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Abstract—Building an infrastructure for Exascale applications
requires, in addition to many other key components, a stable
and efficient failure detector. This paper describes the design
and evaluation of a robust failure detector, able to maintain and
distribute the correct list of alive resources within proven and
scalable bounds. The detection and distribution of the fault infor-
mation follow different overlay topologies that together guarantee
minimal disturbance to the applications. A virtual observation
ring minimizes the overhead by allowing each node to be observed
by another single node, providing an unobtrusive behavior. The
propagation stage is using a non-uniform variant of a reliable
broadcast over a circulant graph overlay network, and guar-
antees a logarithmic fault propagation. Extensive simulations,
together with experiments on the Titan ORNL supercomputer,
show that the algorithm performs extremely well, and exhibits
all the desired properties of an Exascale-ready algorithm.

Index Terms—MPI, Failure Detection, Fault-Tolerance

I. INTRODUCTION

Failure detection is a prerequisite to failure mitigation and a
key component to any infrastructure requiring resilience. This
paper is devoted to the design and evaluation of a reliable algo-
rithm that will maintain, and distribute the updated list of alive
resources with a guaranteed maximum delay. We consider
a typical High-Performance Computing (HPC) platform in
steady-state operation mode. Because in such environments the
transmission time can be considered as bounded (although that
bound is unknown), it becomes possible to provide a perfect
failure detector according to the classical definition of [7]. A
failure detector is a distributed service able to return the state
of any node, alive or dead (subject to a crash)1. A failure
detector is perfect if any node crash is eventually suspected
by all surviving nodes, and if no surviving node ever suspects
a node that is still alive. Critical fault-tolerant algorithms for
HPC, and implementations of communication middleware for
unreliable systems rely on the strong properties of perfect
failure detectors (see e.g. [9], [14], [5], [6], [19]). Their cost, in
terms of computation and communication overhead, as well as
their properties in terms of latency to detect and notify failures
and of reliability, have thus a significant impact on the overall
performance of a fault-tolerant HPC solution.

While we focus primarily on of one the most widely
used programming paradigms, the Message Passing Interface
(MPI), the techniques and algorithms proposed have a larger
scope, and are applicable in any resilient distributed program-
ming environment. We consider the platform as being initially

1We use the words failure, crash, or death indifferently.

Platform parameters
N Initial number of nodes
τ Upper bound on the time to transfer a message

Protocol parameters
η Period for heartbeats
δ Time-out for suspecting a failure

TABLE I: List of Notations.

composed of N nodes, but with a high probability, some
of these resources will become unavailable throughout the
execution. When exposed to the crash of one node, traditional
applications would abort. However, the applications that we
consider, are augmented with fault tolerant extensions that
allow them to continue across failures (e.g. [4]), either using
a generic or an application-specific fault tolerant model. The
design of this model is outside the scope of this paper, but
without loss of generality, we can safely assume that any
fault tolerant recovery model requires a robust fault detection
mechanism. Our goal is to design such a robust protocol that
can detect all failures and enable the efficient repair of the
execution platform.

By repairing the platform, we mean that all surviving nodes
will eventually be notified of all failures, and will therefore be
able to compute the list of surviving nodes. The state of the
platform where all failed nodes are known to all processes
is called a stable configuration (note that nodes may not be
aware that they are in a stable configuration).

By robust, we mean that regardless of the length of the
execution, if a set of up to f failures disrupt the platform
and precipitate it into an unstable configuration, the protocol
will bring the platform back into a stable configuration within
T (f) time units (we will define T (f) later in the paper). Note
that the goal is not to tolerate up to f failures overall. On
the contrary, the protocol will tolerate an arbitrary number of
failures throughout an unbounded-length execution, provided
that no more than f successive overlapping failures strike
within the T (f) time-window. Hence, f induces a constraint
on the frequency of failures, and not on the total number of
failures.

