selecting a server, and thus, the expected result is that one of the SeDs with the fewest number
of database mismatches will be selected.

In the main function of the server.c file, the following block of code (a) specifies the use of
the priority aggregator for this service, (b) declares a performance estimation function to supply
the necessary data at request-time, and (c) defines the order of precedence of the performance
values (i.e., minimizing the number of database mismatches, and then maximizing the elapsed
execution time).

{
/* new section of the profile: aggregator */
diet_aggregator_desc_t *agg;
agg = diet_profile_desc_aggregator(profile);

/* for this service, use a priority scheduler */
diet_aggregator_set_type(agg, DIET_AGG_PRIORITY); /* (a) */

/* install our custom performance function */

c© INRIA, ENS-Lyon, UCBL Page 58

DIET User’s Manual

diet_service_use_perfmetric(performanceFn); /* (b) */

/* define the precedence order */
diet_aggregator_priority_minuser(agg, 0); /* (c) */
diet_aggregator_priority_max(agg, EST_TIMESINCELASTSOLVE); /* (c) */

}

The performance function performanceFn is defined as follows:

static void performanceFn(diet_profile_t* pb, estVector_t perfValues);

[...]

/*
** performanceFn: the performance function to use in the DIET
** plugin scheduling facility
*/
static void
performanceFn(diet_profile_t* pb, estVector_t perfValues)
{
const char *target;
int numMismatch;

/* string value must be fetched from description; value is NULL */
target = (diet_paramstring_get_desc(diet_parameter(pb, 0)))->param;
numMismatch = computeMismatches(target);

/*
** store the mismatch value in the user estimate space,
** using tag value 0
*/
diet_est_set(perfValues, 0, numMismatch);

/* also store the timestamp since last execution */
diet_estimate_lastexec(perfValues, pb);

}

The function computeMismatches (defined earlier in server.c) calculates the number of re-
quested databases that are not present on the SeD making the evaluation. Together, these two
code segments serve to customize the generation of performance information and the treatment
of these data in the context of the simulated database search. Finally, it should be noted that
the existence of a plugin scheduler is completely transparent to the client, and thus client code
need not be changed.

7.5 Scheduler at agents level

In this section we introduce a new way to define a scheduling policy in Diet. Some scheduling
strategies could not be developed using only the DietSeDs plugins. The schedulers at agents

c© INRIA, ENS-Lyon, UCBL Page 59

DIET User’s Manual

level allow the developer to design every scheduler strategies, even the centralized ones. The
first two sections explain precisely how Diet performs the scheduling. The third section enters
in the Diet source code and can be ignored by most of the users. The fourth section presents
the tools provided to make an agent scheduler easily. The fifth section deals with the scheduler
module compilation and usage. The last section presents some scheduler examples.

7.5.1 Scheduling from the agents side.

In Diet, the scheduling works as follows (see Figure 7.1 for a representation of each step):

• A request is submitted to the Master Agent (step 1).

• The Master Agent forwards the request to the Local Agents and SeDs that it manages
(step 2).

• The SeDs which dispose of the asked service return a CORBA response structure which
contains an estimation metric vector (step 3).

• According to a default policy or a user-defined one, the responses from the SeDs are
aggregated. Then the responses sequence is sent to the parent agent which aggregates all
the results of its children (step 4).

• When the aggregated responses reach the Master Agent, it returns the aggregated list of
all responses to the client (step 5).

• Finally, the client chooses the better server, according to the chosen aggregation method
(step 6).

1

MA

LA

request

2

MA

LA LA

request request

3

SeDSeDSeD

LA LA

response response response

4

LA

response 1 response 3response 2
cpu mem time cpu mem time cpu mem time

cpu3 > cpu1 > cpu2

cpu mem time response 3
cpu mem time response 1
cpu mem time response 2

5

cpu m time
cpu m time
cpu m time

MA

responses responsesresponses
cpu m time
cpu m time
cpu m time

cpu m time
cpu m time
cpu m time

cpu mem time
cpu mem time
cpu mem time

6

cpu mem time
cpu mem time
cpu mem time
cpu mem time
cpu mem time

Sorted SeD list

Figure 7.1: Scheduling steps in Diet.

c© INRIA, ENS-Lyon, UCBL Page 60

DIET User’s Manual

7.5.2 Aggregation methods overloading

To aggregate the responses of the SeDs, Diet uses an aggregation method which is called by
the agents. This method is chosen from the SeDs by defining the aggregator type (see Section
7.3.2). By default, two aggregator types are proposed by Diet: DIET AGG DEFAULT and
DIET AGG PRIORITY. In the last versions of Diet, we introduced a new aggregator type:
DIET AGG USER. Using this aggregator, the user can define its own aggregation method to
be used by the agents. Figure 7.2 presents the global schedulers classes organization in Diet.
By choosing the DIET AGG USER aggregator, the user commands the GlobalScheduler class
to load an external module containing a UserScheduler class overloading the aggregate method.

aggregate(corba_response_t* aggrResp,
 size_t max_srv,
 const size_t nb_responses,

 const corba_response_t* responses)
...

GlobalScheduler

aggregate(...)
...

RandScheduler

aggregate(...)
...

FastScheduler
aggregate(...)
...

MaxScheduler

aggregate(...)
...

RRScheduler

aggregate(...)
...

MinScheduler

aggregate(...)
...

NWSScheduler

aggregate(...)
...

Scheduler

DIET_AGG_PRIORITY
or

DIET_AGG_DEFAULT

DIET_AGG_DEFAULT
and

no FAST/NWS estimations

DIET_AGG_DEFAULT
and no FAST/NWS
and no timestamp

DIET_AGG_DEFAULT
with

FAST/NWS estimations

DIET_AGG_PRIORITY
with

user-defined metrics

DIET_AGG_USER

Load an external module
to instanciate the scheduler.

aggregate(...)
...

NewScheduler

aggregate(...)
...

UserScheduler

NewScheduler.cc

NewScheduler.hh

NewScheduler.so

Figure 7.2: Schedulers classes organization in Diet.

The user-defined aggregation method just needs to sort the responses from the SeDs. By
locating the aggregation method on the agent, we can use different scheduling strategies which
could not be implemented at the SeD level. These schedulers can also avoid some scheduling
problems while submitting asynchronous jobs (with Round-Robin schedulers for example).

7.5.3 The UserScheduler class

This section presents how the scheduling process is managed in Diet. Most of the developers
can go directly to the next section.

All the schedulers developed by users have to inherit from the UserScheduler class. This
class furnishes the methods to load its subclasses as a Scheduler class for Diet without error.
The only method a user has to overload is the aggregate method. Several useful functions and
macros are defined in the UserScheduler.hh file. The UserScheduler class is defined as follows:

c© INRIA, ENS-Lyon, UCBL Page 61

DIET User’s Manual

class UserScheduler : public GlobalScheduler
{
typedef GlobalScheduler* constructor();
typedef void destructor(UserScheduler*);

public:
static const char* stName;
UserScheduler();
virtual
~UserScheduler();
/** These methods are used to load the user module and to obtain an

instance of the scheduler. */
static UserScheduler* getInstance(const char* moduleName);
static GlobalScheduler * instanciate(const char* moduleName);
void destroy(GlobalScheduler* scheduler);

static
GlobalScheduler* deserialize(const char* serializedScheduler,

const char* moduleName);
static
char* serialize(GlobalScheduler* GS);
/** The method that has to be overloaded to define a new scheduler. */
virtual int
aggregate(corba_response_t* aggrResp,

size_t max_srv,
const size_t nb_responses,
const corba_response_t* responses);

private:
/** The UserScheduler class is a singleton class. Its constructor is
private. */

UserScheduler(const char* moduleName);
static UserScheduler* instance;
void* module;
/** These two methods are obtained from the loaded module. */
constructor* constructs;
destructor* destroys;

};

The aggregate method takes 4 arguments:

• corba response t* aggrResp: the result of the aggregation has to be set in this argument.
aggrResp is an array of corba server estimation t objects.

• size t max srv: this argument gives the maximum number of responses to return in
aggrResp. This value can be ignored without any risk and it is sometimes useful to
ignore it because this parameter is hard-coded in the Diet sources.

• const size t nb responses: this argument gives the number of responses in responses.

c© INRIA, ENS-Lyon, UCBL Page 62

DIET User’s Manual

• const corba response t* responses: the responses are stored in this argument. It is an
array of corba response t which is a CORBA structure containing a CORBA sequence of
corba server estimation t.

The corba response t structure is defined as follows:

struct corba_response_t {
typedef _CORBA_ConstrType_Variable_Var<corba_response_t> _var_type;
CORBA::ULong reqID;
CORBA::Long myID;
SeqServerEstimation_t servers;
void operator>>= (cdrStream &) const;
void operator<<= (cdrStream &);

};

The var type field is an internal CORBA object. The scheduler developer does not have to
use it. The two operators operator>>= and operator>>= can be ignored too.

• CORBA::ULong reqID: this field contains the ID of the request.

• CORBA::Long myID: this field is for Diet internal usage. The developer should ignore
it.

• SeqServerEstimation t servers: this field is a sequence of corba server estimation t. It
is used to store the SeDs references returned by the aggregate method. This is the field
that has to be sorted/filtered.

The corba server estimation t is defined as follows:

struct corba_server_estimation_t {
typedef _CORBA_ConstrType_Variable_Var<corba_server_estimation_t> _var_type;
corba_server_t loc;
corba_estimation_t estim;
void operator>>= (cdrStream &) const;
void operator<<= (cdrStream &);

};

• corba server t loc: this field is used to designate a particular SeD .

• corba estimation t estim: this field contains the estimation vector for the designated SeD .

The corba server t loc structure is defined as follows:

struct corba_server_t {
typedef _CORBA_ConstrType_Variable_Var<corba_server_t> _var_type;
_CORBA_ObjRef_Member< _objref_SeD, SeD_Helper> ior;
CORBA::String_member hostName;
CORBA::Long port;
void operator>>= (cdrStream &) const;
void operator<<= (cdrStream &);

};

c© INRIA, ENS-Lyon, UCBL Page 63

DIET User’s Manual

The two interesting fields are:

• ior which is a CORBA reference to the SeD .

• hostName which is the hostname of the SeD .

The corba estimation t structure is defined as follows:

struct corba_estimation_t {
typedef _CORBA_ConstrType_Variable_Var<corba_estimation_t> _var_type;
SeqEstValue_t estValues;
void operator>>= (cdrStream &) const;
void operator<<= (cdrStream &);

};

SeqEstValue t estValues: This field is a CORBA sequence of estimation values. These estima-
tion values are accessed through the specific functions: diet est get internal and
diet est array get internal defined in scheduler/est internal.hh.
These functions prototypes are:

double diet_est_get_internal(estVectorConst_t ev, int tag, double errVal);
double diet_est_array_get_internal(estVectorConst_t ev, int tag,

int idx, double errVal);

• ev : the estimation vector to evaluate.

• tag : the estimation tag.

• idx : the index of the value when available. For example, to obtain the frequency of the
second processor, we have to set idx to 1.

• errVal : the value returned by the function if an error occurred.

The tag argument may be assigned one of the following values:

- EST TCOMP: The computation time evaluated by FAST (FAST must be activated at
the compilation time).

- EST TIMESINCELASTSOLVE: The time elapsed since this SeD solved a request. This
value is used by the default Round-Robin scheduler when available.

- EST COMMPROXIMITY:

- EST TRANSFEREFFORT:

- EST FREECPU: The free CPU computation power.

- EST FREEMEM: The free memory on the node.

- EST NBCPU: The number of CPU installed on the node.

- EST CPUSPEED1: The frequencies of the CPUs of the node.

1This value is accessed using the diet est array get internal function

c© INRIA, ENS-Lyon, UCBL Page 64

DIET User’s Manual

- EST TOTALMEM: The total memory of the node.

- EST AVGFREEMEM: The average free memory on the node.

- EST AVGFREECPU: The average free CPU computation power on the node.

- EST BOGOMIPS1: The computation power of the nodes CPUs given in bogomips.

- EST TOTALTIME: The total time to execute the request evaluated by FAST. (FAST
must be activated at the compilation time)

- EST TOTALSIZEDISK: The total disk size on the node.

- EST FREESIZEDISK: The available disk space on the node.

- EST DISKACCESREAD: An evaluation of the disk read access performance.

- EST DISKACCESWRITE: An evaluation of the disk write access performance.

- EST USERDEFINED: The first user-defined value.

- EST USERDEFINED + n: The nth user-defined value.

To make the new scheduler class loadable by the GlobalScheduler class, the developer has
to define these two functions outside the class definition:

extern "C" GlobalScheduler* constructor() {
return new MyScheduler();

}
extern "C" void destructor(UserScheduler* scheduler) {
delete scheduler;

}

No C++ implementation of dynamic class loading are defined in the C++ standard. So, the
UserScheduler class has to use C functions to load an external module containing the new
scheduler class. A macro defined in UserScheduler.hh automates this declaration. You can
simply define your class as a scheduler class by calling SCHEDULER CLASS(MyScheduler),
where MyScheduler is the name of the class which inherits of the UserScheduler class.

7.5.4 Easy definition of a new scheduler class

The previous section presented how the scheduler class loader is working. Many things presented
before can be automated. The UserScheduler.hh file defines some useful functions and macros to
make a new scheduler class easily. In this section we will present how to create a new scheduler
class using these functions and macros.

The new class definition

Every scheduler class has to inherit from the UserScheduler class. The only redefinition needed
is the aggregate function. But, the init, serialize and deserialize functions have to be declared
conforming to the C++ standard (but not defined - the inherited functions are sufficient). The
following example shows a simple scheduler class implementation.

c© INRIA, ENS-Lyon, UCBL Page 65

DIET User’s Manual

class MyScheduler : public UserScheduler {
public:
static const char* stName;

MyScheduler();
~MyScheduler();
void init();

static char* serialize(MyScheduler* GS);
static MyScheduler* deserialize(const char* serializedScheduler);
/* Overriden UserScheduler class aggregate method. */
int aggregate(corba_response_t* aggrResp, size_t max_srv,

const size_t nb_responses, const corba_response_t* responses);
};

const char* MyScheduler::stName="UserGS";

MyScheduler::~MyScheduler() {

}

MyScheduler::MyScheduler() {
this->name = this->stName;
this->nameLength = strlen(this->name);

}

int MyScheduler::aggregate(corba_response_t* aggrResp, size_t max_srv,
const size_t nb_responses,
const corba_response_t* responses)

{
...

}

SCHEDULER_CLASS(MyScheduler)

After defining the scheduler class, the developer just has to use the SCHEDULER CLASS
macro to define it as a scheduler class loadable from an agent.

In our example, the call to SCHEDULER CLASS(MyScheduler) – after the class declaration
– makes the class loadable by a Diet agent.

The aggregation method redefinition

The aggregate function has the following prototype:

int MyScheduler::aggregate(corba_response_t* aggrResp, size_t max_srv,
const size_t nb_responses,
const corba_response_t* responses)

{

c© INRIA, ENS-Lyon, UCBL Page 66

DIET User’s Manual

...
}

The aggregate method takes 4 arguments:

• corba response t* aggrResp: the result of the aggregation has to be set in this argument.
aggrResp is an array of corba server estimation t objects.

• size t max srv: this argument gives the maximum number of responses to return in
aggrResp. This value can be ignored without any risk and it is sometimes useful to
ignore it because this parameter is hard-coded in the Diet sources.

• const size t nb responses: this argument gives the number of responses in responses.

• const corba response t* responses: the responses are stored in this argument. It is an
array of corba response t which is a CORBA structure containing a CORBA sequence of
corba server estimation t.

Two functions are defined to simplify the aggregation of the results:

typedef list<corba_server_estimation_t> ServerList;
ServerList CORBA_to_STL(const corba_response_t* responses, int nb_responses);
void STL_to_CORBA(ServerList &servers, corba_response_t* &aggrResp);

The first function converts the received CORBA sequence into a STL list. This function make
the first aggregation of the results by marshalling all the sequences into one.
The second function converts a STL list into a CORBA sequence that can be transfer ed by
Diet.

Then, an aggregate function should start by a call to the CORBA to STL function. The
obtained list can then be sorted/filtered using all the STL list facilities. And to finish, the result
list is computed by the STL to CORBA function.

Several macros are defined to simplify the sort of a STL list:

SORTFUN(name, metric)
SORTFUN_NB(name, metric, nb)
REV_SORTFUN(name, metric)
REV_SORTFUN_NB(name, metric, nb)

These macros allow the developer to automatically define a sort function using a metric value.
For example, to define a sort function using the number of CPUs, the developer just has to
declare:

SORTFUN(compfun, NBCPU)

The SORTFUN NB macro is used for the multi-values metrics (for example the CPU cache for
each CPU). The nb value designates which value has to be used to sort the list. The REV *
functions are used to sort in ascending order.

To see all the metrics available for the SORTFUN macro, see Section 7.5.4.
When a sort function has been defined, the developer can use the SORT macro to sort the

STL list. For example with our compfun function:

SORT(serverList, compfun);

This call sorts the server STL list in decreasing order of the number of CPU.

c© INRIA, ENS-Lyon, UCBL Page 67

DIET User’s Manual

An example of aggregate method definition

We will now present an example of an aggregate method using the functions and macro defined
in the UserScheduler.hh file.

SORTFUN(compCPU, NBCPU)
SORTFUN_NB(compCache, CACHECPU, 0)
REV_SORTFUN(compDiskRead, DISKACCESSREAD)

int MyScheduler::aggregate(corba_response_t* aggrResp, size_t max_srv,
const size_t nb_responses,
const corba_response_t* responses)

{
ServerList candidates = CORBA_to_STL(responses, nb_responses);

SORT(candidates, compCache);
SORT(candidates, compCPU);
SORT(candidates, compDiskRead);

STL_to_CORBA(candidates, aggrResp);

return 0;
}

This function returns a list sorted by increasing disk access for first criteria and by decreasing
CPU number and decreasing CPU cache.

Access the metric values through macros

To simplify the access to some specific values defined inside the SeD , you can use these macros:

- TOTALTIME(SeD)

- COMMTIME(SeD)

- TCOMP(SeD)

- TIMESINCELASTSOLVE(SeD)

- COMMPROXIMITY(SeD)

- TRANSFEREFFORT(SeD)

- FREECPU(SeD)

- FREEMEM(SeD)

- NBCPU(SeD)

- CPUSPEED(SeD, idx)

- TOTALMEM(SeD)

c© INRIA, ENS-Lyon, UCBL Page 68

DIET User’s Manual

- AVGFREEMEM(SeD)

- AVGFREECPU(SeD)

- BOGOMIPS(SeD, idx)

- CACHECPU(SeD, idx)

- TOTALSIZEDISK(SeD)

- FREESIZEDISK(SeD)

- DISKACCESSREAD(SeD)

- DISKACCESSWRITE(SeD)

- USERDEFINED(SeD, idx)

The macros taking two arguments need an index to choose which CPU measurement is needed.
Two extra macros are defined:

• HOSTNAME(server): The hostname of the SeD .

• SED REF(server): A CORBA reference to the SeD .

Here is an example of an aggregate function using these macros:

SORTFUN(compBogo, BOGOMIPS)

int MyScheduler::aggregate(corba_response_t* aggrResp, size_t max_srv,
const size_t nb_responses,
const corba_response_t* responses)

{
ServerList candidates = CORBA_to_STL(responses, nb_responses);
ServerList chosen;
ServerList::iterator it;

for (it=candidates.begin(); it!=candidates.end(); ++it)
if (NBCPU(*it)>=2) chosen.push_back(*it);

SORT(chosen, compBogo);

STL_to_CORBA(chosen, aggrResp);
return 0;

}

This aggregation method first selects only the SeD which have more than 1 CPU and sorts
them according to their number of Bogomips.

c© INRIA, ENS-Lyon, UCBL Page 69

DIET User’s Manual

7.5.5 Creation and usage of a scheduler module

How to compile a scheduler module

The first step is to compile Diet activating the ”USERSCHED” option. With this option,
you’ll find a subdirectory ”scheduler” in the include directory of the Diet installation. This
directory contains all the headers needed to develop the basis class of the scheduler module.

