MODÉLISER LA CONSOMMATION ÉNERGÉTIQUE DE L'INTERNET DES **OBJETS ET DES RÉSEAUX** ÉLECTRIQUES INTELLIGENTS

Anne-Cécile Orgerie

Entretiens Jacques Cartier 2018 12 novembre 2018, Lyon

Outline

- Context
- Edge clouds & IoT use-case ٠
- End-to-end energy consumption
- · Towards generic energy models for smart systems...
- · Conclusions

Anne-Cécile Orgerie

Internet of many things THE INTERNET OF THINGS 50.I BILLION 42.1 BILLION 34.8 BILLION 📼 28.4 BILLION 22.9 BILLION 18.2 BILLION 14.4 BILLION 🎒 II.2 BILLION 8.7 BILLION INT INCEPTION 0.5 BILLION 1.000.001 Source: Cisco Anne-Cécile Orgerie

Distribution of ICT energy consumption

Rapport Lean ICT : Pour une sobriété Numérique, 2018 https://theshiftproject.org Anne-Cécile Orgerie

Cloud architecture

Anne-Cécile Orgerie

6

How to measure energy efficiency?

Courtesy of Yunbo Li

Anne-Cécile Orgerie

Courtesy of Yunbo Li

Edge-Core Model

Anne-Cécile Orgerie

Costs of running on edge/core cloud for a given application?

Depends on:

- Application's characteristics (generated traffic)
- Application's required QoS (response time, security, etc.) _
- Cloud computing capacities:
 - _ Resource availability
 - Computing & storage capacities
 - Virtual technology (containers, VM configuration, etc.)
- Network bandwidth

Performance/energy trade-off

Anne-Cécile Orgerie

_

Model **Scenario** ... later! Anne-Cécile Orgerie 15 Anne-Cécile Orgerie

Application-driven approach

Anne-Cécile Orgerie

"Leveraging Renewable Energy in Edge Clouds for Data Stream Analysis in IoT", Y. Li, A.-C. Orgerie, I. Rodero, M. Parashar and J.-M. Menaud, p 186-195, IEEE/ACM CCGrid 2017. 17

Evaluation metrics

- Application accuracy (detection probability)
- Service performance (response time) •
- Energy consumption
- Green energy consumption

14

Application details

- Haar classifier (in OpenCV) to analyze video streams for • object detection
- Videos encoded in H.264 at 25 fps in 3 resolutions (360p, . 480p, 720p)
- Analysis of about 1 frame over 3 (8 fps)
- 5 minutes videos for the experiments

	resolution	bit rate
360p	640 x 360	514 kb/s
480p	$720 \ge 480$	706 kb/s
720p	1280 x 720	1176 kb/s

Anne-Cécile Orgerie

•

19

Anne-Cécile Orgerie

Servers' power profile

x86 servers with 12 physical cores (2.3 GHz), • 32 GB RAM

Experiments

Anne-Cécile Orgerie

Experimental methodology

- 1. Application benchmarking on real infrastructure
- 2. Extrapolated results based on simulation

Using:

Servers monitored by wattmeters _

Analysis time on different VM sizes

Real measurements based on 10 runs for each experiment.

Anne-Cécile Orgerie

23

Anne-Cécile Orgerie

Service configuration

Courtesy of Yunbo Li

Anne-Cécile Orgerie

Several small VMs vs. one large VM

(a) Analysis time for 4 identical VMs with 1 data stream each on the same PM

(b) Analysis time for each of the 4 data stream processes in a large VM

Better performance with one large VM Large VM less easy to consolidate, repair, etc.

Depends on application's resource usage

Anne-Cécile Orgerie

26

28

Power and energy consumption

(c) Power consumption for 4 small VMs on Taurus-12 and 1 large VM on Taurus-13 for the same amount of computation

(d) Energy consumption for analyzing a 5 mn video on Taurus-12 with 4 small VMs and on Taurus-13 with 1 large VM $\,$

Power consumptions almost equivalent Better energy consumption with large VM

Simulations

Anne-Cécile Orgerie

27

25

Consolidation within a single VM

(e) Analysis time with parallel data streams in a large VM

(f) Power consumption with parallel data streams in a large VM

8 frames per second to analyze: 0.125 ms per frame max A large VM can handle: 11 360p streams, 5 480p streams and 1 720p stream.