By efficiently, we aim at a low-overhead protocol that
limits the number of messages exchanged to detect the faults
and repair the platform. While we assume a fully-connected
platform (any node may communicate with any other), we
use a realistic one-port communication model [3], where
a node can send and/or receive at most one message at
any time-step. Independent communications, involving distinct
sender/receiver pairs, can take place in parallel: however, two
messages sent by the same node will be serialized.SC16; Salt Lake City, Utah, USA; November 2016
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These goals seem contradictory but they only call for a
carefully designed trade-off: as shown in [10], [17], [20],
system noise created by the messages and computations of the
fault detection mechanism, can impose significant overheads
in HPC applications, hence the efficiency of the approach
must be carefully assessed. The overhead should be kept
minimal in the absence of failures, while failure detection and
propagation should execute quickly, which usually implies a
robust broadcast operation that introduces many messages. The
major contributions of this work are as follows:
• A proven algorithm for failure detection, based on a robust
protocol that tolerates an arbitrary number of failures, provided
that no more than f consecutive failures strike within a time
window of duration T (f);
• The protocol has minimal overhead in failure-free operation,
with a unique observer per node;
• The protocol achieves failure detection and propagation in
logarithmic time for up to fmax = blog nc − 1 where n is the
number of alive nodes. More precisely, the bound T (fmax) is
deterministic, and logarithmic in n, even in the worst case;
• All performance guarantees are expressed within a realistic
one-port communication model;
• Extensive simulations and experiments with ULFM [4] show
very good performance of the algorithm.

The rest of the paper is organized as follows. We start
with an informal description of the algorithm in Section II.
We detail the model, the proof of correctness and the time-
performance analysis in Section III. Then we assess the effi-
ciency of the algorithm in a practical setting, first by reporting
on a comprehensive set of simulations in Section IV, and
then by discussing experimental results on the ORNL Titan
supercomputer in Section V. Section VI provides an overview
of related work. Finally, we outline conclusions and directions
for future work in Section VII.

II. ALGORITHM

This section provides an informal description of the algo-
rithm. We refer to Section III for a detailed presentation of the
model, a proof of correctness and a time-performance analysis.
We maintain two main invariants in the algorithm:

1) Each alive node maintains its own list of known dead
resources;

2) Alive nodes are arranged along a ring and each node
observes its predecessor in the ring. In other words, the
successor/observer receives heartbeats from its predeces-
sor/emitter (see below).

When a node crashes, its observer broadcasts the information
and reconnects the ring: from now on, the observer will
observe the last known predecessor (accounting for locally
known failures) of its former predecessor. The rationale for
using a ring for detection is to reduce the overhead in the
failure free case: with only one observer, a minimal number
of heartbeat messages have to be sent. We use the protocol
suggested in [8] for fault detection. Consider a node q observ-
ing a node p. The observed node p is also called the emitter,
because it emits periodic heartbeat messages m1,m2, . . . at
time σ1, σ2, . . . to its observer q, every η time units. Now let

Algorithm 1 Sketch of the failure detector for node i.
1: task Initialization
2: emitteri ← (i− 1) mod N
3: observeri ← (i+ 1) mod N
4: HB-TIMEOUT ← η
5: SUSP-TIMEOUT ← δ
6: Di ← ∅
7: end task
8:
9: task T1: When HB-TIMEOUT expires

10: HB-TIMEOUT ← η
11: Send HEARTBEAT(i) to observeri
12: end task
13:
14: task T2: upon reception of HEARTBEAT(emitteri)
15: SUSP-TIMEOUT ← δ
16: end task
17:
18: task T3: When SUSP-TIMEOUT expires
19: SUSP-TIMEOUT ← 2δ
20: Di ← Di ∪ emitteri
21: dead← emitteri
22: emitteri ← FindEmitter(Di)
23: Send NEWOBSERVER(i) to emitteri
24: Send BCASTMSG(dead, i,Di) to Neighbors(i,Di)
25: end task
26:
27: task T4: upon reception of NEWOBSERVER(j)
28: observeri ← j
29: HB-TIMEOUT ← 0
30: end task
31:
32: task T5: upon reception of BCASTMSG(dead, s,D)
33: Di ← Di ∪ {dead}
34: Send BCASTMSG(dead, s,D) to Neighbors(s,D)
35: end task
36:
37: function FindEmitter(Di)
38: k ← emitteri
39: while k ∈ Di do
40: k ← (k − 1) mod N

41: return k
42: end function

σ′i = σi + δ. At any time t ∈ [σ′i, σ
′
i+1), q trusts p if it has

received heartbeat mi or higher. Here, δ is the time-out after
which q suspects the failure of p. Assume there are initially N
alive nodes numbered from 0 to N−1, and node i+1 mod N
observes node i according to the previous protocol, for all
0 ≤ i ≤ N − 1. Tasks T1 and T2 in Algorithm 1 execute this
basic observation node, with the time-out delay being reset
upon reception of a heartbeat. Note that [8] shows that this
protocol, where the emitter spontaneously sends heartbeats to
its observer, exhibits better performance than the variant where
observers reply to heartbeat requests.