A scheduler module needs to be linked with some libraries to compile:

• omniORB4: The basis omniORB library.

• omnithread: The omniORB thread library.

• Diet libraries:

– CorbaCommon: The basis Diet Corba library.

– UtilsCommon & UtilsNodes: The Diet utilities libraries.

– IDLAgent & IDLCommon: The IDL Diet libraries.

– UtilsVector: The vector library internally used in Diet.

– IDLLA & IDLMA: The agents libraries.

When using g++ as compiler the option ”-shared” has to be used to compile the module under
Linux and ”-dynamiclib” under Mac OS X. The ”-fPIC” has to be used for both operating
systems.

How to configure the agent and the SeD to use a scheduler module

On the agent side, the parameter schedulerModule has to be set to the path of the module
scheduler (in the agent configuration file). This option uses the same syntax than the other
agents and ORB options:

schedulerModule = <path to module>
On the SeD side, the developer has to choose DIET AGG USER as aggregator:

diet_aggregator_desc_t *agg;

diet_service_table_init(1);
profile = diet_profile_desc_alloc("serviceName", ...);
diet_generic_desc_set(diet_param_desc(profile, 0), ...);
...

agg = diet_profile_desc_aggregator(profile);
diet_aggregator_set_type(agg, DIET_AGG_USER);

diet_service_table_add(profile, ...);
...

Usually, the developer should define a performance metric function to communicate with the
agent scheduler. For example, if the scheduler uses the number of waiting jobs in the FIFO
queue, the performance metric could be:

c© INRIA, ENS-Lyon, UCBL Page 70

DIET User’s Manual

void metric(diet_profile_t * profile, estVector_t values) {
diet_estimate_waiting_jobs(values);

}

This metric just fixes the number of waiting jobs in the FIFO queue of the SeD . Now, at the
agent side, the scheduler can use this value to aggregate, sort and filter the SeDs responses.
More details are given in the following section about how to use the SeDs plugin schedulers to
communicate with the agent scheduler module.

7.5.6 SeD plugin schedulers and agent schedulers interactions

Most of the time, a scheduler needs some information from the nodes, to choose where a job
should be executed. By using the plugin scheduler capacities of the SeDs, Diet allows to
communicate some useful information for the scheduling. The developer just has to define a
performance metric function and select DIET AGG USER as aggregator.

Information obtained from the SeD

Your plugin scheduler can access to the information obtained from CoRI by initializing the
estimation vector using the diet estimate cori function on the SeD . For more information about
CoRI, see Section 8.3. Then, on the agents scheduler side, these information are accessed using
one of the previously presented macro. You also can obtain the user-defined information by
using the USERDEFINED(SeD, nb) macro. These information have been defined on the SeDs
metric function using the diet est set(estVector t ev, int nb, double value).

For more information on how to get performance prediction values, please consult Chapter 8.

7.5.7 A complete example of scheduler

This example source code is available on the src/examples/agent scheduler directory. The
scheduler performs a Round-Robin on the SeDs using their hostname to evaluate the number
of executions. For example, if the agent is connected to three SeDs, with two launched on the
same machine, the number of jobs executed on the machine with two SeDs will be at most one
more than the number of executed jobs on the other machine.

Hostname based Round-Robin plugin scheduler.

#include "GlobalSchedulers.hh"
#include "UserScheduler.hh"
#include "est_internal.hh"
#include <map>

std::map<std::string, unsigned int> hostCounter;

class HostnameRR : public UserScheduler {
public:
static const char* stName;

HostnameRR();

c© INRIA, ENS-Lyon, UCBL Page 71

DIET User’s Manual

~HostnameRR();
void init();

static char* serialize(HostnameRR* GS);
static HostnameRR* deserialize(const char* serializedScheduler);
/* Overriden aggregate method to schedule jobs with the SRA policy. */
int aggregate(corba_response_t* aggrResp, size_t max_srv,

const size_t nb_responses, const corba_response_t* responses);
};

using namespace std;

const char* HostnameRR::stName="UserGS";

HostnameRR::~HostnameRR() {

}

HostnameRR::HostnameRR() {
this->name = this->stName;
this->nameLength = strlen(this->name);

}

int HostnameRR::aggregate(corba_response_t* aggrResp, size_t max_srv,
const size_t nb_responses,
const corba_response_t* responses)

{
ServerList::iterator itSeD;
unsigned int nbUsage=0;
corba_server_estimation_t selected;

cout << "******************** HostnameRR ********************" << endl;
ServerList candidates = CORBA_to_STL(responses, nb_responses);

for (itSeD=candidates.begin(); itSeD!=candidates.end(); ++itSeD)
// We select the SeD by its host usage.
if (hostCounter[HOSTNAME(*itSeD)]<=nbUsage)

selected=*itSeD<;

aggrResp->servers.length(1);
aggrResp->servers[0]=selected;

return 0;
}

SCHEDULER_CLASS(HostnameRR)

c© INRIA, ENS-Lyon, UCBL Page 72

DIET User’s Manual

7.6 Future Work

We have two primary efforts planned for extensions to the plugin scheduler.

• Additional information services: We plan to add functionalities to enable the appli-
cation developer to access and use data concerning the internal state of the Diet server
(e.g., the current length of request queues). As other performance measurement and eval-
uation tools are developed both within and external to the Diet project (see Chapter 8),
some tools are already available to enable such information to be incorporated in the
context of the plugin scheduler.

• Enhanced aggregation methods: The plugin scheduler implemented in the current
release enables the Diet system to account for user-defined factors in the server selection
process. However, the priority aggregation method is fairly rudimentary and lacks the
power to express many imaginable comparison mechanisms. We plan to investigate meth-
ods to embed code into Diet agents (e.g., a simple expression interpreter) in a manner
that is secure and that preserves performance.

c© INRIA, ENS-Lyon, UCBL Page 73

DIET User’s Manual

c© INRIA, ENS-Lyon, UCBL Page 74

DIET User’s Manual

Chapter 8

Performance prediction

8.1 Introduction

As we have seen in Chapter 7 the agent needs some information from the SeD to make an
optimal scheduling. This information is a performance prediction of the SeD . The agent will
ask the SeD to fill the data structure defined in Chapter 7 with the information it needs. The
SeD returns the information and the agent can make the scheduling.
Performance prediction can be based on hardware information, the charge of the SeD (the
charge of the CPU, of the memory,...) or an advanced performance prediction can combine a
set of basic performance predictions. It is possible to use FAST in the plug-in scheduler to
obtain advanced performance predictions. A second possibility to get performance prediction,
called CoRI, is now available. The aim of CoRI is to simplify the access to the information.
Inside of CoRI, FAST can be called, but it is only one source of information among other sources
(for example Cori-Easy).
FAST is described in Section 8.2, CoRI is described in Section 8.3.
The default compiling is without FAST and without CoRI. Note that if you compile with batch
enabled, then CoRI is also enabled. In the table 8.1 you can see which information is available
with each compiling option.

8.2 FAST: Fast Agent’s System Timer

This section deals with FAST, a performance prediction module that can be used by Diet. It
is non-mandatory, but can provide SeDs with improved performance prediction capability.
You can use FAST in stand-alone mode without having compiled with CoRI option.

FAST [21] is a tool for dynamic performance forecasting in a Grid environment. As shown in
Figure 8.1, FAST is composed of several layers and relies on a variety of low-level software. First,
it uses the Network Weather Service (NWS) [26], a distributed system that periodically monitors
and dynamically forecasts the performances of various network and computational resources.
The resource availabilities acquisition module of FAST uses and enhances NWS. Indeed, if
there is no direct NWS monitoring between two machines, FAST automatically searches for the
shortest path between them in the graph of monitored links. It estimates the bandwidth as the
minimum of those in the path and the latency as the sum of those measured. This allows the
availability of more predictions when Diet is deployed over a hierarchical network.

c© INRIA, ENS-Lyon, UCBL Page 75

DIET User’s Manual

-DDIET USE CORI:

BOOL=OFF BOOL=ON

Information tag -DDIET USE FAST:

starts with EST BOOL=OFF BOOL=ON BOOL=OFF BOOL=ON

TCOMP x

FREECPU x x x

FREEMEM x x x

NBCPU x x x

CPUSPEED x x

TOTALMEM x x

AVGFREECPU x x

BOGOMIPS x x

CACHECPU x x

TOTALSIZEDISK x x

FREESIZEDISK x x

DISKACCESREAD x x

DISKACCESWRITE x x

ALLINFOS x x

-DDIET USE BATCH=ON

PARAL NB FREE RESOURCES IN DEFAULT QUEUE x x

Table 8.1: Dependencies of the available information on the compiling options

In addition to system availabilities, FAST can also forecast the time and space needs of
certain computational routines as a function of the problem parameters and the machines where
the computations would take place. FAST is particularly suited to numerical algebra routines
whose performance is not data-dependent and where a clear relationship exists between problem
size and performance. As a basis for predictions, FAST benchmarks the routines at installation
time on each machine for a representative set of parameters. After polynomial data fitting,
the results are stored in an LDAP tree. The user API of FAST is composed of a small set
of functions that combine resource availabilities and routine needs from low-level software to
produce ready-to-use values. These results can be combined into analytical models by the
parallel extension [3] to forecast execution times of parallel routines.

FAST clients can access information like the time needed to move a given amount of data
between two FAST-enabled machines SeDs, the time to solve a problem with a given set of
computational resources, or the combination of these two quantities.

For more details about FAST, please refer to the FAST webpage 1.

8.2.1 Building FAST

The first step is to download and install FAST and its dependent programs. FAST depends on:

• NWS the Network Weather Service

• GSL the GNU Scientific Library

• OpenLDAP an implementation of the Lightweight Directory Access Protocol

1http://www.loria.fr/~quinson/fast.html

c© INRIA, ENS-Lyon, UCBL Page 76

http://www.loria.fr/~quinson/fast.html

DIET User’s Manual

CPU load

Memory load

Protocol

Status (up/down)

Batch status

Batch System

Computations

Network

Latency

Bandwidth

Topology

Available memory

CPU speed

Computer Knows about

Knows about

Space needed

Time needed NWS

Client Application

FAST

Parallel
Extension

Fast API

Routine System

AvailabilitiesNeeds

LDAP

Low Level Software

32

1 4

Feasibility

Computer

Network

Latency

Bandwidth

Figure 8.1: FAST overview

Of course, you also need to install the FAST SDK itself. It is important to basically understand
how FAST works, and the role of its dependencies, to deactivate the ones that are not needed
by the user.

8.2.2 Using FAST in the plug-in scheduler

FAST- and NWS-based performance estimation metrics are stored in an estimation metric
vector (see Chapter 7 for more details) by calling

int diet estimate fast(estVector t ev,
const diet profile t* const profilePtr);

with an appropriate value for ev and the profilePtr corresponding to the current Diet request.
Attention: this option it not available when compiling with the option -DDIET USE CORI

set to OFF, To access to this information use CoRI. (see Section 8.3).

8.2.3 Building a server application with FAST

Since performance prediction is performed only in the Diet SeD , no modification is needed to
the client code.

On the other hand, at the SeD-level the code must sometimes be adapted. In the next
subsection we explain convertors and show how they can be used in an example.

Using convertors

The service profiles offered by Diet are sometimes not understandable by the service imple-
mentations. To solve this problem, a convertor processes each profile before it is passed to the
implementation. This is mainly used to hide the implementation specific profile of a service
from the user. It allows different servers to declare the same service with the same profile
using different implementations of the service. As FAST relies on the path of the service, the

c© INRIA, ENS-Lyon, UCBL Page 77

DIET User’s Manual

convertor can also change the path of the declared profile to enable a correct evaluation of the
incoming requests by FAST. If no convertor is passed when declaring a new service, a default
convertor is assigned to it that does not change its profile nor its path.

To translate a profile, the convertor defines a new destination profile with a new path. It
then chooses for each argument of the new profile a predefined function to assign this argument
from the source profile. This allows the following operations:

Permutation of arguments. This is done implicitly by specifying which argument in the
source profile corresponds to which argument in the destination profile.

Copy of arguments. Arguments can be simply used by applying the DIET CVT IDENTITY
function. If the same source argument corresponds to two destination arguments it is
automatically copied.

Creation of new arguments. New arguments can either contain static values or the proper-
ties of existing arguments. To create a new static value, the index for the source argument
must be invalid (e.g., -1) and the arg parameter must be set to the static argument. To
extract a property of an existing argument, other functions than DIET CVT IDENTITY must
be applied. The result of this function will then be used as the value for the destination
argument. Corresponding to the Diet datatypes, the following functions exist:

• DIET CVT IDENTITY Copy the argument

• DIET CVT VECT SIZE Get the size of a vector

• DIET CVT MAT NB ROW Get the number of rows of a matrix

• DIET CVT MAT NB COL Get the number of columns of a matrix

• DIET CVT MAT ORDER Get the order of a matrix

• DIET CVT STR LEN Get the length of the string

• DIET CVT FILE SIZE Get the size of the file

Only the DIET CVT IDENTITY function can be applied to any argument; all other functions
only operate on one type of argument.

8.2.4 Example with convertors

A short example is available below:

/**
* Example 1
* Assume we declared a profile (INOUT MATRIX) with the path ’solve_T’.
* This profile will be called by the client. Our implementation expects
* a profile (IN INT, IN INT, INOUT MATRIX). This profile is known to
* FAST with the path ’T_solve’.
* We will write a convertor that changes the name and extracts the
* matrix’s dimensions.
*/

// declare a new convertor with 2 IN, 1 INOUT and 0 OUT arguments

c© INRIA, ENS-Lyon, UCBL Page 78

DIET User’s Manual

cvt = diet_convertor_alloc("T_solve", 0, 1, 1);

// apply the function DIET_CVT_MAT_NB_ROW to determine the
// 0th argument of the converted profile. The function’s
// argument is the 0th argument of the source profile. As it
// is an IN argument, the last parameter is not important.
diet_arg_cvt_set(&(cvt->arg_convs[0]), DIET_CVT_MAT_NB_ROW, 0, NULL, 0);

// apply the function DIET_CVT_MAT_NB_COL to determine the
// 1st argument of the converted profile. The function’s
// argument is the 0th argument of the source profile. As it
// is a IN argument, the last parameter is not important.
diet_arg_cvt_set(&(cvt->arg_convs[1]), DIET_CVT_MAT_NB_COL, 0, NULL, 0);

// apply the function DIET_CVT_IDENTITY to determine the
// 2nd argument of the converted profile. The function’s
// argument is the 0th argument of the source profile and
// it will be written back to the 0th argument of the source
// profile when the call has finished.
diet_arg-cvt_set(&(cvt->arg_convs[2]), DIET_CVT_IDENTITY, 0, NULL, 0);

// NOTE: The last line could also be written as:
//diet_arg_cvt_short_set(&(cvt->arg_convs[2]), 0, NULL);

// add the service using our convertor
diet_service_table_add(profile, cvt, solve_T);

// free our convertor
diet_convertor_free(cvt);

More examples on how to create and use convertors are given in the files
examples/dmat manips/server.c and examples/BLAS/server.c.

8.3 CoRI: Collectors of Ressource Information

CoRI manages the access to different tools for collecting information about the SeD . At
present, three tools, called collectors, are implemented: FAST, CoRI Easy and CoRI
batch. The user can choose which collector will provide the information.

CoRI BatchFAST CoRI Easy

CoRI Manager

Figure 8.2: CoRI overview

c© INRIA, ENS-Lyon, UCBL Page 79

DIET User’s Manual

8.3.1 Functions and tags

The tags for information are of type integer and defined in the table 7.1. The second
type of tag diet est collect tag t is used to specify which collector will provide the in-
formation: EST COLL FAST, EST COLL EASY or EST COLL BATCH. Three different functions
are provided with CoRI.

The first function initializes a specific collector.

int
diet_estimate_cori_add_collector(diet_est_collect_tag_t collector_type,

void * data);

The second parameter is reserved for initializing collectors which need additional infor-
mation on initialization. For example, the BATCH collector needs for its initialization
the profile of the service to be solved.

After the initialization, accessing to the information is done by specifying the collector
and the information type.

int
diet_estimate_cori(estVector_t ev,

int info_type,
diet_est_collect_tag_t collector_type,
void* data);

Cori-Easy doesn’t need more information, but FAST and BATCH need a profile of
type “diet profile t”. The last parameter is reserved for it.
The last function is used to test Cori-Easy. It prints all information Cori-Easy finds to
the standard output.

void
diet_estimate_coriEasy_print();

A result could be the following output:

start printing CoRI values..
cpu average load : 0.56
CPU 0 cache : 1024 Kb
number of processors : 1
CPU 0 Bogomips : 5554.17
diskspeed in reading : 9.66665 Mbyte/s
diskspeed in writing : 3.38776 Mbyte/s
total disk size : 7875.51 Mb
available disk size :373.727 Mb
total memory : 1011.86 Mb
available memory : 22.5195 Mb
end printing CoRI values

8.3.2 FAST

FAST as collector of CoRI gives the user the same information as without CoRI, see
table 8.1 to know which information FAST can provide.

c© INRIA, ENS-Lyon, UCBL Page 80

DIET User’s Manual

8.3.3 CoRI-Easy

The CoRI-Easy collector makes some basic system calls to gather the information. CoRI-
Easy is only available if Diet is compiled with the option -DDIET USE CORI set to ON.
The last collumn of the table 8.1 corresponds to the CoRI-Easy’s functionality.

There is an example on how to use CoRI-Easy in the <diet_src>/src/examples/cori/
directory.

8.3.4 CoRI batch

With the help of the CoRI batch collector, a SeD programmer can use some information
obtained from the batch system. It is only available if Diet is compiled with the option
-DDIET USE BATCH set to ON. For the moment, only simple information can be accessed
but functionalities will be improved as well as the number of recognizable batch systems.

There is an example on how to use CoRI batch in the
<diet_src>/src/examples/Batch/Cori_cycle_stealing/ directory.

8.4 Future Work

There are two primary efforts for the CoRI manager:

• Improving CoRI-Easy: Some evaluation functions are very basic and should be
revised to increase their response time speed and the accuracy of the information.
There is a need for other information (i.e., information about the network). Every
operating systems provide other basic functions to get the information. CoRI-Easy
doesn’t know all functions. Use the diet estimate cori print() function to test
what CoRI-Easy can find on your SeD . Send us a mail if not all functions are
working properly.

• Improving CoRI batch: add new functionalities to access dynamic information
as well as some kind of performance predictions for more batch systems.

• New collectors: Integrating other external tools like Ganglia [22] or Nagios [14]
to the CoRI Manager can provide more useful and exact information.

c© INRIA, ENS-Lyon, UCBL Page 81

DIET User’s Manual

c© INRIA, ENS-Lyon, UCBL Page 82

DIET User’s Manual

Chapter 9

Deploying a Diet platform

Deployment is the process of launching a Diet platform including agents and servers.
For Diet, this process includes writing configuration files for each element and launching
the elements in the correct hierarchical order. There are three primary ways to deploy
Diet.

Launching by hand is a reasonable way to deploy Diet for small-scale testing and
verification. This chapter explains the necessary services, how to write Diet configuration
files, and in what order Diet elements should be launched. See Section 9.1 for details.

GoDiet is a Java-based tool for automatic Diet deployment that manages con-
figuration file creation, staging of files, launch of elements, monitoring and reporting on
launch success, and process cleanup when the Diet deployment is no longer needed. See
Section 9.2 for details.