Depends on required application accuracy. Anne-Cécile Orgerie

Cloud configurations

Core cloud

- 100 servers
- 100 ms latency with the edge devices ٠
- Edge cloud
 - 5 servers •
- Unused resources are switched off.

Anne-Cécile Orgerie

Energy consumption at edge & core

(a) Energy consumption with resolution 360p

Edge can handle: 112 *360p* data streams and 16 *720p* data streams.

Depends on servers' architecture.

Anne-Cécile Orgerie

Average application latency

Depends on edge's resources availability

Anne-Cécile Orgerie

31

33

Network energy consumption

Depends on application traffic and edge resources

Anne-Cécile Orgerie

Application accuracy

Object detection accuracy

Classes	720p	480p	360p
car	96.7%	91%	88.5%
body	97.7%	94.9%	90.7%
dog	96.1%	94.9%	90.7%
total	96.7%	92.3%	87.9%

Is it better to have 1 car with 720p resolution or 2 cars with 360p resolutions?

Data from: P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, M. Satyanarayanan, "Scalable crowd-sourcing of video from mobile devices", ACM International Conference on Mobile systems, applications, and services, 2013. Anne-Cécilo Orgerie 34

Summary

Offloading the data to process video streams at edge:

- · Effectively reduces the response time
- Avoids unnecessary data transmission between edge and core
- Extends for instance the battery lifetime of end-user equipment
- On-site renewable energy production and batteries in our scenario can save up to 50% total consumed energy consumed at the edge

"Leveraging Renewable Energy in Edge Clouds for Data Stream Analysis in IoT", Y. Li, A.-C. Orgerie, I. Rodero, M. Parashar and Anne-Cécile Orgerie J.-M. Menaud, p 186-195, IEEE/ACM CCGrid 2017.

What about the other parts?

Which part consumes the most?

"End-to-end Energy Models for Edge Cloud-based IoT Platforms: Application to Data Stream Analysis in IoT", Y. Li, A.-C. Orgerie, I. Rodero, B. Lemma Amersho, M. Parashar, J.-M. Menaud, FGCS, vol. 87, p 667-678, 2018. Anne-Cécile Orgerie 37 Parameters of our example

Parameter	Value
Voltage	3.3 V
Idle current	0.273 A
CCA Busy State current	0.273 A
Tx current	0.38 A
Rx current	0.313 A
Channel Switching current	0.273 A
Sleep current	0.033 A

IoT devices (camera)

Network devices

••••••	L
Cloud data centers	Γ
PUE = 1.7 for edge	ľ
PUE = 1.2 for core	

	Parameter	Edge router	Core router
rs	Idle consumption	4,095 Watts	11,070 Watts
е	Max consumption	4,550 Watts	12,300 Watts
;	Traffic	560 Gbps	4,480 Gbps
	Energy	37 nJ/bit	12.6 nJ/bit

Anne-Cécile Orgerie

ou Gops	4,480 Gbps
87 nJ/bit	12.6 nJ/bit
	38

IoT consumption per device

IoT part including access point

Overall evaluation

Scenario	IoT	Network	Cloud
Edge Cloud	10.96 Watts	0.07 Watts	32.3 Watts
Core Cloud	10.96	0.11 Watts	22.8 Watts

Cost per 360p stream for each part •

- Consumption when in use
- Not including all the infrastructure costs
- IoT part: accurate for the given scenario in an ideal case (without loss on the 802.11 network)
- Network part: following literature model (based on average Internet traffic, so probably underestimated)
- Cloud part: measured, accurate on the given servers Anne-Cécile Orgerie

Conclusions

- Typical (future) application: data stream analysis for IoT . devices and applications
- Real power and performance measurements on a • concrete use-case
- Exploration of possible trade-offs between performance (response time and accuracy) and energy consumption (green and brown)
- First step towards energy-aware IoT applications relying • on edge/core clouds Result

Conclusions

- End-to-end energy consumption •
- Cloud part non negligible
- Started with the study of a given application
- Extending existing simulators with generic validated energy models
- On-going work...
 - Other IoT devices
 - Using other network protocols
- Could increase the use of renewable energy

Anne-Cécile Orgerie

Smart Grids

ICT infrastructure with sensors-actuators to manage the electrical Grid with multiple consumers and producers

45

Thank you for your attention

http://people.irisa.fr/Anne-Cecile.Orgerie