What happens when an observer (node i) suspects the
crash of its predecessor in the ring? Task T3 in Algorithm 1
implements two actions. First, it updates the local list Di of
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dead nodes with the identity of its emitter and then reconnects
the ring (lines 19 to 23); and second, it initiates a reliable
broadcast informing all nodes in its current list of alive nodes
about the crash of its predecessor (line 24).

The first action, namely the reconnection of the ring, is taken
care of by the procedure FindEmitter(Di): node i searches its
list of dead resources Di and finds the first (believed) alive
node, j, preceding it in the ring. It assigns j as its new emitter
and sends a message NEWOBSERVER informing j that i has
become its observer. Node i also sets a timeout to 2δ time
units, a period after which it will suspect its new emitter, j,
if it has not received any heartbeat. Task T4 implements the
corresponding action at the emitter side.

The second action for node i is the broadcast of the
crash to all alive nodes (according to its current list). A
message BCASTMSG(dead, i,Di) containing the identity of
the crashed node dead, the source of the broadcast i, and the
locally known list of dead nodes Di is broadcast to all alive
nodes (according to the current knowledge of node i). We now
detail how this procedure works. Let A be the complement
of Di in {0, 1, . . . , N − 1}, and let n = |A|. The elements
of A are labeled from 0 to n − 1, where the source i of
the broadcast is labeled 0. The broadcast is tagged with a
unique identifier and involves only nodes of the labeled list A
(this list is computable at each participant as Di is part of the
message). Because n is not necessarily a power of two, we
have a complication2. Letting k = blog nc (all logarithms are
in base 2), we have 2k ≤ n < 2k+1. We use twice the reliable
hypercube broadcast algorithm (HBA) of [25]. The first HBA
call is from the source (label 0) to the sub-cube of nodes j,
where 0 ≤ j ≤ 2k, and the second HBA call is from the
same source (label 0) to the sub-cube of nodes n− j mod n,
where 0 ≤ j ≤ 2k. Each HBA call thus involves a complete
hypercube of 2k nodes, and their union covers all n nodes
(with some overlap). The HBA algorithm delivers multiple
copies of the broadcast message through disjoint paths to
all the nodes in the system. Each node executes a recursive
doubling algorithm and propagates the received information
to up to k participants ahead of it, located at distance 2k for
0 ≤ j ≤ 2k. For simplicity we refer to both HBA calls as a
single broadcast in our algorithm.

Upon reception of a broadcast message including a source
s and a list of dead nodes D, any alive node i can reconnect
the complement list A of nodes involved in the broadcast
operation and their labels, and then compute the ordered set
of neighbors Neighbors(s,D) to which it will then forward
the message. We stress that the same list D, or equivalently
the same set of participating nodes, is used throughout the
broadcast operation, even though some intermediate nodes
might have a different knowledge of dead and alive nodes.
This feature is essential to preserving fault-tolerance in the
algorithm of [25]. Indeed, we know from [25] that each sub-
hypercube broadcast is guaranteed to complete provided that
there are no more than k − 1 dead nodes within participating
nodes (set A) while the broadcast executes.

2Delay-bounded fault-tolerant broadcasts are not easily obtained for arbi-
trary values of n, see the discussion in Section VI-B.

III. MODEL & PERFORMANCE ANALYSIS

This section provides a detailed presentation of the model,
and a proof of correctness of the algorithm, together with a
worst-case time-performance analysis.

A. Model

1) General Framework: Nodes can communicate by send-
ing messages in communication channels, expected to be loss-
less and not ordered. Any node can send a message to any
other node. Messages in the communication channel (p, q) take
a random time Tp,q to be delivered, which has an upper bound
τ . We consider executions where nodes can crash permanently
at any time. If a node p crashes, then all communication
channels to p are emptied, p does not send any message nor
execute any local assignment.