Writing your own scripts is a surprisingly popular approach. This approach often
looks easy initially, but can sometimes take much, much longer than you predict as there
are many complexities to manage. Learn GoDiet– it will save you time!

9.1 Deployment basics

9.1.1 Using CORBA

CORBA is used for all communications in Diet and for communications between Diet
and accessory services such as LogService, VizDIET, and GoDiet. This section gives
basic information on how to use Diet with CORBA. Please refer to the documentation
of your ORB if you need more details.

The naming service

Diet uses a standard CORBA naming service for translating an user-friendly string-
based name for an object into an Interoperable Object Reference (IOR) that is a globally
unique identifier incorporating the host and port where the object can be contacted. The
naming service in omniORB is called omniNames and it must be launched before any

c© INRIA, ENS-Lyon, UCBL Page 83

DIET User’s Manual

other Diet entities. Diet entities can then locate each other using only a string-based
name and the <host:port> of the name server.

To launch the omniORB name server, first check that the path of the omniORB
libraries is in your environment variable LD LIBRARY PATH, then specify the log directory,
through the environment variable OMNINAMES LOGDIR (or, with omniORB 4, at compile
time, through the --with-omniNames-logdir option of the omniORB configure script).
If there are no log files in this directory, omniNames needs to be intialized. It can be
launched as follows:

~ > omniNames -start

Tue Jun 28 15:56:50 2005:

Starting omniNames for the first time.
Wrote initial log file.
Read log file successfully.
Root context is IOR:010000002b00000049444c3a6f6d672e6f72672f436f734e616d696e672f4e61
6d696e67436f6e746578744578743a312e300000010000000000000060000000010102000d0000003134
302e37372e31332e34390000f90a0b0000004e616d655365727669636500020000000000000008000000
0100000000545441010000001c0000000100000001000100010000000100010509010100010000000901
0100
Checkpointing Phase 1: Prepare.
Checkpointing Phase 2: Commit.
Checkpointing completed.

This sets an omniORB name server which listens for client connections on the default
port 2809. If omniNames has already been launched once, ie there are already some log
files in the log directory, using the -start option causes an error. The port is actually
read from old log files:

~ > omniNames -start

Tue Jun 28 15:57:39 2005:

Error: log file ’/tmp/omninames-toto.log’ exists. Can’t use -start option.

~ > omniNames

Tue Jun 28 15:58:08 2005:

Read log file successfully.
Root context is IOR:010000002b00000049444c3a6f6d672e6f72672f436f734e616d696e672f4e61
6d696e67436f6e746578744578743a312e300000010000000000000060000000010102000d0000003134
302e37372e31332e34390000f90a0b0000004e616d655365727669636500020000000000000008000000
0100000000545441010000001c0000000100000001000100010000000100010509010100010000000901
Checkpointing Phase 1: Prepare.
Checkpointing Phase 2: Commit.
Checkpointing completed.

CORBA usage for Diet

Every Diet entity must connect to the CORBA name server: it is the way services dis-
cover each others. The reference to the omniORB name server is written in a CORBA

c© INRIA, ENS-Lyon, UCBL Page 84

DIET User’s Manual

configuration file, whose path is given to omniORB through the environment variable
OMNIORB CONFIG (or, with omniORB 4, at compile time, through the configure script
option: --with-omniORB-config). An example of such a configuration file is given in the
directory src/examples/cfgs of the Diet source tree and installed in <install dir>/etc.
The lines concerning the name server in the omniORB configuration file are built as fol-
lows:

omniORB 3:

ORBInitialHost <name server hostname>
ORBInitialPort <name server port>

omniORB 4:

InitRef = NameService=corbaname::<name server hostname>:<name server
port>

The name server port is the port given as an argument to the -start option of omniNames.
You also need to update your LD LIBRARY PATH to point to <install dir>/lib. So your
LD LIBRARY PATH environment variable should now be :
LD LIBRARY PATH=<omniORB home>/lib:<install dir>/lib.

NB1: In order to avoid name collision, every agent must be assigned a different name
in the name server; since they don’t have any children, SeDs do not need names assigned
to them and they don’t register with the name server.

NB2: Each Diet hierarchy can use a different name server, or multiple hierarchies
can share one name server (assuming all agents are assigned unique names). In a multi-
MA environment, in order for multiple hierarchies to be able to cooperate it is necessary
that they all share the same name server.

9.1.2 Diet configuration file

A configuration file is needed to launch a Diet entity. Some fully commented examples
of such configuration files are given in the directory src/examples/cfgs of the Diet
source files and installed in <install dir>/etc 1. Please note that:

• comments start with ’#’ and finish at the end of the current line,

• meaningful lines have the format: keyword = value, following the format of con-
figuration files for omniORB 4,

• for options that accept 0 or 1, 0 means no and 1 means yes, and

• keywords are case sensitive.

1if there isn’t <install dir>/etc directory, please configure Diet with --enable-examples and/or
run make install command in src/examples directory.

c© INRIA, ENS-Lyon, UCBL Page 85

DIET User’s Manual

Tracing API

traceLevel default = 1

This option controls debugging trace output. The following levels are defined:

level = 0 Print only errors
level < 5 Print errors and messages for the main steps (such as “Got a request”) - default
level < 10 Print errors and messages for all steps
level = 10 Print errors, all steps, and some important structures (such as the list of offered

services)
level > 10 Print all Diet messages AND omniORB messages corresponding to an omniORB

traceLevel of (level - 10)

Client parameters

MAName default = none
This is a mandatory parameter that specifies the name of the Master Agent to connect
to. The MA must have registered with this same name to the CORBA name server.

Agent parameters

agentType default = none
As Diet offers only one executable for both types of agent, it is mandatory to specify
which kind of agent must be launched. Two values are available: DIET MASTER AGENT

and DIET LOCAL AGENT. They have aliases, respectively MA and LA.

name default = none
This is a mandatory parameter that specifies the name with which the agent will register
to the CORBA name server.

LA and SeD parameters

parentName default = none
This is a mandatory parameter for Local Agents and SeDs, but not for the MA. It
indicates the name of the parent (an LA or the MA) to register to.

Endpoint Options

dietPort default = none

This option specifies the listening port of an agent or SeD . If not specified, the ORB gets
a port from the system. This option is very useful when a machine is behind a firewall.
By default this option is disabled.

dietHostname default = none

The IP address or hostname at which the entitity can be contacted from other machines. If
not specified, let the ORB get the hostname from the system; by default, omniORB takes
the first registered network interface, which is not always accessible from the exterior.

c© INRIA, ENS-Lyon, UCBL Page 86

DIET User’s Manual

This option is very useful in a variety of complicated networking environments such as
when multiple interfaces exist or when there is no DNS.

LogService options

useLogService default = 0

This activates the connection to LogService. If this option is set to 1 then the LogCentral
must be started before any Diet entities. Agents and SeDs will connect to LogCentral to
deliver their monitoring information and they will refuse to start if they cannot establish
this connection. See Section 10.1 to learn more about LogService.

lsOutbuffersize default = 0

lsFlushinterval default = 10000

Diet’s LogService connection can buffer outgoing messages and send them asynchronously.
This can decrease the network load when several messages are sent at one time. It can
also be used to decouple the generation and the transfer of messages. The buffer is
specified by it’s size (lsOutbuffersize, number of messages) and the time it is regu-
larly flushed (lsFlushinterval, nanoseconds). It is recommended not to change the
default parameters if you do not encounter problems. The buffer options will be ignored
if useLogService is set to 0.

FAST options

Currently, FAST is only used at the SeD-level, so these parameters will only have an
effect in SeD configuration files.

fastUse default = 0

This option activates the requests to FAST. It is ignored if Diet was compiled without
FAST, and defaults to 0 otherwise.

The following options are ignored if Diet was compiled without FAST or if fastUse
is set to 0.

LDAP options

ldapUse default = 0

This option activates the use of LDAP in FAST requests. Only SeDs need to connect to
the LDAP so the option is ignored at the agent-level.

The following two options are ignored if ldapUse is set to 0.

ldapBase default = none
Specify the host:port address of the LDAP base where FAST gets the results of its
benchmarks.

c© INRIA, ENS-Lyon, UCBL Page 87

DIET User’s Manual

ldapMask default = none
Specify the mask used for requests to the LDAP base. It must match the one given in
the .ldif file of the server that was added to the base.
NWS options
nwsUse default = 0

This option activates the use of NWS in FAST requests. If 0, FAST will use an internal
sensor for the performance of the machine, but will not be able to evaluate communica-
tion times.

The following option is ignored if nwsUse is set to 0.

nwsNameserver default = none
Specify the host:port address of the NWS name server.

Multi-MA options
To federate resources, each MA tries periodically to contact other MAs. These options

define how the MA connects to the others.

neighbours default = empty list {}
List of known MAs separated by commas. The MA will try to connect itself to the
MAs named in this list. Each MA is described by the name of its host followed by its
bind service port number (see bindServicePort). For example host1.domain.com:500,
host4.domain.com:500, host.domainB.net:2001 is a valid three MAs list. By default,
an empty list is set into neighbours.

maximumNeighbours default = 10

This is the maximum number of other MAs that can be connected to the current MA.
If another MA wants to connect and the current number of connected MAs is equal to
maximumNeighbours, the request is rejected.

minimumNeighbours default = 2

This is the minimum number of MAs that should be connected to the MA. If the current
number of connected MA is lower than minimumNeighbours, the MA tries to connect to
other MAs.

updateLinkPeriod default = 300

The MA checks if the connected MAs are alive every updateLinkPeriod seconds.

bindServicePort default = none

The MAs need to use a specific port to be able to federate themselves. This port is only
used for initializing connections between MAs. If this parameter is not set, the MA will
not accept incoming connection.

You can find the full set of Diet configuration file options in the chapter A.

c© INRIA, ENS-Lyon, UCBL Page 88

DIET User’s Manual

9.1.3 Example

As shown in Section 1.3, the hierarchy is built from top to bottom: children register to
their parent.

Here is an example of a complete platform deployment. Let us assume that:

• Diet was compiled with FAST on all machines used,

• the LDAP server is launched on the machine ldaphost and listens on the port 9000,

• the NWS name server is launched on the machine nwshost and listens on the port
9001,

• the NWS forecaster is launched on the machine nwshost and listens on the port
9002,

• the NWS sensors are launched on every machine we use.

Launching the MA

For such a platform, the MA configuration file could be:

file MA example.cfg, configuration file for an MA
agentType = DIET MASTER AGENT
name = MA example
#traceLevel = 1 # default
#dietPort = <port> # not needed
#dietHostname = <hostname|IP> # not needed
fastUse = 1
#ldapUse = 0 # default
nwsUse = 1
nwsNameserver = nwshost:9001
#useLogService = 0 # default
#lsOutbuffersize = 0 # default
#lsFlushinterval = 10000 # default

This configuration file is the only argument to the executable dietAgent, which is
installed in <install dir>/bin. Provided <install dir>/bin is in your PATH envi-
ronment variable, run

~ > dietAgent MA_example.cfg

Master Agent MA_example started.

Launching an LA

For such a platform, an LA configuration file could be:

c© INRIA, ENS-Lyon, UCBL Page 89

DIET User’s Manual

file LA example.cfg, configuration file for an LA
agentType = DIET LOCAL AGENT
name = LA example
parentName = MA example
#traceLevel = 1 # default
#dietPort = <port> # not needed
#dietHostname = <hostname|IP> # not needed
fastUse = 1
#ldapUse = 0 # default
nwsUse = 1
nwsNameserver = nwshost:9001
#useLogService = 0 # default
#lsOutbuffersize = 0 # default
#lsFlushinterval = 10000 # default

This configuration file is the only argument to the executable dietAgent, which is
installed in <install dir>/bin. This LA will register as a child of MA example. Run

~ > dietAgent LA_example.cfg

Local Agent LA_example started.

Launching a server

For such a platform, a SeD configuration file could be:

file SeD example.cfg, configuration file for a SeD

parentName = LA example
#traceLevel = 1 # default
#dietPort = <port> # not needed
#dietHostname = <hostname|IP> # not needed
fastUse = 1
ldapUse = 1
ldapBase = ldaphost:9000
ldapMask = dc=LIP,dc=ens-lyon,dc=fr
nwsUse = 1
nwsNameserver = nwshost:9001
#useLogService = 0 # default
#lsOutbuffersize = 0 # default
#lsFlushinterval = 10000 # default

The SeD will register as a child of LA example. Run the executable that you linked
with the Diet SeD library, and do not forget that the first argument of the method call
diet SeD must be the path of the configuration file above.

Launching a client

Our client must connect to the MA example:

file client.cfg, configuration file for a client
MAName = MA example
#traceLevel = 1 # default

c© INRIA, ENS-Lyon, UCBL Page 90

DIET User’s Manual

Run the executable that you linked with the Diet client library, and do not forget
that the first argument of the method call diet initialize must be the path of the
configuration file above.

9.2 GoDiet

GoDiet is a Java-based tool for automatic Diet deployment that manages configuration
file creation, staging of files, launch of elements, monitoring and reporting on launch
success, and process cleanup when the Diet deployment is no longer needed [4]. The
user of GoDiet describes the desired deployment in an XML file including all needed
external services (e.g., omniNames and LogService); the desired hierarchical organization
of agents and servers is expressed directly using the hierarchical organization of XML. The
user also defines all machines available for the deployment, disk scratch space available
at each site for storage of configuration files, and which machines share the same disk to
avoid unecessary copies. GoDiet is extremely useful for large deployments (e.g., more
than 5 elements) and for experiments where one needs to deploy and shut-down multiple
deployments to test different configurations. Note that debugging deployment problems
when using GoDiet can be difficult, especially if you don’t fully understand the role of
each element you are launching. If you have trouble identifying the problem, read the
rest of this chapter in full and try launching key elements of your deployment by hand.
GoDiet is available for download on the web2.

An example input XML file is shown in Figure 9.1; see [4] for a full explanation of
all entries in the XML. You can also have a look at the fully commented XML example
file provided in the GoDiet distribution under examples/commented.xml, each option is
explained. To launch GoDiet for the simple example XML file provided in the GoDiet
distribution under examples/example1.xml, run:

~ > java -jar GoDIET-x.x.x.jar example1.xml

XmlScanner constructor

Parsing xml file: example1.xml

GoDIET>

GoDiet reads the XML file and then enters an interactive console mode. In this
mode you have a number of options:

GoDIET> help

The following commands are available:

launch: launch entire DIET platform

launch_check: launch entire DIET platform then check its status

relaunch: kill the current platform and launch entire DIET platform once again

stop: kill entire DIET platform using kill pid

status: print run status of each DIET component

2http://graal.ens-lyon.fr/DIET/godiet.html

c© INRIA, ENS-Lyon, UCBL Page 91

DIET User’s Manual

history: print history of commands executed

help: print this message

check: check the platform status

stop_check: stop the platform status then check its status before exit

exit: exit GoDIET, do not change running platform.

We will now launch this example; note that this example is intentionally very simple
with all components running locally to provide initial familiarity with the GoDiet run
procedure. Deployment with GoDiet is especially useful when launching components
on multiple remote machines.

GoDIET> launch

* Launching DIET platform at Wed Jul 13 09:57:03 CEST 2005

Local scratch directory ready:

/home/hdail/tmp/scratch_godiet

** Launching element OmniNames on localHost

Writing config file omniORB4.cfg

Staging file omniORB4.cfg to localDisk

Executing element OmniNames on resource localHost

Waiting for 3 seconds after service launch

** Launching element MA_0 on localHost

Writing config file MA_0.cfg

Staging file MA_0.cfg to localDisk

Executing element MA_0 on resource localHost

Waiting for 2 seconds after launch without log service feedback

** Launching element LA_0 on localHost

Writing config file LA_0.cfg

Staging file LA_0.cfg to localDisk

Executing element LA_0 on resource localHost

Waiting for 2 seconds after launch without log service feedback

** Launching element SeD_0 on localHost

Writing config file SeD_0.cfg

Staging file SeD_0.cfg to localDisk

Executing element SeD_0 on resource localHost

Waiting for 2 seconds after launch without log service feedback

* DIET launch done at Wed Jul 13 09:57:14 CEST 2005 [time= 11.0 sec]

The status command will print out the run-time status of all launched components.
The LaunchState reports whether GoDiet observed any errors during the launch itself.
When the user requests the launch of LogService in the input XML file, GoDiet can

c© INRIA, ENS-Lyon, UCBL Page 92

DIET User’s Manual

connect to the LogService after launching it to obtain the state of launched components;
when available, this state is reported in the LogState column.

GoDIET> status

Status Element LaunchState LogState Resource PID

OmniNames running none localHost 1232

MA_0 running none localHost 1262

LA_0 running none localHost 1296

SeD_0 running none localHost 1329

Finally, when you are done with your Diet deployment you should always run stop.
To clean-up each element, GoDiet runs a kill operation on the appropriate host using
the stored PID of that element.

GoDIET> stop

* Stopping DIET platform at Wed Jul 13 10:05:42 CEST 2005

Trying to stop element SeD_0

Trying to stop element LA_0

Trying to stop element MA_0

Trying to stop element OmniNames

* DIET platform stopped at Wed Jul 13 10:05:43 CEST 2005[time= 0.0 sec]

* Exiting GoDIET. Bye.

On of the main problems when writing a GoDiet XML input file is to be compliant
with the dtd. A good tool to validate a GoDiet file before using GoDiet is xmllint.
This tool exist on most platforms and with the following command:

$ xmllint your_xml_file --dtdvalid path_to_GoDIET.dtd -noout

you will see the different lines where there is problem and a clear description of why your
XML file is not compliant.

c© INRIA, ENS-Lyon, UCBL Page 93

DIET User’s Manual

<?xml version=” 1.0 ” standalone=”no”?>
< !DOCTYPE d i e t c o n f i g u r a t i o n SYSTEM ” . . / GoDIET. dtd”>
<d i e t c o n f i g u r a t i o n>

<goDiet debug=”2” saveStdOut=” yes ” saveStdErr=” yes ” useUniqueDirs=”no” log=”no”/>
<r e s ou r c e s>

<s c ra t ch d i r=”/tmp/GoDIET scratch”/>
<s to rage l a b e l=” disk−1”>

<s c ra t ch d i r=”/tmp/ run sc ra t ch ”/>
<scp s e r v e r=” re s1 ” l o g i n=”doe”/>

</ s to rage>
<s to rage l a b e l=” disk−2”>

<s c ra t ch d i r=”/tmp/ run sc ra t ch ”/>
<scp s e r v e r=” re s2 ” l o g i n=” foo ”/>

</ s to rage>
<s to rage l a b e l=” disk−3”>

<s c ra t ch d i r=”/tmp/ run sc ra t ch ”/>
<scp s e r v e r=” re s3 ” l o g i n=”bar”/>

</ s to rage>
<compute l a b e l=” re s1 ” d i sk=” disk−1”>

<ssh s e rv e r=” re s1 ” l o g i n=”doe”/>
<env>

<var name=”PATH” value=””/>
<var name=”LD LIBRARY PATH” value=””/>

</env>
</compute>
<compute l a b e l=” re s2 ” d i sk=” disk−2”>

<ssh s e rv e r=” re s2 ” l o g i n=” foo ”/>
<env>

<var name=”PATH” value=””/>
<var name=”LD LIBRARY PATH” value=””/>

</env>
</compute>

<c l u s t e r l a b e l=” re s3 ” d i sk=” disk−3” l o g i n=”bar”>
<env>

<var name=”PATH” value=””/>
<var name=”LD LIBRARY PATH” value=””/>

</env>
<node l a b e l=” r e s 3 ho s t 1 ”>

<ssh s e rv e r=” host1 . r e s3 . f r ”/>
<end point contact=” 192 . 5 . 8 0 . 103 ”/>

</node>
<node l a b e l=” r e s 3 ho s t 2 ”>

<ssh s e rv e r=” host2 . r e s3 . f r ”/>
</node>

</ c l u s t e r>
</ r e s ou r c e s>
<d i e t s e r v i c e s>

<omni names contact=” re s1 IP ” port=”2121”>
<c on f i g s e r v e r=” re s1 ” remote binary=”omniNames”/>

</omni names>
</ d i e t s e r v i c e s>
<d i e t h i e r a r c h y>

<master agent l a b e l=”MA”>
<c on f i g s e r v e r=” re s1 ” remote binary=” dietAgent ”/>

<c f g o p t i o n s>
<opt ion name=” t raceLeve l ” value=”1”/>

</ c f g o p t i o n s>
<SeD l a b e l=”SeD1”>

<c on f i g s e r v e r=” re s2 ” remote binary=” server dyn add rem ”/>
<c f g o p t i o n s>

<opt ion name=” t raceLeve l ” value=”1”/>
</ c f g o p t i o n s>

</SeD>
<SeD l a b e l=”SeD2”>

<c on f i g s e r v e r=” r e s 3 ho s t 1 ” remote binary=” server dyn add rem ”/>
<c f g o p t i o n s>

<opt ion name=” t raceLeve l ” value=”30”/>
</ c f g o p t i o n s>
<parameters s t r i n g=”T”/>

</SeD>
<SeD l a b e l=”SeD3”>

<c on f i g s e r v e r=” r e s 3 ho s t 2 ” remote binary=” server dyn add rem ”/>
<c f g o p t i o n s>

<opt ion name=” t raceLeve l ” value=”1”/>
</ c f g o p t i o n s>

</SeD>
</ master agent>

</ d i e t h i e r a r c h y>
</ d i e t c o n f i g u r a t i o n>

.

Figure 9.1: Example XML input file for GoDiet.

c© INRIA, ENS-Lyon, UCBL Page 94

DIET User’s Manual

Chapter 10

Diet dashboard

This section discussed monitoring tools that can be used with Diet. We are currently
working on a tool called Diet Dashboard that will integrate a variety of external tools to
provide a single management and monitoring environment for Diet. Currently, however,
each of these tools is available separately. See Section 10.1 for a description of LogService,
Section 10.2 for a description of VizDIET, and Section 9.2 for a description of GoDiet.

10.1 LogService

The Diet platform can be monitored using a system called LogService. This monitoring
service offers the capability to be aware of information that you want to relay from the
platform. As shown in Figure 10.1, LogService is composed of three modules: LogCom-
ponent, LogCentral and LogTool.

- A LogComponent is attached to a component and relays information and messages
to LogCentral. LogComponents are typically used within components one wants to
monitor.

- LogCentral collects messages received from LogComponents, then LogCentral stores
or sends these messages to LogTools.

- LogTools connect themselves to LogCentral and wait for messages. LogTools are
typically used within monitoring tools.

The main interest in LogService is that information is collected by a central point Log-
Central that receives logEvents from LogComponents that are attached to Diet elements
(MA, LA and SeD). LogCentral offers the possibility to re-send this information to several
tools (LogTools) that are responsible for analysing these message and offering compre-
hensive information to the user.

LogService defines and implements several functionalities:

c© INRIA, ENS-Lyon, UCBL Page 95

DIET User’s Manual

LA LA LA

MA

SeDSeDSeDSeD SeDSeDSeDSeDSeD

LogCentral
find service1

solve service1

service1service1

Figure 10.1: DIET and LogService.

Filtering mechanisms As few messages as possible should be sent to minimize net-
work traffic. With respect to the three-tier model, the communications between
applications (e.g., LogComponent) and the collector (e.g., LogCentral), as well as
between the collector and the monitoring tools (e.g., LogTools), should be min-
imized. When a LogTool registers with the LogCentral, it also registers a filter
defining which messages are required by the tool.

Message ordering Event ordering is another important feature of a monitoring system.
LogService handles this problem by the introduction of a global time line. At
generation each message receives a time-stamp. The problem that can occur is that
the system time can be different on each host. LogService measures this difference
internally and corrects the time-stamps of incoming messages accordingly. The time
difference is correcting by using a time difference measurement recorded during the
last ping that LogCentral has sent to the LogComponent (pings are sent periodically
to verify the “aliveness” of the LogComponent).

However, incoming messages are still unsorted. Thus, the messages are buffered for
a short period of time in order to deliver a sorted stream of messages to the tools.
Messages that arrive out of order within this time are sorted in the buffer and can
thus be properly delivered. Although this induces a delivery-delay for messages, this
mechanism guarantees the proper ordering of messages within a certain tolerance.
As tools should not rely on true real-time delivery of messages, this short delay is
acceptable.

c© INRIA, ENS-Lyon, UCBL Page 96

DIET User’s Manual

The System State Problem A problem that arises in distributed environments is the
state of the application. This state may for example contain information on con-
nected servers, their relationships, the active tasks and many other pieces of infor-
mation that depend on the application. The system state can be constructed from
all events that occurred in the application. Some tools rely on this state to work
properly.

The problem emerges if those specific tools do not receive all messages. This might
occur as tools can connect to the monitor after the application has been started.
In fact, this is quite probable as the lifetime of the distributed application can be
much longer than the lifetime of a tool.

As a consequence, the system state must be maintained and stored. In order to
maintain a system state in a general way, LogService does not store the system
state itself, but all messages which are required to construct it. Those messages are
identified by their tag and stored in a special list. This list is forwarded to each
tool that connects. For the tool this process is transparent, since it simply receives
a number of messages that represent the state of the application.

In order to further refine this concept, the list of important messages can also be
cleaned up by LogService. This is necessary as components may connect and discon-
nect at runtime. After a disconnection of a component the respective information
is no longer relevant for the system state. Therefore, all messages which originated
at this component can be removed from the list. They have become obsolete due
to the disconnection of the component and can be safely deleted in order to reduce
the length of the list of important messages to a minimum.

All Diet components implement the LogComponent interface. By using LogCentral,
the Diet architecture is able to relay information to LogCentral, and then it is possible to
connect to LogCentral by using a LogTool to collect, store and analyse this information.
LogService is available for download. See the web page http://graal.ens-lyon.fr/

DIET/logservice.html for more information.

10.2 VizDIET

VizDIET is the monitoring tool written for Diet to be able to vizualize and analyze
the status and activities of a running Diet deployment. As described in Section 10.1,
all Diet’s components integrate a LogComponent, and VizDIET implements the LogTool
interface in order to be able to collect all information sent by Diet’s components through
their LogComponent.

VizDIET provides a graphic representation of the Diet architecture being monitored.
There are two ways to use VizDIET.

Real-time monitoring: VizDIET is directly connected to the LogCentral using a Corba
connection and receives directly all information about the running Diet platform.

c© INRIA, ENS-Lyon, UCBL Page 97

http://graal.ens-lyon.fr/DIET/logservice.html
http://graal.ens-lyon.fr/DIET/logservice.html

DIET User’s Manual

Post-mortem monitoring: VizDIET reads a log file containing all log messages re-
ceived by LogCentral. This post-mortem analysis can also be replayed in real time
if the log file is time sorted. The log file is created during the real deployment by
a special tool provided with LogService that receives all messages from LogCentral
and writes them to a file.

Figure 10.2: Snapshot of VizDIET.

As described in Section 1.4, there are two main steps in the treatment of a request in
Diet: one step to find and schedule a service, and one step to solve this service. So two
main activities are represented: schedule and compute information

Schedule information :
When an agent takes a scheduling decision for a task (i.e., finding and deciding
which SeD can execute a service), it is useful to know how the agent made its
decision. This information is represented by FindRequest in VizDIET.

Compute information :
When a SeD is computing a job we need to be aware of its state and know when
the computation begins and ends. This information is represented by SolveRequest.
In VizDIET, when a SeD is solving a service, the SeD changes color to red.

FindRequests are only attached to agents and SolveRequests are only attached to
SeDs. Finally the aggregation of one FindRequest and its SolveRequest is concatenated
in one request: DIETRequest. DIETResquest can be see as a job execution in a Diet

c© INRIA, ENS-Lyon, UCBL Page 98

DIET User’s Manual

Figure 10.3: Bar, taskflow and gantt graphs in vizDIET.

platform as seen by an end-user. A DIETRequest is also associated with a latency,
which is time between the end of a FindRequest and the beginning of a SolveRequest.

VizDIET offers the possiblity to visualize all of these requests from either the point of
view of the Diet platform, in which case you will see the DIETRequests, or in the point
of view of the Agents or SeDs, in which case you will see respectively the FindRequest
and the SolveRequest. The different kinds of requests are represented in different types
of graphics such as a Gantt chart, taskflow chart, or bar chart.

VizDIET also computes some other statistics for the platform such as average time
for scheduling, for solving, or latency. This information can be see for the whole service
in the platform or for one specific service. VizDIET has one other interesting feature:
the possibility to export all data collected by VizDIET into a file using a format that you
specify.

Finally, VizDIET is quite useful for understanding the behavior of the Diet hierarchy

c© INRIA, ENS-Lyon, UCBL Page 99

DIET User’s Manual

and quite simple to use. You have to keep in mind that VizDIET bases its information
upon log information that is forwarded by LogCentral from Diet components. Therefore,
the information displayed and computed in VizDIET is limited to the Diet hierarchy
(e.g., there is no information about clients).

Future development of VizDIET will depend on new developments in Diet. For
example, a new integration between Diet and JuxMem allows Diet to store data in
the JuxMem service. Correspondingly, the capability to log and visualize these transfers
has been added to VizDIET. VizDIET is available for download. See the web page
http://graal.ens-lyon.fr/DIET/vizdiet.html for more information.

c© INRIA, ENS-Lyon, UCBL Page 100

http://graal.ens-lyon.fr/DIET/vizdiet.html

DIET User’s Manual

Chapter 11

Multi-MA extension

The hierarchical organization of Diet is efficient when the set of resources is shared
by few individuals. However, the aim of grid computing is to share resources between
several individuals. In that case, the Diet hierarchy become inefficient. The Multi-MA
extension has been implemented to resolve this issue. This chapter explains the different
scalability issues of grid computing and how to use the multi-MA extension to deal with
them.

11.1 Function of the Multi-MA extension

The use of a monolithic architecture become more and more difficult when the number
of users and the number of resources grow simultaneously. When a user tries to resolve a
problem, without the multi-MA extension, Diet looks for the better SeD that can solve
it. This search involves the fact that each SeD has to be queried to run a performance
prediction as described in Section 1.4.

The need to query every SeD that can resolve a problem is a serious scalability issue.
To avoid it, the multi-MA extension proposes to interconnect several MA together. So,
instead of having the whole set of SeD available under a hierarchy of a unique MA, there
are several MA and each MA manages a subset of SeDs. Those MA are interconnected
in a way that they can share the access to their SeDs.

Each MA works like the usual: when they received a query from a user, they looks
for the best SeD which can resolve their problem inside their hierarchy. If there is no
SeD available in its hierarchy, the queried MA forwards the query to another MA to find
a SeD that can be used by its client. This way, Diet is able to support more clients
and more servers because each client request is forwarded to a number of SeDs that is
independent of the total number of available SeDs.

11.2 Deployment example

The instructions about how to compile Diet with the multi-MA extension are available
in Section 2.2.5 and the configuration instructions are available in Section 9.1.2.

c© INRIA, ENS-Lyon, UCBL Page 101

DIET User’s Manual

The example described here is about four organizations which want to share there
resources. The first organization, named alpha, have ten SeDs which give access to the
service a. The second organization, named beta, have eight SeDs with the service a and
three with the service b. The third one, named gamma, have two SeDs with the service
c. The last one, named delta, have one SeD with the service a, but the server crash and
the SeD is unavailable.

Each organization has it’s own Diet hierarchy. All MAs (one for each organization)
are connected with the multi-MA extension as shown in Figure 11.2

aa aa

LA1LA1

a

alpha

a

delta

a

c

b

c

a

gamma

aa a aa

a

beta

a

LA2LA2

ba ba aa

Figure 11.1: Example of a multi-MA deployment

The following lines appear in the MA configuration file of alpha. They tell that the
multi-MA extension should listen for incoming connection at port 2001. They also tell
that the MA should create a link toward the MA of the organization gamma and toward
the MA of the organization beta. (The description of each configuration parameter are
available in Section 9.1.2.)

agentType = DIET_MASTER_AGENT

dietHostname = diet.alpha.com

bindServicePort = 2001

neighbours = diet.beta.com:2001,ma.gamma.com:6000

The following lines appear in the MA configuration file of beta:

agentType = DIET_MASTER_AGENT

dietHostname = diet.beta.com

bindServicePort = 2001

neighbours = diet.alpha.com:2001,ma.gamma.com:6000

c© INRIA, ENS-Lyon, UCBL Page 102

DIET User’s Manual

The following lines appear in the MA configuration file of gamma. The neighbours

value is empty. This means that the gamma’s MA will not try to connect itself to other
MA. However, the three others are configured to be connected to gamma. So, after all,
the gamma MA is connected to the other three.

agentType = DIET_MASTER_AGENT

dietHostname = ma.gamma.com

bindServicePort = 6000

neighbours =

Finally the following lines appear in the MA configuration file of delta:

agentType = DIET_MASTER_AGENT

dietHostname = ma.delta.com

bindServicePort = 2001

neighbours = ma.gamma.com:6000

11.3 Search examples

The following section explains how a diet call is managed when used on the previous
architecture.

If a client sends a diet call for the problem a to the alpha’s MA, the alpha’s MA
will return a reference of one of it’s SeD . However, if its scheduler (see Section 7) says
that no SeD is available, it will forward the request to beta and gamma. If beta has an
available SeD , it will be used to resolve the problem. If not, the request is forwarded to
delta.

Now, if a client performs a diet call for the problem c to the delta’s MA, the delta
MA does not have a SeD that can resolve this problem. So, it forwards the request to
gamma. If gamma has no available SeD , the request is forwarded to alpha and beta.

c© INRIA, ENS-Lyon, UCBL Page 103

DIET User’s Manual

c© INRIA, ENS-Lyon, UCBL Page 104

DIET User’s Manual

Chapter 12

P2P Diet extension: DietJ

To extend the field of the available services for each client in a transparent manner, Diet
uses the Multi-Agent system to increase scalability. To achieve this, the MAs access
each others’ resources when processing a client’s request. Thus, each request is not only
submitted inside the hierarchy of the MA contacted by the client, but also inside the
hierarchy of each MAs connected to the first MA, if the first submission failed.

12.1 P2P and JXTA

One way to implement the Multi-MA is to use peer-to-peer technology, and thus have a
distributed Multi-Agent system where MAs dynamically discover each others and coop-
erate in order to give clients the largest possible area of search in a transparent manner.

JXTA [20] is a technology written with java [11]. It aims at allowing the development
of destributed applications using peer-to-peer concepts and the java language. JXTA
provides functionalities such as passing firewalls and similar network protections, dynam-
ically discovering other peers, and other essential tools to develop a Multi-Agent system
using peer-to-peer technology.

12.2 Description of the current architecture devel-

oped with JXTA

In this chapter we discuss one prototype. We plan to update this prototype that will be
totally merged in Diet and able to process all requests supported by Diet. The DietJ

architecture is shown Figure 7.1. We can consider that the elements allowing its use are
divided in two parts:

• a JXTA part that includes clientJ , MAJ and SeDJ . These components are written
in java to be able to communicate together using JXTA.

• a part of integration of the JXTA part in Diet: java (JXTA) and C++ (Diet)
must cooperate. The technology used to allow this integration is JNI [12] that

c© INRIA, ENS-Lyon, UCBL Page 105

DIET User’s Manual

allows java to call functions written in C++. JNI is located in the MA and the
SeD : The MAJ has to launch and communicate with a C++ MADiet. A similar
interface appears in the SeD communication process.

JXTA Client

JXTA
SeD

DIET MA
DIET LA

DIET
SeD

DIET MA

DIET

SeD
DIET
SeD

DIET LA

DIET MA

JXTA
SeD

JXTA
SeD

JXTA pipe

JNI interface

DIET

DIET MA

MA
JXTA

MA
JXTA

MA
JXTA

JXTA
MA

Figure 12.1: DietJ architecture

12.2.1 The JXTA components

The clientJ

Only one component, the client, is fully written in java. Since it communicates only with
JXTA components, it doesn’t need the Diet client library. JXTA pipes do not allow all
types of data to be sent through. The description of the problem and the problem itself
have to be packed to be sent through JXTA pipes. These messages are unpacked inside
the MADiet and SeDDiet.

The behaviour of the JXTA client is:

• launch a new JXTA peer,

• get MAJ advertisements (JXTA messages travelling through the network identifying
a JXTA object) by sending a JXTA discovery query,

• extract the reference of the input pipe of the first MAJ advertisement discovered,

c© INRIA, ENS-Lyon, UCBL Page 106

DIET User’s Manual

• create an output pipe to bind the input pipe extracted,

• create and send the description of the problem via the pipe created and wait for the
response of the MAJ bound, including references of SeDs able to solve the problem,

• Try to create an output pipe to bind the input pipe of one of the SeDs found,

• Send the packed problem including data needed for the computation to the SeD
bound and wait for its response,

• Extract results of the response received.

The SeDJ

The role of the SeDJ is to allow clientsJ to send computation requests to the SeDDiet.
The SeDDiet receives the requests sent by clientsJ , calls the SeDDiet (that returns the
response) and then sends the result to the client.

The general behavior of the SeDJ is written below:

• launch a new JXTA peer,

• create an input pipe to receive the clients’ requests,

• launch the SeDDiet,

• process each request by a thread that:

– forwards the packed request received to the SeDDiet and waits for a packed
response,

– sends the response to the client after having bound an output pipe to its input
pipe.

The Multi-MAj

The Multi-MAJ is composed of all MAsJ running at the same time. The MAJ is able to
connect the clientsJ to others running MAsJ . Thus, each client knows only one MAJ ,
that is its access to the Multi-MA. Each MAJ publishes an advertisement with a lifetime
in order to avoid clients or other MAJ to connect to a stopped MAJ . When it receives a
request coming from a client, the MAJ submits the problem description to Diet via the
MADiet it has itself launched. If the submission returns a Diet failure, the MAJ searches
other MAsJ . Then, it forwards the client’s request to other MAsJ . SeD references thus
collected are merged and sent to the client.

The general algorithm of the MAJ is as follows:

• launch a new JXTA Peer,

• build an input pipe to listen to clients’ requests or agents forwarded requests,

c© INRIA, ENS-Lyon, UCBL Page 107

DIET User’s Manual

• create an advertisement including its input pipe reference allowing clients to connect
to it back and publish it with a hardcoded lifetime,

• process each client or agent message by a thread :

– if the source of the message received is a client,

∗ call the MADiet with the packed problem and get SeD reference(s),

∗ if any, send it to the client, else search other MAJ , forward the query to all
other MAsJ discovered and send a response containing all SeD references
thus received to the client.

– if the source is an agent,

∗ call the MADiet on the problem received and get SeD references found in
its own Diet tree,

∗ propagate the request to the other MA(s) (in order to find the fastest path
to reach all the MAsJ on the network.

∗ send a response including SeD reference(s) to the MAJ from which it
received the request, and forward the responses from other MAsJ it has
reached first back to the MAJ that reached first this MAJ .

12.2.2 Interfacing JXTA and Diet with JNI

JNI is a technology allowing programmers to call native methods (written in C/C++)
from a program written in java. As seen before, the DietJ components having a Diet
part and a JXTA part are the MA and the SeD .

The MADiet

To submit the client’s requests to Diet, the MAJ needs to call the MADiet submit

function. To allow this, the MAJ launches a MADiet via a native method and calls the
submit function via another.