Note that τ is a property of the platform, that represents
the maximal time that separates a process entering a send op-
eration, and the destination process having the corresponding
message ready to read in its memory. While the exact value
for τ is generally unknown, it can be bounded in our case,
using the techniques described in Section V-A. The algorithm
uses δ > τ as a bound to define the limit after which a node is
suspected dead. Tuning the value of δ as close as possible to
τ , without underestimating τ to guarantee that false positives
are not detected, is an operation that must be fitted for each
target platform. Thus, in the theoretical analysis, we use τ
to evaluate the worst case of a communication that succeeds,
while the algorithm must rely on δ to detect a failure.

2) Using the One-Port Model: While we assume a fully-
connected platform (any node may communicate with any
other), we use a realistic one-port communication model [3]
where a node can send and/or receive at most one message at
any time-step. Independent communications, involving distinct
sender/receiver pairs, can take place in parallel: however, two
messages involving the same node will be serialized. Using
the one-port model while aiming at a low-overhead protocol
is a key motivation to this work. It is not realistic to assume
that each node would observe any other node, or even a
large subset of nodes: while this would greatly facilitate the
diffusion of knowledge about a new crash, and speed-up the
transition back to a stable configuration, it would also incur a
tremendous overhead in terms of heartbeat messages, and in
the end dramatically impact the throughput of the platform.

Because all messages within our algorithm have a small-
size, we model our communications using a constant time τ to
send a message from one node to another. We could have used
a traditional model such as LogP, or used a start-up overhead
plus a time proportional to the message size, but since we
use this only as an upper bound, this would complicate the
analysis unnecessary. Under the one-port model, the HBA
algorithm [25] with 2k nodes executes in 2kτ , provided that no
more than k− 1 crashes strike during its execution. The time
for one complete broadcast algorithm in Algorithm 1 would
then be (upper bounded by) 4τ log n in the absence of any
other messages, since we use two HBA calls in sequence. But
our algorithm also requires heartbeats to be sent along the ring,
as well as NEWOBSERVER messages when ring reconnection
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is needed. Assuming that η ≥ 3τ (where η is the heartbeat
period), we can always insert broadcast and NEWOBSERVER
messages in between two successive heartbeats, thereby guar-
anteeing that a broadcast in Algorithm 1 will always execute
within B(n) = 8τ log n, assuming no new failure interrupts
the broadcast operation.

3) Stable Configuration and Stabilization Time: Here we
consider executions that, from the initial configuration, reached
a steady state before a failure hit the system and made it leave
that steady state. To prove the correctness of our algorithm, we
show that in a given time, the system returns to a steady state,
assuming that no more than a bounded number of failures
strike during this time.

Connected Node A node p is connected with its successor
in a configuration, if p is alive and emitterp is the closest
predecessor of p that is alive (on the ring). It is connected
with its predecessor if it is alive, and observerp is the
closest successor of p that is alive in that configuration. It
is reconnected if it is connected with both its successor and
predecessor. If all processors are reconnected, we say the ring
is reconnected.

Stable Configuration A configuration C is the global state of
all processes plus the status of the network. A configuration
is declared as stable, if any alive node p is reconnected in C
and for any node q, q ∈ Dp ⇐⇒ q is dead in C.

Stabilization Time T (f), with f being the number of over-
lapping failures, is the duration of the longest sequence of non
stable configurations during any execution, assuming at most
f failures during the sequence.

B. Correctness and Performance Analysis

The main result is the following proof of correctness, that
provides a deterministic upper bound on the Stabilization Time
T (f) of the algorithm with at most f overlapping faults:

Theorem 1. With n ≤ N alive nodes, and for any f ≤
blog nc − 1, we have

T (f) ≤ f(f + 1)δ + fτ +
f(f + 1)

2
B(n) (1)

where B(n) = 8τ log n.

This upper bound is pessimistic for many reasons, which
are discussed after the proof. But the key point is that the
algorithm tolerates up to blog nc − 1 overlapping failures in
logarithmic time O((log n)3).

Proof. Starting from a non stable configuration, the next stable
configuration will be reached when (i) all nodes are informed
of the different failures via the broadcast, and (ii) processes
of the ring are reconnected. Recall that every time a node has
detected a failure, it initiates a broadcast that executes within
B = B(n) = 8τ log n time units, and which is guaranteed
to reach all alive nodes as long as f ≤ blog nc − 1. Because
we interleave reconnection messages within the broadcast, B
encompasses both the broadcast and the reconnection. How-
ever, due to the one-port model, we cannot assume anything
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Fig. 1: Segments of dead nodes after f = 3 failures: n = 9, k = 2, I1 =
{2, 3}, I2 = {5}, d1 = 2 and d2 = 1.

about the pipelining of several consecutive broadcast opera-
tions. In this proof, we make a first simplification by over-
approximating T (f) as the maximum time R(f) to reconnect
the ring after f overlapping failures, plus the time to execute
all the broadcasts that were initiated, in sequence (assuming
no overlap at all). We prove an upper bound on R(f) by
induction, letting R(0) = 0:

Lemma 1. For 1 ≤ f ≤ blog nc − 1, we have

R(f) ≤ R(f − 1) + 2fδ + τ (2)

Proof. We first prove Equation (2) when f = 1. Assume that
node p, observed by node q, fails. After receiving the last
heartbeat, q needs δ time units to detect the failure (line 15 of
Algorithm 1). Thus, the worst possible scenario is when p fails
right after sending a heartbeat, which will take τ time units
to reach q. Thus q detects the failure after τ + δ time units.
Finally, q sends the reconnection message to the predecessor
of p, which will take τ , hence R(1) ≤ 2τ + δ. We keep the
over-approximation R(1) ≤ τ + 2δ to simplify the formula in
the general case.

Assume now that Equation (2) holds for all f ≤ blog nc−2.
Now consider an execution with f+1 overlapping failures, the
first of them striking at time 0 (see Figure 2). The (f + 1)-th
failure strikes at time t. Necessarily t ≤ R(f), otherwise the
ring would have been reconnected after f failures, and the last
one would not be overlapping. There are f dead nodes just
before time t among the original n alive nodes, which define
k ≤ f segments Ii, 1 ≤ i ≤ k. Here, segment Ii is an interval
of di ≥ 1 consecutive dead nodes (see Figure 1). Of course∑k
i=1 di = f , and there remain n− f alive nodes. There are

multiple cases depending upon which node is struck by the
(f + 1)-th failure at time t:

(a) The new failure strikes a node that is neither a prede-
cessor nor a successor of a segment (e.g., the failure strikes
node 7 in Figure 1). In that case, a new segment of length 1
is created, and the ring is reconnected at time t+R(1).

(b) The new failure strikes a node p that precedes a segment
Ii. Let q be the successor of the last dead node in Ii. By
definition, q 6= p. There are two sub-cases: (i) The predecessor
p′ of p is still alive (e.g., the failure strikes node 1 preceding
segment I1 in Figure 1, q = 4 and p′ = 0 is alive). Then the
size of segment Ii is increased by one. In the worst case, q is
not aware of the death of any node in Ii at time t, and needs to
probe all these nodes one after the other before reconnecting
with p′ (in the example, q = 4 needs to try to reconnect with
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2 and 1 since it is not aware of their death). This costs at most
(di + 1)(2δ) + τ ≤ 2(f + 1)δ + τ , because di + 1 ≤ f + 1,
hence the ring is reconnected at time t + 2(f + 1)δ + τ . (ii)
The predecessor p′ of p is dead (e.g., the failure strikes node 4
preceding segment I2 in Figure 1, q = 6 and p′ = 3 is dead).
Then p′ is the last node of another segment Ij . In that case,
segments Ii and Ij are merged into a new segment of size
di + dj + 1 ≤ f + 1. Just as before, in the worst case, q is not
aware of the death of any node in that new segment, and the
reconnection costs at most (di+dj+1)(2δ)+τ ≤ 2(f+1)δ+τ
(see Figure 2 for an illustration). Hence the ring is reconnected
at time t+ 2(f + 1)δ + τ .

(c) The new failure strikes a node p that follows a segment
Ii. Let q be the successor of p. If q is alive, it now follows a
segment of size di + 1. If q is the first dead node of segment
Ij , let r be the node that follows Ij . Now r follows a segment
of size di + dj + 1. In both cases, we conclude just as before.
This completes the proof of Lemma 1.

From Lemma 1, we easily derive by induction that

R(f) ≤ f(f + 1)δ + fτ

for all values of f ≤ blog nc−1. During the ring reconnection,
processes that discover a dead process initiate a broadcast of
that information. We need to count, in the worst case, how
many broadcasts are initiated to compute how long it takes
for the information to be delivered to all nodes.