The MADiet contains:

• a native method that launches the MADiet,

• a native method submitJXTA that:

– unpacks the description of the problem to be solved in order to build a Diet
problem description,

– calls the Diet submit function and thus gets a response,

– extracts and returns the SeD reference(s) to the MAJ .

c© INRIA, ENS-Lyon, UCBL Page 108

DIET User’s Manual

The SeDDiet

To solve the client’s computation requests, the SeDJ needs to call the SeDDiet solve

function. In the same manner as above, to allow this, the SeDJ launches the SeDDiet via
a native method, and calls the solve function via another.

The SeDDiet contains:

• a native method that launches the SeDDiet,

• a native method solveJXTA that:

– unpacks the problem to be solved and builds a Diet profile,

– calls the solve function,

– extracts and returns the response to the SeDJ .

12.3 The future of DietJ

12.3.1 Remaining problems

• An unsolved problem dealing with omniORB and JNI results in a failure when
a JNI SeDDiet registers to a Diet Agent not launched via JNI. Because of that, to
deploy some LAs between a DietJ MA and a DietJ SeD , they have to be launched
via JNI. Moreover, a DietJ MA won’t be able to know LAs or SeDs not launched
via JNI. The current DietJ tree is unable to contain classic LAsDiet or SeDsDiet.

• The current version of the DietJ platform works only for problems having two
input matrices and one output matrix. The serialization has been written only
for these cases. One of the first things to do is to write a generic packing and
unpacking, to be able to process all problems supported by Diet.

• The clientJ isn’t very simple to write, because nothing is hidden to the user, neither
the details of the JXTA communication nor the creation of the problem. As for
the clientDiet, an API providing all mechanisms needed to communicate with Diet
via JXTA pipes should be written. The implementation of a Java Client taking in
account the JXTA communication seems to be the solution.

12.4 Working with a DietJ platform

12.4.1 Installation and configuration

• You need a JDK1.4.1 or later release from for instance:
http://java.sun.com/javase/downloads/index.jsp

(Previous JDKs and other java compiler are known to generate errors) Ensure that
environment variable PATH contains the javac and javah binaries location.

c© INRIA, ENS-Lyon, UCBL Page 109

DIET User’s Manual

• Then, to configure Diet with the JXTA option, switch the DIET USE JXTA option to
ON inside the ccmake GUI. The JXTA client example is compiled if DIET BUILD EXAMPLE

is also switched to ON.

12.4.2 Deploying a DietJ platform

Please refer to the previous chapter for more information concerning things to do before
deploying the platform.

• First step: launching a MAJ . After having set the LD LIBRARY PATH,
OMNIORB CONFIG and OMNINAMES LOGDIR paths, Diet is ready to run, except the
JXTA part:

– Set an environment variable called JXTA LIB containing the path to the JXTA
JAR files. They are by default provided in the <diet root>/src/lib direc-
tory.

– At last, the command to be launched to run a MAJ is:
$ java -cp <JXTA JARS> JXTAMultiMA <DIET MA config file>

Ensure that this command is launched inside the right directory : indeed, only
one peer can be launched by directory : information concerning this peer is
available in a .jxta directory under the directory where you launched the
peer. Delete this directory before launching a peer if you have already used it
on another machine, in order to clean the platform configuration.

• Each time a new JXTA peer is launched, you have to configure it. On the first setup
screen, the name of the peer is required and must be unique, for instance, “MA1” for
the first MAJ you load. The second screen, named “advanced”, displays the TCP
and HTTP settings. When using DietJ on a single machine, the configuration
is as shown on Figure 12.2, else, just replace localhost by the IP address of the
machine. Please note that, for each peer on a single machine, the TCP and HTTP
ports have to be different. For instance : 9701 and 9700 for the first peer, 9703
and 9702 for the second, etc. The third setup screen deals with the web access. If
you want to access peers outside the local network, references of rendezvous and
relay peers placed at the disposal of JXTA users by the JXTA community can be
downloaded. Otherwise, don’t do anything with this screen. The last screen deals
with username and password, but these parameters are filled with default values.

• Second step: registering a SeD to the MA. Be sure that the parentName inside
the configuration file matches the name of the MADiet previously launched. The
command to run is:
$ java -cp <JXTA JARS> JXTASeD <DIET SeD config file> <computation abilities>

If you want to put LA(s) between the MA and the SeD , launch the following com-
mand before loading the SeD :
$ java LA <DIET LA config file>

c© INRIA, ENS-Lyon, UCBL Page 110

DIET User’s Manual

Check the Diet tree coherence and the parentName variables inside the configura-
tion files.

• Third step: Launch a clientJ with the command:
$ java -cp <JXTA JARS> JXTAClient <pb>

At this point, you still haven’t tested the Multi-MA. To achieve this, launch at least
one MAJ and launch again the client.

Scripts have been left at your disposal. You just need to check the environment
variables and paths required. As said before, only one JXTA peer can be run in one
directory, so each script is inside a different one. These directories have to be edited (for
configuration), are named MMA1/, MMA2/, MMA3/, LA1/, SeD1/, SeD2/ and client/. and
are located in : <DIET root>/src/examples/JXTA/scripts.

c© INRIA, ENS-Lyon, UCBL Page 111

DIET User’s Manual

Figure 12.2: Configuring JXTA

c© INRIA, ENS-Lyon, UCBL Page 112

DIET User’s Manual

Chapter 13

JuxMem extension

13.1 Introduction

With the release of version 2.0 of the Diet toolkit, we have introduced the ability to use
JuxMem for managing persistent data blocks. This section shortly describes how to use
JuxMem inside Diet, as it is an on going work.

13.2 Overview of JuxMem

JuxMem, stands for Juxtaposed Memory, implements the concept of data sharing service
for grid, based on a compromise between DSM systems and P2P systems. JuxMem de-
couples data management from grid computation, by providing location transparency as
well as data persistence in a dynamic environnement. JuxMem is based on the P2P plat-
form called JXTA, which stands for Juxtaposed. For more information about JuxMem,
please check the available documentation on the web site of JuxMem [19].

13.3 How to configure Diet to use JuxMem?

Diet currently needs JuxMem version 0.3 to work. This version can be downloaded on
the web site of JuxMem [19]. For configuring and building JuxMem, please check the
README file included in this 0.3 release of JuxMem. When the -DDIET USE JUXMEM

option is activated, you need to have JuxMem-C build, so please read the documentation
for building JuxMem-C. Currently, for configuring Diet in order to use JuxMem you
need to specify the build path of JuxMem with the -DJUXMEM DIR option. A JuxMem
canonical installation is supposed (with JXTA-C and APR installed). Note that APR
(Apache Portable Runtime) is a requirement of both JuxMem-C and JXTA-C.

When Diet is configured to use JuxMem, SeD are able to store data blocks inside
JuxMem. Please be carefull as it does not mean that you have a JuxMem platform
deployed and usable! In a first step, you must deploy a JuxMem platform as described in
the documentations of JuxMem. This JuxMem platform is currently based on JuxMem-

c© INRIA, ENS-Lyon, UCBL Page 113

DIET User’s Manual

J2SE, JuxMem-C is only used to play the role of a JuxMem client within a Diet SeD .
Please read the README file of JuxMem to build and deploy a JuxMem platform.

13.4 Example

A simple example of the JuxMem usage inside Diet can be found in the dmat manips
sample. The name of the client is clientJuxMem. This example stores Diet matrices
inside JuxMem, and allows next computations to retrieve these matrices directly from
JuxMem. Clients therefore avoid unnecessary tranfers of matrices as they only need to
transfer the ID of the data returned by JuxMem. More documentation and examples will
be available in the future.

13.5 Troubleshooting

If you encounter any problem, you can try get help from the JuxMem-discuss mailing list
<juxmem-discuss@lists.gforge.inria.fr>. Do not forget to include in your e-mails
the exact error message, your hardware description, your OS name and version, and the
JuxMem version number. However, please do understand that this is an on going work
and therefore no full support is provided.

c© INRIA, ENS-Lyon, UCBL Page 114

<juxmem-discuss@lists.gforge.inria.fr>

DIET User’s Manual

Chapter 14

Workflow management in Diet

14.1 Overview

Workflow applications consists of multiple components (tasks) related by precedence con-
straints that usually follow from the data flow between them. Data files generated by
one task are needed to start another task. Although this is the most common situation,
the precedence constraints may follow from other reasons as well, and may be arbitrarily
defined by the user.

This kind of application can be modeled as a DAG (Directed Acyclic Graph) where
each vertex is a task with given input data and service name, and each edge can either
be a data link between two tasks or a basic precedence constraint. The Diet workflow
engine can handle that kind of workflow by assigning each task to a SeD in the Diet
hierarchy using a Diet service call. This assignment is made dynamically when the
task is ready to be executed (i.e., all predecessors are done) depending on the service
performance properties and on available ressources on the grid.

A specific agent called the Master Agent DAG (MADAG)) provides DAG workflow
scheduling. This agent serves as the entry point to the Diet Hierarchy for a client that
wants to submit a DAG workflow. The language supported by the MADAG is based on
XML and described in the section 14.4.1.

Because of large amounts of computations and data involved in some workflow appli-
cations, the number of tasks in a DAG can grow very fast. The need for a more abstract
way of representing a workflow that separates the data instances from the data flow has
led to the definition of a ”functional workflow language” called the Gwendia language.
A complex application can be defined using this language that provides data operators
and control structures (if/then/else, loops, ...). To execute the application, we need to
provide both the workflow description (see 14.4.2) and a file describing the input data set.
The Diet workflow engine will instanciate the workflow as one or several tasks’ DAGs,
sent to the MADAG agent to be executed in the Diet platform.

c© INRIA, ENS-Lyon, UCBL Page 115

DIET User’s Manual

14.2 Quick start

Requirements and compilation The workflow supports in Diet needs the following:

• The Xerces library: the XML handling code is written with Xerces-C++ using the
provided DOM API.

• The XQilla library: the conditions in conditional or looping workflow structures are
written in XQuery language and parsed using the XQilla library.

• Enable the workflow support when compiling Diet. In order to build Diet with
workflow support using cmake, three configuration parameters need to be set:

– DIET USE WORKFLOW as follow: -DDIET USE WORKFLOW:BOOL=ON

– XERCES DIR: defines the path to Xerces installation directory. (for example
-DXERCES DIR:PATH=/usr/local/xerces)

– XQILLA DIR: defines the path to XQilla installation directory. (for example
-DXQILLA DIR:PATH=/usr/local/xqilla)

N.B. 1: By activating the workflow module, the DAGDA module is also activated.

This is an example of generating command line:

cmake .. -DMAINTAINER_MODE:BOOL=ON -DOMNIORB4_DIR=/usr/local/omniORB \

-DDIET_USE_WORKFLOW:BOOL=ON \

-DXERCES_DIR=/usr/local/xerces

-DXQILLA_DIR=/usr/local/xqilla

Workflow support was tested in the following configurations:

– gcc version 4.0.2 and higher

– omniORB version 4.1.0 and higher

– Xerces 3.0.1

– XQilla 2.2.0

N.B. 2: Workflow support is not available on Windows/Cygwin platforms (Windows
XP and Cygwin <= 1.5.25) for Xerces 3.0.1 and XQilla 2.2.0.

c© INRIA, ENS-Lyon, UCBL Page 116

DIET User’s Manual

a+b

double

succ

double

sum

X

x+1 x+1

y

2y

y

2y

a b

Figure 14.1: DAG example

Executing the examples The directory examples/workflow includes some exam-
ples of workflows. You can find a simple DAG workflow (see Figure 14.1) in the file
xml/scalar.xml and you can test it with the following command, where local client.cfg

is the Diet configuration file (example provided in the etc/client wf.cfg file).
./generic_client local_client.cfg -dag scalar.xml

You need to have a running Diet platform with the MADAG agent and the needed
services. You can launch a single SeD (scalar server) that includes all the needed
services. (read Chapter 5 for more details).

You can also find some examples of functional workflows written in the Gwendia
language (see file xml/func string.xml) and you can test it with the following command:

./generic_client local_client.cfg -wf func_string.xml data.xml

You need to have a running Diet platform with the needed services (the commands
to launch the services are included as comments within the workflow XML).

14.3 Software architecture

A new agent called the MADAG is used to manage workflows in the Diet architecture.
This agent receives requests from clients containing the description of a workflow in a
specific language (the MADAG XML workflow language for DAGs). The role of the
MADAG is to determine how to schedule the tasks contained in the workflow in order to
follow the precedence constraints between tasks, and how to map the tasks to appropriate
ressources in the Diet hierarchy.

The execution of the individual tasks is actually delegated by the MADAG to the
client that submitted the workflow. After submitting the workflow, the client is put in
a waiting mode and it will receive individual requests from the MADAG to execute each
task of the workflow. Therefore all the data transfers are done only from the client to

c© INRIA, ENS-Lyon, UCBL Page 117

DIET User’s Manual

the SeDs and do not transit through the MADAG.

When all tasks are completed, the MADAG will send a release signal to the client
which will then retrieve the results if the execution was successful.

To use the MADAG, the client configuration file must include the parameter MADAGNAME
with the appropriate name.

When the client uses a functional workflow (in Gwendia language) the Diet client
library provides the logic for instanciating the workflow, generating the DAGs and sending
them to the MADAG agent. Note that when several DAGs are generated they are usually
not independent as some data generated by one DAG may be used by another one.

14.4 Workflow description languages

14.4.1 MaDag language

A DAG is described with an XML representation which is close to Diet profile represen-
tation. In addition to profile description (problem path and arguments), this description
represents also the data dependencies between ports (source/sink), the node identifier
(unique) and the precedences between nodes. This last information can be removed since
it can be retrieved from the dependencies between ports, however it can be useful to
define a temporal dependency without port linking.

The general structure of this description is:

<dag>

<node id="..." path="...">

<arg name="..." type="........" value=".."/>

<in name="..." type="........" source="......."/>

<out name="...." type="........" sink="......"/>

<out name="...." type="........" sink="......"/>

</node>

....

The name argument represents the identifier of the port. To use it to define a source
or a sink value, it must be prefixed with the node id. For example if the source of the
input port in3 is the port out2 of the node n1, than the element must be described as
follow:

<in name="in3" type="DIET_INT" source="n1#out2"/>

The link between input and output ports must be described either by a source value
in the ¡in¿ element, or by a sink value in the ¡out¿ element. Specifying both does not
cause an error but duplicates the information.

The example shown in Figure 14.1 can be represented by this XML description:

c© INRIA, ENS-Lyon, UCBL Page 118

DIET User’s Manual

<dag>

<node id="n1" path="succ">

<arg name="in1" type="DIET_INT" value="56"/>

<out name="out1" type="DIET_INT"/>

<out name="out2" type="DIET_INT"/>

</node>

<node id="n2" path="double">

<in name="in2" type="DIET_INT" source="n1#out1"/>

<out name="out3" type="DIET_INT"/>

</node>

<node id="n3" path="double">

<in name="in3" type="DIET_INT" source="n1#out2"/>

<out name="out4" type="DIET_INT"/>

</node>

<node id="n4" path="sum">

<in name="in4" type="DIET_INT" source="n2#out3"/>

<in name="in5" type="DIET_INT" source="n3#out4"/>

<out name="out4" type="DIET_INT"/>

</node>

</dag>

14.4.2 Gwendia language

The Gwendia language is written in XML and validated by the workflow parser if the
path to the DTD is provided (using a !DOCTYPE XML entity in the workflow XML
file). The Gwendia DTD is included in the Diet distribution in the etc/FWorkflow.dtd

file.

Types Values flowing through the workflow are typed. Basic types are integer, short,
double, longint, float, string and file. Homogeneous arrays of values can be also
used as inputs/outputs and can have any depth: an array can contain arrays of values
(depth = 2). Arrays are ordered and can eventually contain NULL elements.

Processors A processor is a data production unit. A regular processor invokes a
service through a known interface. Defined processor types are webservice, diet and
beanshell. Special processors are workflow source (a processor with no inbound con-
nectivity, delivering a list of externally defined data values), sink (a processor with no
outbound connectivity, receiving some workflow output) and constant (a processor de-
livering a single, constant value). To improve readability, the input, sink and constant

processors are grouped in an <interface> tag within the document. Other example
of processors are grouped in a <processors> tag. Web services define a <wsdl> tag
pointing to their WSDL description and the operation to invoke. Beanshells define a
<script> tag containing the java code to interpret. Diet services define a <diet> tag
describing the path to service to invoke. (When executing the workflow using the Diet

c© INRIA, ENS-Lyon, UCBL Page 119

DIET User’s Manual

workflow engine, only processors containing a <diet> tag can be used). The <diet> tag
contains the path attribute that matches exactly the Diet service name, and option-
nally contains the ’estimation’ attribute (with value keyword ’constant’) whenever the
computation time estimation for this service does not depend on input data (using this
option may reduce considerably the load on the Diet platform because the request for
performance estimation is done only once by the MaDag instead of being done for each
task).

Processor ports Processor input and output ports are named and declared. A port
may be an input (<in> tag) or an output (out tag). For each input/output, the following
attributes can be defined:

• type (mandatory): contains the base type of data i.e., a basic type identifier that
describes the type of the data received/generated by the port. When data is scalar
this is the actual data type, when data is an array this is the type of the data leaves
of the array.

• depth (optional, default is 0): contains the depth of the array if applicable

• cardinality (optional, only for out ports with depth > 0): contains the number of
elements of the generated array. This value can be provided only if it is a constant
i.e., the number of elements does not vary for each instance of data. When the
data depth is greater than 1, the format for the cardinality attribute is a column-
separated list of integers (for example, ”2:3” for an array containing 2 arrays of 3
elements).

Iteration strategies Iteration strategies must be defined when the processor has two
or more input ports. By default the workflow parser will use a dot iteration strategy
for all inputs. These operators use the index of data items received or produced by
workflow processors to combine them. The index of a data item corresponds, for data
items produced by a source to the order number in the source data file, and for data items
produced by a standard processor to the index of input data items eventually combined
by the operators. There are 4 data manipulation operators:

• dot (groups 2 or more ports): data from the different ports are processed together
when their index match exactly (data with index 0 of one port is matched with
data with index 0 of the other ports). The output index is the same as the index
of the input data.

• cross (groups 2 ports): processes each data instance of the first port with each data
instance of the second port. This processor will increase by one the index depth of
the output (for example: if data inputs have indexes 0 and 1 then the outputs have
the index 0 1).

• flatcross (groups 2 ports): same as cross but with a different output indexation
scheme. This operator does not increase the depth of the output index but creates

c© INRIA, ENS-Lyon, UCBL Page 120

DIET User’s Manual

new indexes (for example: if data inputs have indexes 1 and 2 with a maximum
index of 3 for the right input, then the output has the index 6 = 4 ∗ 1 + 2). Note
that this operator creates a synchronization constraint among all instances as the
maximum index of the right input must be known by the workflow engine before
being able to create new indexes.

• match (groups 2 ports): processes each data instance of the first port with all the
data instances of the second port that have an index prefix that matches the first
port’s index (for example: if left data has index 1 1, it will be processed with all
right data which have an index beginning with 1 1). The output index is the second
port’s index.