Lemma 2. Let pi, 1 ≤ i ≤ f ≤ blog nc − 1 be the i − th
process subject of a failure. In the worst case, at most f−i+1
processes can detect the death of pi.

Proof. A process p is discovered dead by process q in Task
T3, if emitterq = p. In that case, p is added to Dq , and
emitterq is re-computed using FindEmitter. That function
cannot return any process in Dq , and p is never removed from
Dq . Thus, q will never discover the death of p again. As long
as q lives, no other process q′ will execute the task T3 with
emitterq′ = p, because q is an alive process between q′ and
p in the ring. Thus, q must fail after p, for p to be discovered
once more. Since there are at most f faults, pi, the i − th
failed process can thus be discovered dead by at most f−i+1
processes.

We derive from Lemma 2 that at most
∑f
i=1(f − i+ 1) =

f(f+1)
2 broadcasts are initiated. Finally, the information on the

f dead nodes must reach all alive nodes. For each segment
Ii, there is a last failure after which the broadcast initiated
by the observing process is not interrupted by new failures.
That broadcast operation thus succeeds in delivering the list of
newly discovered dead processes to all others (di ≤ blog nc−
1). In the worst case, that broadcast operation is the last to
complete. As already mentioned, we conservatively consider
that all the broadcast operations execute in sequence. Since
there are at most f(f+1)

2 broadcast operations initiated , we
obtain T (f) ≤ R(f) + f(f+1)

2 B(n), which leads to the upper
bound in Equation (1) and concludes the proof of Theorem 1.

0 421 3

HB τ + δ ≤ 2δ to detect the
failure of 3

NO 4 detects failure of 2 after 2δ
This failure increases the size
of segment I1 = {3} by
one, now I1 = {3, 2}

NO 4 detects failure of 1 after 2δ
This failure increases the size
of the segment I1 = {3, 2} by
one, now I1 = {3, 2, 1}

NO

Ring reconnected
HB B(n)

B(n)

B(n)

Bcast

Broadcast messages of the
failure of processes 3, 2 and 1

T (3, C)

HB=HEARTBEAT
NO=NEWOBSERVER
Bcast=Broadcast Operation

Fig. 2: From stable configuration C, growing segment I1 of Figure 1: first
failure on node 3, next two failures striking its ring predecessors.

The bound on T (f) given by Equation (1) is quite pes-
simistic. We can identify three levels of complexity with their
corresponding bounds on T (f). In the most likely scenario,
where the time between two consecutive faults is larger than
T (1), the system has time to return to a stable configuration
before the second fault, in which case all faults can be
considered as independent, and the average stabilization time
is T (1) = R(1) + B(n) = O(log n). If the system suffers
quickly overlapping faults, the location of impacted nodes
becomes important. However, the larger the platform, the
smaller the probability that successive faults strike consecutive
nodes (2/n, where n is the number of alive nodes). Thus, on
large platforms, overlapping failures are more likely to strike
non consecutive nodes in the ring. If overlapping faults hit non
consecutive nodes rapidly, i.e., faster than the time needed by
the system to reach the next stable configuration, each error
is detected once, but due to the one-port model, the upper
bound on T (f) becomes R(1) +fB(n) = O(log2 n). Finally,
in the unlikely scenario where f quickly overlapping faults hit
f consecutive nodes in the ring, the Theorem 1 provides the
upper bound for T (f) ≤ R(f) + f(f+1)

2 B(n) = O(log3n).

C. Non Stabilization Risk Control

To guarantee convergence within T (f) time units, Algo-
rithm 1 assumes that f ≤ blog(n)c − 1. In order to evaluate
the risk behind this assumption, consider that failures strike
following an Exponential distribution of parameter λ. Let
PT (f) be the probability of the event “more than f failures
strike within time T”. Then PT (f) = 1− Σfk=0

(λT )k

k! e−λT .
Consider a platform of n nodes: if µind is the MTBF of a

single node, then λ = n
µind

[15]. Let M = blog(n)c − 1, the
assumption that there will not be more than M failures before
stabilization is then true with probability PT (M)(M). In Fig-
ure 3, we represent this relation by showing the upper bound
of δ to enforce PT (M)(M) < 10−9, at variable machines scale
(n), and for different values of µind, with a message time bound
of τ = 1µs. Figure 3 illustrates that for all values of δ lower
than the bound shown for a given system size and individual
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Fig. 3: Maximal value for δ to ensure that PT (M)(M) < 10−9 with τ = 1µs
and M = blog2(n)c.