Here is an example of a Gwendia workflow (to be continued with the links part below):

<workflow>

<interface>

<constant name="parameter" type="integer" value="50"/>

<source name="key" type="double" />

<sink name="results" type="file" />

</interface>

</processors>

<processor name="genParam">

<in name="paramKey" type="double"/>

<out name="paramFiles" type="file" depth="1"/>

<diet path="gen" estimation="constant"/>

</processor>

<processor name="docking">

<in name="param" type="integer" />

<in name="input" type="file" />

<out name="result" type="double" />

<iterationstrategy>

<cross>

<port name="param" />

<port name="input" />

</cross>

</iterationstrategy>

<diet path="dock" estimation="constant"/>

</processor>

<processor name="statisticaltest">

<in name="values" type="double" depth="1"/>

<out name="result" type="file"/>

<iterationstrategy>

c© INRIA, ENS-Lyon, UCBL Page 121

DIET User’s Manual

<cross>

<port name="coefficient" />

<match>

<port name="values" />

<port name="weights" />

</match>

</cross>

</iterationstrategy>

<diet path="weightedaverage" />

</processor>

</processors>

<links>

<!-- LINKS (see below) -->

</links>

</workflow>

Data links A data link is a connection between a processor output port and a processor
input port as exampled below:

<links>

<link from="key" to="genParam:paramKey"/>

<link from="genParam:paramFiles" to="docking:input"/>

<link from="parameter" to="docking:param"/>

<link from="docking:result" to="statisticaltest:values" />

<link from="statisticaltest:result" to="results" />

</links>

When a processor A (port A.out) is connected to a processor B (port B.in) through a
data link, an instance of A (one task) may trigger a number of B instances that depends
on first, the data depth at both ends of the link and second, the iteration strategy chosen
for the B.in port within the B processor.

The data depths on both ends of the link determine the number of data items received
by the B.in port. Three cases are possible:

• 1 to 1 : when depth(A.out) = depth(B.in), a data item produced by A.out is sent
as-is to B.in

• 1 to N : when depth(A.out) < depth(B.in), a data item produced by A.out is an
array that will be split into its elements when sent to B. This will produce several
parallel instances (tasks) of the B processor. This is equivalent to a foreach structure
in usual programming languages, but is here transparent for the user as this is the
workflow engines that manages it.

• N to 1 : when depth(A.out) > depth(B.in), several data items produced by A.out
(by different tasks) will be grouped in an array before being sent to B.in. This is
the opposite behaviour from the previous point. Note that this structure creates

c© INRIA, ENS-Lyon, UCBL Page 122

DIET User’s Manual

a synchronization barrier among the A tasks as they must all be completed before
the B tasks can be launched.

Conditionals (if/then/else) Specific out ports tags (<outThen> and <outElse>) are
used in that kind of node. An outThen port will receive data assigned according to the
assignment list in the <then> tag only when the condition is evaluated to true. If the
condition is false, this port will not receive data but the <outElse> port will receive data
according to the assignment list in the <else> tag (assignment lists are semi-column
separated lists of assignments of an outThen or outElse port to an input port).

<condition name="IF_Example">

<in name="i" type="integer" />

<in name="j" type="integer" />

<outThen name="out1" type="integer" />

<outElse name="out2" type="integer" />

<!-- IF Condition must be written in XQuery language -->

<if>$i lt $j</if>

<then>out1=i;</then>

<else>out2=j;</else>

</condition>

Note that all the operators and functions defined in the XQuery standard (see http:

//www.w3.org/TR/xquery-operators/) can be used to make the boolean expression of
the <if> tag. These can process both numerical and string variables, and can also contain
XPath expressions to access elements of an array when the input port type is an array (for
ex. the expression “ contains($inlistitem[1]text(), ’a’) ” tests if the 1st element
of the array provided by the ’in’ port contains the letter ’a’).

While loops This structure uses specific port tags (<inLoop> and <outLoop>) in ad-
dition to standard port tags. They are used to connect this processor to other processors
that will be iterated as long as the while condition is true (condition is evaluated before
the first iteration). The standard <in> and <out> ports are used to connect this processor
to the rest of the workflow.

The loop initialization is done by mapping data from in ports to inLoop ports using
the ’init’ attribute. Each iteration produces data on outLoop ports according to the as-
signments of the <do> tag (semi-column separated list of assignments). The outputs of
the processors that are iterated can be connected to the inLoop ports when the results of
one iteration are used by the next one (but this is not mandatory). When the while con-
dition is evaluated to false, the outLoop data items are handed over to the corresponding
out ports according to the ’final’ attribute of these. They are then sent to the connected
processors.

Finally for one instance of this while processor, N ≥ 0 iterations are done for proces-
sors connected to the outLoop ports and one data item is produced by the out port(s).

<loop name="WHILE_Example">

c© INRIA, ENS-Lyon, UCBL Page 123

http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery-operators/

DIET User’s Manual

<!-- REQUIRED nb of IN ports EQUALS nb of OUT ports -->

<in name="v" type="double" />

<out name="out" type="double" />

<inLoop name="v_l" type="double" init="v"/>

<outLoop name="l" type="double" final="out"/>

<!-- WHILE Condition must be written in XQuery language -->

<!-- it can contain ONLY LOOP IN ports -->

<while>$v lt 100</while>

<!-- DO maps the inLoop ports to the outLoop ports - straightforward -->

<do>l=v_l;</do>

</loop>

14.5 Client API

14.5.1 Structure of client program

The structure of a client program is very close to the structure of usual Diet client. The
general algorithm is as follow:

diet_initialize

create the workflow profile

call the method diet_wf_call

if success retrieve the results

free the workflow profile

diet_finalize

The following tables show a description of methods provided by the Diet workflow
API. The table 14.1 contains the main methods that are common to the DAG workflows
API and to the functional workflows API. The table 14.2 contains the methods that are
specific to the DAG API. The table 14.3 contains the methods that are specific to the
functional workflows API.

14.5.2 The simplest example

This example represents the basic client code to execute a DAG. Line 26 indicates that
the workflow output is a double value named n4#out4. The example shown in Figure 14.1

c© INRIA, ENS-Lyon, UCBL Page 124

DIET User’s Manual

Workflow function Description
diet wf desc t*

diet wf profile alloc(const char*

wf file name, const char* wf name,

wf level t wf level);

allocate a workflow profile to be used for
a workflow submission.
wf file name : the file name containing
the workflow XML description. wf name
: the name of the workflow (used for
logs) wf level : specifier for workflow type
(DAG or FUNCTIONAL)

void

diet wf profile free(diet wf desc t *

profile);

free the workflow profile.

diet error t

diet wf call(diet wf desc t*

wf profile);

execute the workflow associated to profile
wf profile.

int

diet wf print results(diet wf desc t *

profile);

print on standard output all the results of
the current executed workflow or dag.

Table 14.1: Diet workflow common API

Workflow function Description
int

diet wf scalar get(const char * id,

void** value);

retrieves a workflow scalar result.
id : the output port identifier.

int

diet wf string get(const char * id,

char** value);

retrieves a workflow string result.
id : the output port identifier.

int

diet wf file get(const char * id,

size t* size, char** path);

retrieves a workflow file result.
id : the output port identifier.

int

diet wf matrix get(id, (void**)value,

nb rows, nb cols, order);

retrieves a workflow matrix result.
id : the output port identifier.

Table 14.2: Diet workflow DAG-specific API

c© INRIA, ENS-Lyon, UCBL Page 125

DIET User’s Manual

Workflow function Description
void

diet wf set data file(

diet wf desc t * profile,

const char * data file name);

specifies the file containing the data de-
scription used to generate the workflow

void

diet wf set transcript file(

diet wf desc t * profile,

const char * transcript file name);

specifies the file containing the tasks sta-
tus and data (used to restart a dag or
workflow)

int

diet wf save data file(

diet wf desc t * profile,

const char * data file name);

saves the input and output data descrip-
tion (’source’ and ’sink’ nodes) in XML
format. The file can be used as input data
file for another workflow execution.

int

diet wf save transcript file(

diet wf desc t * profile,

const char * transcript file name);

saves the transcript of the current work-
flow (list of tasks with their status and
data). This file can be used as input tran-
script file for another workflow execution
(tasks already done with output data still
available on the platform will not be exe-
cuted again)

int

diet wf sink get(

diet wf desc t* wf profile,

const char * id, char** dataID;

gets a container (Dagda data) containing
all the data received by a ’sink’ node

Table 14.3: Diet workflow Functional-specific API

c© INRIA, ENS-Lyon, UCBL Page 126

DIET User’s Manual

can be fully (execution and result retrieving) executed with this client.

#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <s t d i o . h>
#inc lude <sys / s t a t . h>

#inc lude ” DIET cl ient . h”

i n t main (i n t argc , char∗ argv [])
{

d i e t w f d e s c t ∗ p r o f i l e ;
char ∗ f i leName ;
long ∗ l ;
i f (argc != 3) {

f p r i n t f (s tde r r , ”Usage : %s < f i l e . c fg> <w f f i l e > \n” , argv [0]) ;
r e turn 1 ;

}

i f (d i e t i n i t i a l i z e (argv [1] , argc , argv)) {
f p r i n t f (s tde r r , ”DIET i n i t i a l i z a t i o n f a i l e d !\n ”) ;
r e turn 1 ;

}
f i leName = argv [2] ;
p r o f i l e = d i e t w f p r o f i l e a l l o c (f i leName , ” t e s t ” ,DIET WF DAG) ;
i f (! d i e t w f c a l l (p r o f i l e)) {

p r i n t f (” get r e s u l t = %d ” , d i e t w f s c a l a r g e t (” n4#out4 ” , &l)) ;
p r i n t f (”% ld \n” , (long) (∗ l)) ;

}
d i e t w f f r e e (p r o f i l e) ;
r e turn 0 ;

}

14.6 Scheduling

The MADAG agent may receive many requests to execute workflows from one or several
clients, and the number of ressources to execute all tasks in parallel may not be sufficient
on the grid. In this case the choice of a particular workflow scheduler is critical to
determine the order of execution of all tasks that are ready to be executed.

Schedulers provide different online scheduling heuristics that apply different priori-
tization algorithms to choose the order of execution between tasks of the same DAG
(intra-DAG priority) and between tasks of different DAGs (inter-DAG priority). All

c© INRIA, ENS-Lyon, UCBL Page 127

DIET User’s Manual

heuristics are based on the well-known HEFT heuristic that is extended to this case of
online multi-workflow scheduling.

14.6.1 Available schedulers

The available MADAG workflow schedulers are:

• A basic scheduler (option -basic or default choice): this scheduler manages the
precedence constraints between the tasks. The priority between tasks within a dag
is set according (Heterogeneous Earliest Finish Time) HEFT [25] heuristic. When a
task is ready to be executed (i.e., the preceding tasks are completed) the ready task
with the higher HEFT rank is sent to the client for execution without specifying
a ressource. Then the client performs a standard Diet request that will use the
scheduler configured by the SeD .

• A Multi-HEFT scheduler (option -heft): this scheduler applies the HEFT heuristic
to all workflows submitted by different clients to the MADAG. This means that the
priorities assigned by the HEFT heuristic are used to order the tasks of all dags
processed by the MADAG and following this order the tasks are mapped to the first
available ressource.

• A Multi-AgingHEFT scheduler (option -aging heft): this scheduler is similar to
Multi-HEFT but it applies a correction factor to the priorities calculated by the
HEFT algorithm. This factor is based on the age of the dag ie the time since it was
submitted to the scheduler. Compared to Multi-HEFT this scheduler will increase
the priority of the tasks of a workflow that has been submitted earlier than other
dags.

• A FOFT (Fairness on Finish Time) scheduler (option -fairness): this scheduler uses
another heuristic to apply a correction factor to the priorities calculated by the
HEFT algorithm. This factor is based on the slowdown of the dag that is calculated
by comparing the earliest finish time of the tasks in the same environment without
any other concurrent workflow and the actual estimated finish time.

14.6.2 SeD requirements for workflow scheduling

The workflow schedulers (Basic, Multi-HEFT, Multi-AgingHEFT and FOFT) use in-
formation provided by the SeDs to be able to run the HEFT heuristic. So the SeD
programmer must provide the required data in the estimation vector by implementing a
plugin scheduler (see chapter 7).

The following fields in the estimation vector must be filled in:

1. The TCOMP field must contain the estimation of the computation time for the job (in
milliseconds). This can be done using the diet estimate comptime(estVector t

ev, double value) method within the performance evaluation function.

c© INRIA, ENS-Lyon, UCBL Page 128

DIET User’s Manual

2. The EFT field must contain the estimation of the earliest finish time (in milliseconds
from the time of the current submit request) for the job. To compute this value,
the SeD programmer can use the API method
diet estimate eft(...) to retrieve the estimated value of earliest finish time for
a new job.

c© INRIA, ENS-Lyon, UCBL Page 129

DIET User’s Manual

c© INRIA, ENS-Lyon, UCBL Page 130

DIET User’s Manual

Chapter 15

Dagda extension

Dagda (Data Arrangement for Grid and Distributed Applications) is a new data man-
ager for Diet. Dagda offers to the Diet application developers a simple and efficient
way to manage the data. It was not designed to replace the JuxMem extension but
to be possibly coupled with it. In a future work, Dagda will be divided in two parts:
The Dagda data manager and the Dagda data interface. The data interface will make
interactions between Dagda, JuxMem, FTP etc. and other data transfer/management
protocols. In this chapter, we will present the current version of Dagda which is an
alternative data manager for Diet with several advanced data management features.

15.1 Overview

Dagda allows data explicit or implicit replications and advanced data management on the
grid. It was designed to be backward compatible with previously developed applications
for Diet which benefit transparently of the data replications. Moreover, Dagda limits
the data size loaded in memory to a user-fixed value and avoids CORBA errors when
transmitting too large data regarding to the ORB configuration.

Dagda offers a new way to manage the data on Diet. The API allows the application
developer to replicate, move, add or delete a data to be reused later or by another appli-
cation. Each component of Diet can interact with Dagda and the data manipulation
can be done from a client application, a server or an agent through a plug-in scheduler.

A Dagda component is associated to each element in a Diet platform (client, Master
Agent, Local Agent, SeD). These components are connected following the Diet deploy-
ment topology. Figure 15.1 shows how the Dagda and Diet classical components are
connected. In contrary of a Diet architecture, each Dagda component has the same
role. It can store, transfer or move a data. The client’s Dagda component is isolated of
the architecture and communicates only with the chosen SeDs Dagda components when
necessary. When searching for a data, Dagda uses its hierarchical topology to contact
the data managers. Among the data managers having one replicate of the data, Dagda
chooses the ”best” source to transfer it. To make this choice Dagda uses some statistics
collected from previous data transfers between the nodes. By not using dynamic infor-

c© INRIA, ENS-Lyon, UCBL Page 131

DIET User’s Manual

mation, it is unsure that Dagda really chose the ”best” nodes for the transfers. In a
future version, we will introduce some facilities to estimate the time needed to transfer
a data and to improve the choice of a data stored on the grid. To do the data transfers,
Dagda uses the pull model: It is the destination node that ask for the data transfer.

MADAGDA
component

SeD ⁵DAGDA
component

LADAGDA
componentLADAGDA

component

SeDDAGDA
component

PowerBook G4

ClientDAGDA
component

client request ¹

client input
data ⁴

SeD output
data ⁶

input data update ⁶

persistent input
data from another

component ⁴

Selected SeD(s) ²

job submission ³

Figure 15.1: Dagda architecture in Diet.

Figure 15.1 presents how Dagda manages the data when a client submit a job. In
this example, the client wants to use some data stored on the grid and some personal
data. He wants to obtain some results and to store some others on the grid. Some of
these output data are already stored on the platform and they should be updated after
the job execution.

1. The client sends a request to the Master Agent.

2. The Master agent returns one or more SeD references.

3. The client sends its request to the chosen node. The parameters data are identified
by a unique ID and the problem profile contains a reference to the client’s data
manager.

4. Receiving the request the SeD asks the client to transfer the data of the user and
it asks to the Dagda architecture to obtain the persistent data already stored on
the platform.

c© INRIA, ENS-Lyon, UCBL Page 132

DIET User’s Manual

5. The SeD executes the job. After the execution, the SeD stores the output data
and it informs the client that the data are ready to be downloaded. It also asks the
architecture to update the modified output data.

6. The client upload its results and the data are updated on the nodes.

15.2 The Dagda configuration options

Dagda introduces new configuration options that can be defined for all the Dagda
components. None of these options are mandatory to use Dagda. Figure 15.2 presents
all the Dagda available options, their meaning and default values.

Option Description Default value

C
lie

n
t

A
g
e
n
t

S
e
D

storageDirectory The directory on which Dagda will
store the data files

The /tmp directory. 4 4 4

maxMsgSize The maximum size of a CORBA mes-
sage sent by Dagda.

The omniORB giopMaxMsg-
Size size.

4 4 4

maxDiskSpace

The maximum disk space used by
Dagda to store the data. If set to 0,
Dagda will not take care of the disk
usage.

The available disk space on the
disk partition chosen by the
storageDirectory option.

4 4 4

maxMemSpace

The maximum memory space used by
Dagda to store the data. If set to 0,
Dagda will not take care of the mem-
ory usage.

No maximum memory usage is
set. Same effect than to choose
0.

4 4 4

cacheAlgorithm

The cache replacement algorithm used
when Dagda needs more space to store
a data. Possible values are: LRU,
LFU, FIFO

No cache replacement algo-
rithm. Dagda never replace a
data by another one.

4 4 4

shareFiles

The Dagda component shares its file
data with all its children (when the
path is accessible by them, for exam-
ple, if the storage directory is on a NFS
partition). Value can be 0 or 1.

No file sharing - 0 8 4 8

dataBackupFile

The path to the file that will be used
when Dagda save all its stored data/-
data path when asked by the user
(Checkpointing).

No checkpointing is possible. 8 4 4

restoreOnStart
Dagda will load the dataBackupFile
file at start and restore all the data
recorded at the last checkpointing
event. Possible values are 0 or 1.

No file loading on start - 0 8 4 4

Figure 15.2: Dagda configuration options

c© INRIA, ENS-Lyon, UCBL Page 133

DIET User’s Manual

15.3 Cache replacement algorithm

When a data is replicated on a site, it is possible that not enough disk/memory space is
available. In that case, Dagda allows to choose a strategy to delete a persistent data.
Only a simple persistent data can be deleted, the sticky ones are never deleted by the
chosen algorithm. Dagda offers three algorithms to manage the cache replacement:

• LRU: The least recently used persistent data of sufficient size is deleted.

• LFU: The least frequently used persistent data of sufficient size is deleted.

• FIFO: Among the persistent data of sufficient size, the oldest is deleted.

15.4 The Dagda API

By compiling Diet with the Dagda extension activated, the DIET Dagda.h file is in-
stalled on the Diet include directory. This file contains some data management functions
and macros.

15.4.1 Note on the memory management

On the SeD side, Dagda and the SeD share the same data pointers, that means that if
the pointer is a local variable reference, when Dagda will use the data, it will read an
unallocated variable. The users should allways allocate the data with a ”malloc”/”calloc”
or ”new” call on the SeD and agent sides. Because Dagda takes the control of the data
pointer, there is no risk of memory leak even if the service allocate a new pointer at each
call. The data lifetime is managed by Dagda and the data will be freed according to its
persistence mode.

h

On the SeD and agent sides, Dagda takes the control of the data
pointers. To free a data may cause major bugs which could be very
hard to find. The users could only free a Diet data on the client
side after the end of a transfer.

15.4.2 Synchronous data transfers

All of the following functions return at the end of the transfer or if an error occured.
They all return an integer value: 0 if the operation succeeds, another value if it fails.

Dagda put data macros/functions.

The following functions put a data on the Dagda hierarchy to be used later. The last
parameter is always a pointer to a C-string which will be initialized with a pointer to
the ID string of the data. This string is allocated by Dagda and can be freed when
the user does not need it anymore. The first parameter is always a pointer to the data:
For a scalar value a pointer on the data, for a vector, matrix or string, a pointer on the

c© INRIA, ENS-Lyon, UCBL Page 134

DIET User’s Manual

first element of the data. The ”value” argument for a file is a C-string containing the
path of this file. The persistence mode for a data managed by Dagda should allways
be DIET PERSISTENT or DIET STICKY. The VOLATILE and * RETURN modes do
not make sense in this data management context.

- dagda_put_scalar(void* value, diet_base_type_t base_type,

diet_persistence_mode_t mode, char** ID):
This macro adds to the platform the scalar data of type ”base type” pointed by
”value” with the persistence mode ”mode” (DIET PERSISTENT or DIET STICKY)
and initializes ”*ID” with the ID of the data.

- dagda_put_vector(void* value, diet_base_type_t base_type,

diet_persistent_mode_t mode, size_t size, char** ID):
This macro adds to the platform the vector of ”size” ”base type” elements pointed
by ”value” with the persistence mode ”mode” and stores the data ID in ”ID”.

- dagda_put_matrix(void* value, diet_base_type_t base_type,

diet_persistence_mode_t mode, size_t nb_rows,

size_t nb_cols, diet_matrix_order_t order, char** ID):
This macro adds to the platform the ”base type” matrix of dimension ”nb rows” ×
”nb cols” stored in ”order” order. The data ID is stored on ”ID”.

- dagda_put_string(char* value, diet_persistence_mode_t mode, char** ID):
This macro adds to the platform the string pointed by ”value” with the persistence
mode ”mode” and stores the data ID into ”ID”.

- dagda_put_file(char* path, diet_persistence_mode_t mode, char**ID):
This macro adds the file of path ”path” with the persistence mode ”mode” to the
platform and stores the data ID into ”ID”

Dagda get data macros/functions

The following API functions are defined to obtain a data from Dagda using its ID:

- dagda_get_scalar(char* ID, void** value,

diet_base_type_t* base_type):
The scalar value using the ID ”ID” is obtained from Dagda and the ”value” ar-
gument is initialized with a pointer to the data. The ”base type” pointer content is
set to the data base type. This last parameter is optional and can be set to NULL
if the user does not want to get the ”base type” value.

- dagda_get_vector(char* ID, void** value,

diet_base_type_t* base_type, size_t* size):
The vector using the ID ”ID” is obtained from Dagda. The ”value” argument is
initialized with a pointer to the first vector element. The ”base type” content are
initialized with the base type and size of the vector. These two parameters can be
set to NULL if the user does not take care about it.

c© INRIA, ENS-Lyon, UCBL Page 135

DIET User’s Manual

- dagda_get_matrix(char* ID, void** value,

diet_base_type_t* base_type, size_t* nb_r,

size_t* nb_c, diet_matrix_order_t* order):
The matrix using the ID ”ID” is obtained from Dagda. The ”value” argument
is initialized with a pointer to the first matrix element. The ”base type”, ”nb r”,
”nb c” and ”order” arguments contents are repectively set to the base type of the
matrix, the number of rows, the number of columns and the matrix order. All of
these parameters can be set to NULL if the user does not take care about it.

- dagda_get_string(char* ID, char** value):
The string of ID ”ID” is obtained from Dagda and the value content is set to a
pointer on the first string character.

- dagda_get_file(char* ID, char** path):
The file of ID ”ID” is obtained from Dagda and the ”path” content is set to a
pointer on the first path string character.

15.4.3 Asynchronous data transfers.

With Dagda, there is two way to manage the asynchronous data transfers, depending
of the data usage:

• With end-of-transfer control: Dagda maintains a reference to the transfer thread.
It only releases this reference after a call to the corresponding waiting function.
The client developer should always use these functions, that’s why a data ID is
only returned by the ”dagda wait *” and ”dagda wait data ID” functions.

• Without end-of-transfer control: The data is loaded from/to the Dagda hierarchy
without the possibility to wait for the end of the transfer. These functions should
only be called from an agent plugin scheduler, a SeD plugin scheduler or a SeD if
the data transfer without usage of the data is one of the objectives of the called
service. The data adding functions without control should be used very carefully
because there is no way to be sure the data transfer is achieved or even started.

With asynchronous transfers, the user should take care of the data lifetime because
Dagda does not duplicate the data pointed by the passed pointer. For example, if the
program uses a local variable reference to add a data to the Dagda hierarchy and goes
out of the variable scope, a crash could occured because the data pointer could be freed
by the system before Dagda has finished to read it.

Dagda asynchronous put macros/functions

The arguments to these functions are the same than for the synchronous ones. See Section
15.4.2 for more details. All of these functions return a reference to the data transfer which
is an unsigned int. This value will be passed to the ”dagda wait data ID” function.

c© INRIA, ENS-Lyon, UCBL Page 136

DIET User’s Manual

- dagda_put_scalar_async(void* value, diet_base_type_t base_type,

diet_persistence_mode_t mode)

- dagda_put_vector_async(void* value, diet_base_type_t base_type,

diet_persistence_mode_t mode, size_t size)

- dagda_put_matrix_async(void* value, diet_base_type_t base_type,

diet_persistence_mode_t mode, size_t nb_rows,

size_t nb_cols, diet_matrix_order_t order)

- dagda_put_string_async(char* value, diet_persistence_mode_t mode)

- dagda_put_file_async(char* path, diet_persistence_mode_t mode)

After a call to one of these functions, the user can obtain the data ID by calling the
”dagda wait data ID” function with a transfer reference.

- dagda_wait_data_ID(unsigned int transferRef, char** ID):
The ”transferRef” argument is the value returned by a ”dagda put * async” func-
tion. The ”ID” content will be initialized to a pointer on the data ID.

Dagda asynchronous get macros/functions

The only argument needed for one of these functions is the data ID. All of these functions
return a reference to the data transfer which is an unsigned int. This value will be passed
to the corresponding ”dagda wait *” functions described later.

- dagda_get_scalar_async(char* ID)

- dagda_get_vector_async(char* ID)

- dagda_get_matrix_async(char* ID)

- dagda_get_string_async(char* ID)

- dagda_get_file_async(char* ID)

After asking for an asynchronous transfer, the user has to wait the end by calling the
corresponding ”dagda wait *” function. The arguments of these functions are the same
than for the synchronous ”dagda get *” functions. See Section 15.4.2 for more details.

- dagda_wait_scalar(unsigned int transferRef, void** value,

diet_base_type_t* base_type)

- dagda_wait_vector(unsigned int transferRef, void** value,

diet_base_type_t* base_type, size_t* size)

- dagda_wait_matrix(unsigned int transferRef, void** value,

diet_base_type_t* base_type, size_t* nb_r,

size_t* nb_c, diet_matrix_order_t* order)

c© INRIA, ENS-Lyon, UCBL Page 137

DIET User’s Manual

- dagda_wait_string(unsigned int transferRef, char** value)

- dagda_wait_file(unsigned int transferRef, char** path)

A plugin scheduler developer often wants to make an asynchronous data transfer to
the local Diet node. Problems can arise if you want to wait the completion of the
tranfer before returning. But with the previously defined functions, Dagda maintains a
reference to the transfer thread which will be released after a call to the waiting function.
To avoid Dagda to keep infinitely these references, the user should call the ”dagda load *”
functions instead of the ”dagda get * async” ones.

- dagda_load_scalar(char* ID)

- dagda_load_vector(char* ID)

- dagda_load_matrix(char* ID)

- dagda_load_string(char* ID)

- dagda_load_file(char* ID)

15.4.4 Data checkpointing with Dagda

Dagda allows the SeD administrator to choose a file where Dagda will store all the
data it’s managing. When a SeD has a configured and valid path name to a backup
file (”dataBackupFile” option in the configuration file), a client can ask to the agents or
SeDsDagda components to save the data.

The dagda_save_platform() function, which can only be called from a client, records
all the data managed by the agents’ or SeDs’ Dagda components that allow it.
Then, the ”restoreOnStart” configuration file option asks to the Dagda component to
restore the data stored on the ”dataBackupFile” file when the component starts. This
mechanism allows to stop the Diet platform for a while and restart it conserving the
same data distribution.

15.4.5 Create data ID aliases.

For many applications using large sets of data shared by several users, to use an auto-
matically generated ID to retrieve a data is difficult or even impossible. Dagda allows
the user to define data aliases, using human readable and expressive strings to retrieve a
data ID. Two functions are defined to do it:

- dagda_data_alias(const char* id, const char* alias):
Tries to associate ”alias” to ”id”. If the alias is already defined, returns a non zero
value. A data can have several aliases but an alias is always associated to only one
data.

- dagda_id_from_alias(const char* alias, char** id):
This function tries to retrieve the data id associated to the alias.

c© INRIA, ENS-Lyon, UCBL Page 138

DIET User’s Manual

15.4.6 Data replication

After a data has been added to the Dagda hierarchy, the users can choose to replicate it
explicitely on one or several Diet nodes. With the current Dagda version, we allow to
choose the nodes where the data will be replicated by hostname or Dagda component
ID. In future developments, it will be possible to select the nodes differently. To maintain
backward compatibility, the replication function uses a C-string to define the replication
rule.

- dagda_replicate_data(const char* id, const char* rule)

The replication rule is defined as follows:
”<Pattern target>:<identification pattern>:<Capacity overflow behavior>”

• The pattern target can be ”ID” or ”host”.

• The identification pattern can contain some wildcards characters. (for example
”*.lyon.grid5000.fr” is a valid pattern.

• The capacity overflow behavior can be ”replace” or ”noreplace”. ”replace” means
the cache replacement algorithm will be used if available on the target node (a data
could be deleted from the node to leave space to store the new one). ”noreplace”
means that the data will be replicated on the node if and only if there is enough
storage capacity on it.

For example, ”host:capricorne-*.lyon.*:replace” is a valid replication rule.

15.5 On correct usage of Dagda

Some things to keep in mind when using Dagda as data manager for Diet:

• All the data managed by Dagda are entirely managed by Dagda: The user don’t
have to free them. Dagda avoids memory leaks, so the user does not have to worry
about the memory management for the data managed by Dagda.

• When using more than one Dagda component on a node, the user should define
a different storage directory for each component. For example, the Master Agent
and one SeD are launched on the same computer: the user can define the storage
directory of the Master Agent as “/tmp/MA” and the one for the SeD as “/tm-
p/SeD1”. Do not forget to create the directories before to use Dagda. This tip
avoids many bugs which are really hard to find.

• The Dagda API can be used to transfer the parameters of a service, but it should
not be used as this. If an application needs a data which is only on the client,
the user should transmit it through the profile. The Dagda API should be used
to share, replicate or retrieve an existing data. Using the API allows the user

c© INRIA, ENS-Lyon, UCBL Page 139

DIET User’s Manual

to optimize their applications, not to proceed to a diet call even if it works fine.
Indeed, the Dagda client component is not linked to the Diet hierarchy, so using
the API to add a data and then to use it as a profile parameter makes Dagda to
do additional and useless transfers.

• Dagda can be used without any configuration, but it is always a good idea to
define all the Dagda parameters in the configuration files.

For any comment or bug report on Dagda, please contact G. Le Mahec at the fol-
lowing e-mail address: gael.le.mahec@ens-lyon.fr.

15.6 Future works

The next version of Dagda will allow the users to develop their own cache replacement
algorithms and network capacity measurements methods. Dagda will be separated in
two parts: A data management interface and the Dagda data manager itself. Dagda
will implement the GridRPC data management API extension.

c© INRIA, ENS-Lyon, UCBL Page 140

gael.le.mahec@ens-lyon.fr

DIET User’s Manual

Chapter 16

Dynamic management

16.1 Dynamically modifying the hierarchy

16.1.1 Motivations

So far we saw that Diet’s hierarchy was mainly static: once the shape of the hierarchy
chosen, and the hierarchy deployed, the only thing you can do is kill part of the hierarchy,
or add new subtrees to the existing hierarchy. But whenever an agent is killed, the
whole underlying hierarchy is lost. This has several drawbacks: some SeD will become
unavailable, and if you want to reuse the machines on which those SeD (or agents) are,
you need to kill the existing Diet element, and redeploy a new subtree. Another problem
due to this static asignement of the parent/children links is that if you have an agent that
is overloaded, you cannot move part of its children to an underloaded agent somewhere
else in the hierarchy without once again killing part of the hierarchy, and deploying once
again.

16.1.2 “And thus it began to evolve”

Hence, Diet also has a mode in which you can dynamically modify its shape using
CORBA calls. For this, you need to compile Diet with the option DIET USE DYNAMICS.
In this mode, if a Diet element cannot reach its parent, when initializing, it won’t exit,
but will wait for an order to connect itself to a new parent. Hence, you do not need to
deploy Diet starting from the MA down to the SeD , you can launch all the elements at
once, and then, send the orders for each element to connect to its correct parent (you do
not even need to follow the shape of the tree, you can start from the bottom to the tree
up to the root, or use a random order, the service tables will be correctly initialized.)

You now have access to the following CORBA methods:

• long bindParent(in string parentName): sends an order to a SeD or agent to
bind to a new parent having the name “parentName” if this parent can be contacted,
otherwise the element keeps its old parent. If the element already has a parent, it
unsubscribes itself from the parent, so that this latter is able to update its service

c© INRIA, ENS-Lyon, UCBL Page 141

DIET User’s Manual

table and list of children. A null value is returned if the change occurred, otherwise
a value different from 0 is returned if a problem occurred.

• long disconnect(): sends an order to disconnect an element from its parent. This
does not kill the element, but merely removes the link between the element and its
parent. Thus, the underlying hierarchy will be unreachable until the element is
connected to a new parent.

• long removeElement(): sends an order to a SeD to kill itself. The SeD first
unsubscribe from its parent before ending itself properly.

• long removeElement(in boolean recursive): same as above but for agents.
The parameter “recursive” if true also destroys the underlying hierarchy, oth-
erwise only the agent is killed.

Now, what happens if during a request submission an element receives an order to
change its parent? Actually, nothing will change, as whenever a request is received a
reference to the parent from which the request originates is locally kept. So if the parent
changes before the request is sent back to the parent, as we keep a local reference on the
parent, the request will be sent back to the correct “parent”. Hence, for a short period
of time, an element can have multiple parents.

WARNING: currently no control is done on whether or not you are cre-
ating loops in the hierarchy when changing a parent.

16.1.3 Example

Two examples on how to call those CORBA methods are present in
src/examples/dynamic hierarchy:

• connect.cc sends orders to change the parent of an element.
Usage: ./connect <SED|LA> <element name> <parent name>.

• disconnect.cc sends orders to disconnect an element from its parent. It does not
kill the element, but only disconnects it from the Diet hierarchy (useful when your
platform is not heavily loaded and you want to use only part of the hierarchy)
Usage: ./disconnect <SED|LA> <element name>.

• remove.cc sends orders to remove an element.
Usage: ./remove <SED|AGENT> <element name> [recursive: 0|1]

16.2 Changing offered services

16.2.1 Presentation

A SeD does not necessarily need to declare all its services initially, i.e., as presented in
Chapter 5 before launching the SeD via diet_SeD(...). One could want to initially

c© INRIA, ENS-Lyon, UCBL Page 142

DIET User’s Manual

declare a given set of services, and then, depending on parameters, or external events,
one could want to modify this set of services. An example of such usage is to spawn
a service that is in charge of cleaning temporary files when they won’t be needed nor
by this SeD , nor by any other SeD or clients, and when this service is called, it cleans
whatever needs to be cleaned, and then this service is removed from the service table.

Adding a service has already been introduced in Chapter 5: using diet_service_table_add(...)
you can easily add a new service (be it before running the SeD or within a service). Well,
removing a service is as easy, you only need to call one of these methods:

int diet_service_table_remove(const diet_profile_t* const profile);
int diet_service_table_remove_desc(const diet_profile_desc_t* const profile);

So basically, when you want to remove the service that is called, you only need to pass
the diet_profile_t you receive in the solve function to diet_service_table_remove.
If you want to remove another service, you need to build its profile description (just as if
you wanted to create a new service), and pass it to diet_service_table_remove_desc.

16.2.2 Example

The following example (present in src/examples/dyn add rem) initially declares one
service. This service receives an integer n as parameter. It creates n services, and
removes the service that has just been called. Hence a service can only be called once,
but it spawns n new services.

#include <iostream>
#include <sstream>
#include <cstring>

#include "DIET_server.h"
#include "DIET_Dagda.h"

/* begin function prototypes*/
int service(diet_profile_t *pb);
int add_service(const char* service_name);
/* end function prototypes*/

static unsigned int NB = 1;

template <typename T>
std::string toString(T t) {

std::ostringstream oss;
oss << t;
return oss.str();

}

/* Solve Function */
int
service(diet_profile_t* pb) {
int *nb;

c© INRIA, ENS-Lyon, UCBL Page 143

DIET User’s Manual

if (pb->pb_name)
std::cout << "## Executing " << pb->pb_name << std::endl;

else {
std::cout << "## ERROR: No name for the service" << std::endl;
return -1;

}

diet_scalar_get(diet_parameter(pb,0), &nb, NULL);
std::cout << "## Will create " << *nb << " services." << std::endl;

for (int i = 0; i < *nb; i++) {
add_service(std::string("dyn_add_rem_" + toString(NB++)).c_str());

}

std::cout << "## Services added" << std::endl;
diet_print_service_table();

/* Removing */
std::cout << "## Removing service " << pb->pb_name << std::endl;

#ifdef HAVE_ALT_BATCH
pb->parallel_flag = 1;

#endif
diet_service_table_remove(pb);
std::cout << "## Service removed" << std::endl;

/* Print service table */
diet_print_service_table();

return 0;
}

/* usage function */
int
usage(char* cmd) {
std::cerr << "Usage: " << cmd << " <SeD.cfg>" << std::endl;
return -1;

}

/* add_service function: declares SeD’s service */
int
add_service(const char* service_name) {
diet_profile_desc_t* profile = NULL;
unsigned int pos = 0;

/* Set profile parameters: */
profile = diet_profile_desc_alloc(strdup(service_name),0,0,0);

diet_generic_desc_set(diet_param_desc(profile,pos++),DIET_SCALAR, DIET_INT);

/* Add service to the service table */
if (diet_service_table_add(profile, NULL, service)) return 1;

/* Free the profile, since it was deep copied */

c© INRIA, ENS-Lyon, UCBL Page 144

DIET User’s Manual

diet_profile_desc_free(profile);

std::cout << "Service ’" << service_name << "’ added!" << std::endl;

return 0;
}

int checkUsage(int argc, char ** argv) {
if (argc != 2) {
usage(argv[0]);
exit(1);

}
return 0;

}

/* MAIN */
int
main(int argc, char* argv[]) {
int res;
std::string service_name = "dyn_add_rem_0";

checkUsage(argc, argv);

/* Add service */
diet_service_table_init(1);
add_service(service_name.c_str());

/* Print service table and launch daemon */
diet_print_service_table();
res = diet_SeD(argv[1],argc,argv);
return res;

}

16.2.3 Going further

Finally, another example is provided in src/examples/dynamicServiceMgr showing how
to dynamically load and unload libraries containing services. Hence, a client can send a
library to as server, and for as long as the library is compiled for the right architecture,
the server will be able to load it, and instanciate the service present in the library. The
service can further be called by other clients, and whenever it is not required anymore,
it can be easily removed.

c© INRIA, ENS-Lyon, UCBL Page 145

DIET User’s Manual

c© INRIA, ENS-Lyon, UCBL Page 146

DIET User’s Manual

Appendix A

Appendix

A.1 Configuration files

traceLevel

• Component: All

• Mode: All

• Type: Integer

• Description: traceLevel for the Diet agent:

– 0 Diet prints only warnings and errors on the standard error output,

– 1 [default] Diet prints information on the main steps of a call,

– 5 Diet prints information on all internal steps too,

– 10 Diet prints all the communication structures too,

– > 10 (traceLevel - 10) is given to the ORB to print CORBA messages too.

MAName

• Component: Client

• Mode: All

• Type: String

• Description: Master Agent name.

agentType

• Component: Agent (MA and LA)

• Mode: All

• Type: Agent type

• Description: Master Agent or Local Agent? As there is only one executable
for both agent types, it is COMPULSORY to specify the type of this agent:
DIET MASTER AGENT (or MA) or DIET LOCAL AGENT (or LA).

c© INRIA, ENS-Lyon, UCBL Page 147

DIET User’s Manual

dietPort

• Component: All

• Mode: All

• Type: Integer

• Description: the listening port of the agent. If not specified, let the ORB get
a port from the system (if the default 2809 was busy).

dietHostName

• Component: All

• Mode: All

• Type: String

• Description: the listening interface of the agent. If not specified, let the ORB
get the hostname from the system (the first one if several one are available).

name

• Component: Agent and SeD

• Mode: All

• Type: String

• Description: The name of the element. The ORB configuration files of the
clients and the children of this MA (LAs and SeDs) must point at the same
CORBA Naming Service as the one pointed at by the ORB configuration file
of this agent.

parentName

• Component: LA and SeD

• Mode: All

• Type: String

• Description: the name of the agent to which the element will register. This
agent must have registered at the same CORBA Naming Service that is pointed
to by your ORB configuration.

fastUse

• Component: Agent and SeD

• Mode: FAST

• Type: Boolean

c© INRIA, ENS-Lyon, UCBL Page 148

DIET User’s Manual

• Description: If set to 0, all LDAP and NWS parameters are ignored, and all
requests to FAST are disabled (when Diet is compiled with FAST). This is
useful for testing a Diet platform without deploying an LDAP base nor an
NWS platform.

ldapUse

• Component: Agent and SeD

• Mode: FAST

• Type: Boolean

• Description: 0 tells FAST not to look for the services in an LDAP base.

ldapBase

• Component: Agent and SeD

• Mode: FAST

• Type: Address

• Description: ¡host:port¿ of the LDAP base that stores FAST-known services.

ldapMask

• Component: Agent and SeD

• Mode: FAST

• Type: String

• Description: the mask which is registered in the LDAP base.

nwsUse

• Component: Agent and SeD

• Mode: FAST

• Type: Boolean

• Description: 0 tells FAST not to use NWS for its comm times forecasts.

nwsNameserver

• Component: Agent and SeD

• Mode: FAST

• Type: Address

• Description: ¡host:port¿ of the NWS nameserver.

nwsForecaster

• Component: Agent and SeD

c© INRIA, ENS-Lyon, UCBL Page 149

DIET User’s Manual

• Mode: FAST

• Type: Address

• Description: NWS forecast module used by FAST.

useAsyncAPI

• Component: Agent and SeD

• Mode: All

• Type: Boolean

• Description: No longer used

useLogService

• Component: Agent and SeD

• Mode: All

• Type: Boolean

• Description: 1 to use the LogService for monitoring.

lsOutbuffersize

• Component: Agent and SeD

• Mode: All

• Type: Integer

• Description: the size of the buffer for outgoing messages.

lsFlushinterval

• Component: Agent and SeD

• Mode: All

• Type: Integer

• Description: the flush interval for the outgoing message buffer.

neighbours

• Component: MA

• Mode: Multi MA

• Type: String

• Description: A list of Master Agent that must be contacted to build a federa-
tion. The format is a list of host:port.

minimumNeighbours

c© INRIA, ENS-Lyon, UCBL Page 150

DIET User’s Manual

• Component: MA

• Mode: Multi MA

• Type: Integer

• Description: Minimum number of connected neighbours. If the agent has
less that this number of connected neighbours, is going to find some new
connections.

maximumNeighbours

• Component: MA

• Mode: Integer

• Type: Multi MA

• Description: maximum number of connected neighbours. The agent does not
accept a greater number of connection to build the federation than maximum-
Neighbours.

updateLinkPeriod

• Component: MA

• Mode: Multi MA

• Type: Integer

• Description: The agent check at a regular time basis that all it’s neighbours
are still alive and try to connect to a new one if the number of connections is
less than minimumNeighbours. updateLinkPeriod indicate the period in second
between two checks.

bindServicePort

• Component: MA

• Mode: All

• Type: Integer

• Description: port used by the Master Agent to share its IOR.

useConcJobLimit

• Component: SeD

• Mode: All

• Type: Boolean

• Description: should SeD restrict the number of concurrent solves? This should
be used in conjunction with maxConcJobs.

maxConcJobs

c© INRIA, ENS-Lyon, UCBL Page 151

DIET User’s Manual

• Component: SeD

• Mode: All

• Type: Integer

• Description: If useConcJobLimit == true, how many jobs can run at once?
This shoudl be used in conjunction with maxConcJobs.

locationID

• Component: SeD

• Mode: Dagda

• Type: String

• Description: This parameter is used for alternative transfer cost prediction.

MADAGNAME

• Component: Client

• Mode: Workflow

• Type: String

• Description: the name of the MADAG agent to wich the client will connect.

schedulerModule

• Component: Agent

• Mode: User scheduling

• Type: String

• Description: The path to the scheduler library file containing the implemen-
tation of the plugin scheduler class.

moduleConfigFile

• Component: Agent

• Mode: User scheduling

• Type: String

• Description: Optional configuration file for the module.

batchName

• Component: SeD

• Mode: Batch

• Type: String

• Description: The reservation batch system’s name.

c© INRIA, ENS-Lyon, UCBL Page 152

DIET User’s Manual

batchQueue

• Component: SeD

• Mode: Batch

• Type: String

• Description: The name of the queue where the job will be submitted.

pathToNFS

• Component: SeD

• Mode: Batch

• Type: String

• Description: Path to an NFS directory where you have read/write rights.

pathToTmp

• Component: SeD

• Mode: Batch

• Type: String

• Description: Path to a temporary directory where you have read/write rights.

internOARbatchQueueName

• Component: SeD

• Mode: Batch

• Type: String

• Description: only useful when using CORI batch features with OAR 1.6

initRequestID

• Component: MA

• Mode: All

• Type: Integer

• Description: When a request is sent to the Master Agent, a request ID is
associated and by default it begins at 1. If this parameter is provided, it will
begins at initRequestID.

ackFile

• Component: Agent and SeD

• Mode: Acknowledge file

• Type: String

c© INRIA, ENS-Lyon, UCBL Page 153

DIET User’s Manual

• Description: Path to a file that will be created when the element is ready to
execute.

maxMsgSize

• Component: All

• Mode: Dagda

• Type: Integer

• Description: The maximum size of a CORBA message sent by Dagda. By
default this value is equal to the omniORB giopMaxMsgSize size.

maxDiskSpace

• Component: All

• Mode: Dagda

• Type: Integer

• Description: The maximum disk space used by Dagda to store the data. If set
to 0, Dagda will not take care of the disk usage. By default this value is equal
to the available disk space on the disk partition chosen by the storageDirectory
option.

maxMemSpace

• Component: All

• Mode: Dagda

• Type: Integer

• Description: The maximum memory space used by Dagda to store the data.
If set to 0, Dagda will not take care of the memory usage. By default no
maximum memory usage is set. Same effect than to choose 0.

cacheAlgorithm

• Component: All

• Mode: Dagda

• Type: String

• Description: The cache replacement algorithm used when Dagda needs more
space to store a data. Possible values are: LRU, LFU, FIFO. By default, no
cache replacement algorithm. Dagda never replace a data by another one.

shareFiles

• Component: Agent

• Mode: Dagda

c© INRIA, ENS-Lyon, UCBL Page 154

DIET User’s Manual

• Type: Boolean

• Description: The Dagda component shares its file data with all its children
(when the path is accessible by them, for example, if the storage directory is
on a NFS partition). Value can be 0 or 1. By default no file sharing - 0.

dataBackupFile

• Component: Agent and SeD

• Mode: Dagda

• Type: String

• Description: The path to the file that will be used when Dagda save all its
stored data/data path when asked by the user (Checkpointing). By default,
no checkpointing is possible.

restoreOnStart

• Component: Agent and SeD

• Mode: Dagda

• Type: Boolean

• Description: Dagda will load the dataBackupFile file at start and restore all
the data recorded at the last checkpointing event. Possible values are 0 or 1.
By default, no file loading on start - 0.

storageDirectory

• Component: All

• Mode: Dagda or Batch

• Type: String

• Description: The directory on which Dagda will store the data files. By
default /tmp is used.

USE SPECIFIC SCHEDULING

• Component: Client

• Mode: Custom Client Scheduling (CCS)

• Type: String

• Description: This option specifies the scheduler the client will use whenever it
submits a request:

– BURST REQUEST: round robin on the available SeD

– BURST LIMIT: only allow a certain number of request per SeD in parallel
the limit can be set with ”void setAllowedReqPerSeD(unsigned ix)”

c© INRIA, ENS-Lyon, UCBL Page 155

DIET User’s Manual

clientMaxNbSeD

• Component: Client

• Mode: All

• Type: Integer

• Description: The maximum number of SeD the client should receive.

c© INRIA, ENS-Lyon, UCBL Page 156

DIET User’s Manual

Bibliography

[1] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi, Z. Shi, and
S. Vadhiyar. Users’ Guide to NetSolve V1.4. Computer Science Dept. Technical
Report CS-01-467, University of Tennessee, Knoxville, TN, July 2001. http://www.
cs.utk.edu/netsolve/.

[2] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jegou, S. Lanteri, N. Melab,
R. Namyst, P. Primet, O. Richard, E. Caron, J. Leduc, and G. Mornet. Grid’5000:
A large scale, reconfigurable, controlable and monitorable grid platform. In Proceed-
ings of the 6th IEEE/ACM International Workshop on Grid Computing, Grid’2005,
Seattle, Washington, USA, November 2005.

[3] E. Caron and F. Suter. Parallel Extension of a Dynamic Performance Forecasting
Tool. In Proceedings of the International Symposium on Parallel and Distributed
Computing, Iasi, Romania, July 2002.

[4] Eddy Caron and Holly Dail. Godiet: a tool for managing distributed hierarchies
of diet agents and servers. Research report 2005-06, Laboratoire de l’Informatique
du Paralllisme (LIP), February 2005. Also available as INRIA Research Report
RR-5520.

[5] Condor-G. http://www.cs.wisc.edu/condor/condorg/.

[6] M.C. Ferris, M.P. Mesnier, and J.J. Mori. NEOS and Condor: Solving Optimization
Problems Over the Internet. ACM Transaction on Mathematical Sofware, 26(1):1–
18, 2000. http://www-unix.mcs.anl.gov/metaneos/publications/index.html.

[7] C. Germain, G. Fedak, V. Néri, and F. Cappello. Global computing systems. Lecture
Notes in Computer Science, 2179:218–227, 2001.

[8] Globus. http://www.globus.org/.

[9] Sun GridEngine. http://wwws.sun.com/software/gridware/.

[10] GridRPC Working Group. https://forge.gridforum.org/projects/

gridrpc-wg/.

[11] Java. http://java.sun.com/.

c© INRIA, ENS-Lyon, UCBL Page 157

http://www.cs.utk.edu/netsolve/
http://www.cs.utk.edu/netsolve/
http://www.cs.wisc.edu/condor/condorg/
http://www-unix.mcs.anl.gov/metaneos/publications/index.html
http://www.globus.org/
http://wwws.sun.com/software/gridware/
https://forge.gridforum.org/projects/gridrpc-wg/
https://forge.gridforum.org/projects/gridrpc-wg/
http://java.sun.com/

DIET User’s Manual

[12] JNI. http://java.sun.com/j2se/1.3/docs/guide/jni/.

[13] S. Matsuoka, H. Nakada, M. Sato, and S. Sekiguchi. Design Issues of Network
Enabled Server Systems for the Grid. http://www.eece.unm.edu/~dbader/grid/

WhitePapers/satoshi.pdf, 2000. Grid Forum, Advanced Programming Models
Working Group whitepaper.

[14] Nagios. http://www.nagios.org.

[15] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova.
GridRPC: A Remote Procedure Call API for Grid Computing. In Grid 2002, Work-
shop on Grid Computing, number 2536 in Lecture Notes in Computer Science, pages
274–278, Baltimore, MD, USA, November 2002.

[16] H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementations of Ninf: to-
wards a Global Computing Infrastructure. Future Generation Computing Systems,
Metacomputing Issue, 15(5-6):649–658, 1999. http://ninf.apgrid.org/papers/

papers.shtml.

[17] OMNIORB. http://www.uk.research.att.com/omniORB/.

[18] Andy Oram, editor. Peer-to-Peer: Harnessing the Benefits of a Disruptive Technol-
ogy. O’Reilly, 2001.

[19] The JuxMem project. http://juxmem.gforge.inria.fr/.

[20] The JXTA project. http://www.jxta.org.

[21] M. Quinson. Dynamic Performance Forecasting for Network-Enabled Servers in a
Metacomputing Environment. In International Workshop on Performance Modeling,
Evaluation, and Optimization of Parallel and Distributed Systems (PMEO-PDS’02),
April 15-19 2002.

[22] Federico D. Sacerdoti, Mason J. Katz, Matthew L. Massie, and David E Culler.
Wide area cluster monitoring with ganglia, 2003.

[23] M. Sato, M. Hirano, Y. Tanaka, and S. Sekiguchi. OmniRPC: A Grid RPC Facility
for Cluster and Global Computing in OpenMP. Lecture Notes in Computer Science,
2104:130–136, 2001.

[24] Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack Dongarra, Craig Lee,
and Henri Casanova. Overview of GridRPC: A Remote Procedure Call API for
Grid Computing. In Manish Parashar, editor, Grid Computing - GRID 2002, Third
International Workshop, Baltimore, MD, USA, November 18, 2002, Proceedings,
volume 2536 of LNCS, pages 274–278. Springer, 2002.

[25] Haluk Topcuouglu, Salim Hariri, and Min you Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Dis-
trib. Syst., 13(3):260–274, 2002.

c© INRIA, ENS-Lyon, UCBL Page 158

http://java.sun.com/j2se/1.3/docs/guide/jni/
http://www.eece.unm.edu/~dbader/grid/WhitePapers/satoshi.pdf
http://www.eece.unm.edu/~dbader/grid/WhitePapers/satoshi.pdf
http://www.nagios.org
http://ninf.apgrid.org/papers/papers.shtml
http://ninf.apgrid.org/papers/papers.shtml
http://www.uk.research.att.com/omniORB/
http://juxmem.gforge.inria.fr/
http://www.jxta.org

DIET User’s Manual

[26] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Future Generation
Computing Systems, Metacomputing Issue, 15(5–6):757–768, Oct. 1999.

c© INRIA, ENS-Lyon, UCBL Page 159

	Introduction
	1 A Diet platform
	1.1 Diet components
	1.2 Communications layer
	1.3 Diet initialization
	1.4 Solving a problem
	1.5 Diet Extensions
	1.5.1 Multi-MA
	1.5.2 FAST
	1.5.3 CoRI

	2 Diet installation
	2.1 Dependencies
	2.1.1 General remarks on Diet platform dependencies
	2.1.2 Hardware dependencies
	2.1.3 Supported compilers
	2.1.4 Operating system dependencies
	2.1.5 Software dependencies

	2.2 Compiling the platform
	2.2.1 Obtaining and installing cmake per se
	2.2.2 Configuring Diet's compilation: cmake quick introduction
	2.2.3 A ccmake walk-through for the impatients
	2.2.4 Diet's main configuration flags
	2.2.5 Diet's extensions configuration flags
	2.2.6 Diet's advanced configuration flags
	2.2.7 Compiling and installing

	2.3 Diet client/server examples
	2.3.1 Compiling the examples

	3 Diet data
	3.1 Data types
	3.1.1 Base types
	3.1.2 Composite types
	3.1.3 Persistence mode

	3.2 Data description
	3.3 Data management
	3.3.1 Data identifier
	3.3.2 Data file

	3.4 Manipulating Diet structures
	3.4.1 Set functions
	3.4.2 Access functions

	3.5 Data Management functions
	3.5.1 Free functions

	3.6 Problem description
	3.7 Examples
	3.7.1 Example 1: without persistency
	3.7.2 Example 2: using persistency

	4 Building a client program
	4.1 Structure of a client program
	4.2 Client API
	4.3 Examples
	4.3.1 Synchronous call
	4.3.2 Asynchronous call

	4.4 Compilation
	4.4.1 Compilation using cmake

	5 Building a server application
	5.1 Structure of the program
	5.2 Server API
	5.3 Example
	5.4 Compilation

	6 Batch and parallel submissions
	6.1 Introduction
	6.2 Terminology
	6.3 Configuration for compilation
	6.4 Parallel systems
	6.5 Batch system
	6.6 Client extended API
	6.7 Batch server extended API and configuration file
	6.8 Server API
	6.8.1 Registering the service
	6.8.2 Server configuration file
	6.8.3 Server API for writing services
	6.8.4 Example of the client/server 'concatenation' problem

	7 Scheduling in Diet
	7.1 Introduction
	7.2 Default Scheduling Strategy
	7.3 Plugin Scheduler Interface
	7.3.1 Estimation Metric Vector
	7.3.2 Standard Estimation Tags
	7.3.3 Estimation Function
	7.3.4 Aggregation Methods

	7.4 Example
	7.5 Scheduler at agents level
	7.5.1 Scheduling from the agents side.
	7.5.2 Aggregation methods overloading
	7.5.3 The UserScheduler class
	7.5.4 Easy definition of a new scheduler class
	7.5.5 Creation and usage of a scheduler module
	7.5.6 SeD plugin schedulers and agent schedulers interactions
	7.5.7 A complete example of scheduler

	7.6 Future Work

	8 Performance prediction
	8.1 Introduction
	8.2 FAST: Fast Agent's System Timer
	8.2.1 Building FAST
	8.2.2 Using FAST in the plug-in scheduler
	8.2.3 Building a server application with FAST
	8.2.4 Example with convertors

	8.3 CoRI: Collectors of Ressource Information
	8.3.1 Functions and tags
	8.3.2 FAST
	8.3.3 CoRI-Easy
	8.3.4 CoRI batch

	8.4 Future Work

	9 Deploying a Diet platform
	9.1 Deployment basics
	9.1.1 Using CORBA
	9.1.2 Diet configuration file
	9.1.3 Example

	9.2 GoDiet

	10 Diet dashboard
	10.1 LogService
	10.2 VizDIET

	11 Multi-MA extension
	11.1 Function of the Multi-MA extension
	11.2 Deployment example
	11.3 Search examples

	12 P2P Diet extension: DietJ
	12.1 P2P and JXTA
	12.2 Description of the current architecture developed with JXTA
	12.2.1 The JXTA components
	12.2.2 Interfacing JXTA and Diet with JNI

	12.3 The future of DietJ
	12.3.1 Remaining problems

	12.4 Working with a DietJ platform
	12.4.1 Installation and configuration
	12.4.2 Deploying a DietJ platform

	13 JuxMem extension
	13.1 Introduction
	13.2 Overview of JuxMem
	13.3 How to configure Diet to use JuxMem?
	13.4 Example
	13.5 Troubleshooting

	14 Workflow management in Diet
	14.1 Overview
	14.2 Quick start
	14.3 Software architecture
	14.4 Workflow description languages
	14.4.1 MaDag language
	14.4.2 Gwendia language

	14.5 Client API
	14.5.1 Structure of client program
	14.5.2 The simplest example

	14.6 Scheduling
	14.6.1 Available schedulers
	14.6.2 SeD requirements for workflow scheduling

	15 Dagda extension
	15.1 Overview
	15.2 The Dagda configuration options
	15.3 Cache replacement algorithm
	15.4 The Dagda API
	15.4.1 Note on the memory management
	15.4.2 Synchronous data transfers
	15.4.3 Asynchronous data transfers.
	15.4.4 Data checkpointing with Dagda
	15.4.5 Create data ID aliases.
	15.4.6 Data replication

	15.5 On correct usage of Dagda
	15.6 Future works

	16 Dynamic management
	16.1 Dynamically modifying the hierarchy
	16.1.1 Motivations
	16.1.2 ``And thus it began to evolve''
	16.1.3 Example

	16.2 Changing offered services
	16.2.1 Presentation
	16.2.2 Example
	16.2.3 Going further

	A Appendix
	A.1 Configuration files