node reliability, the probability that failures strike fast enough
to prevent Algorithm 1 from converging in T (f) is negligible
(less than 0.000000001). As already mentioned, this bound
on δ is a loose upper bound, because the bound on T (f) in
Equation (1) is loose itself. Furthermore, it captures the risk
that enough failures would strike during stabilization time to
make the appearance of the worst case scenario possible, even
though this worst case scenario has itself a very low probability
to happen (as shown in Sections IV and V). Still, for the largest
platforms with n = 256, 000 nodes, we find that δ ≤ 22s for
the most pessimistic µind = 20 years, and δ ≤ 60s if µind = 45
years results in timely convergence. With such large values,
the detector generates negligible noise to the applications, as
shown in Section V-C.

IV. SIMULATIONS

We conduct simulations and experiments to evaluate the per-
formance of the algorithm under different execution scenarios
and parameter settings. We instantiate the model parameters
with realistic values taken from the literature. The code for all
algorithms and simulations is publicly available [26], so that
interested readers can build relevant scenarios of their choice.
In this section, we report simulation results. See Section V for
experiments.

A. Simulation Settings

The discrete-event simulator imitates how the protocol of
Algorithm 1 would behave on a distributed machine of size n.
Messages between a pair of alive nodes in this machine take
a uniformly distributed time in the interval (0, τ ]. Failures are
injected following an exponential law of parameter λ = n/µind
(see Section III-C). In order to generate a manageable amount
of events, each heartbeat message and the corresponding
timeouts are not simulated, but the simulator asserts that a
timeout should have expired on the observer after the death of
its emitter, if the observer is alive at that time (otherwise, the
observer’s observer is going to react, following the protocol).

The simulator computes (i) the average time to reach a
stable configuration (all processes know all faults) starting
from a configuration with a single failure injected at time 0, (ii)
the average time to reach a configuration where all processes
know about the initial failure, and (iii) the average number
of failures striking during the time it takes to reach a stable
configuration, over a set of 10,000 independent runs.
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Fig. 4: Average Stabilization Time, when the maximal number of failures
strike a platform of varying size in the scenario LOWNOISE (δ = 1min, τ =
1µs, η = 10s).

We consider two main scenarios for the simulations. In both
scenarios, we target a large scale machine (up to 256,000
computing nodes) with a low latency interconnect (τ = 1µs).
In the scenario LOWNOISE, we set the failure detector so
as to minimize the overhead in the failure free case: η is
set to 10 seconds, and δ to 1 minute. We consider this
case significant for platforms where nodes are expected to be
reliable, or where alternative methods to detect most failures
exist; the heartbeat mechanism is then used as a last resort
solution, e.g. when special hardware providing a Baseboard
Management Controller and controlled through a protocol
like IPMI [30] is connected to the application notification
system. We also considered a scenario LOWLAT, with the
opposite assumptions, where active check through heartbeats
is the primary method to detect failures, and a low latency of
detection is required for the application: η = 0.1s, and δ = 1s.

B. Simulation Results

In Figure 4, we force the simulator to inject the maximum
number of failures tolerated by the algorithm for a given
platform size (blog2(n)c − 1) in a very short time, inferior
to δ, in order to evaluate the average stabilization time in the
most volatile environment. Varying the system size (n), and
the number of injected failures simultaneously, we evaluate the
time taken for the first failure to be notified to all processes,
and for all the processes to be notified of all the failures that
struck since the last stable configuration.

The figure considers scenario LOWNOISE. Points on the
graph show times reported by the simulator, while lines
represent functions fitted to these points, O( 1

n + blog2(n)c)
for all know all failures (orange lines), and O( 1

n ) for all know
the first failure (green lines).

In average, the first failure, striking at time 0, is detected
δ − η

2 seconds later, and this is the observed base line for
detecting the first failure at all nodes. The reliable broadcast
overhead in this case is negligible, because τ << δ and η.
There are a few executions in which, within the first δ seconds,
another failure hits the observer of the first failure, introducing
another δ delay to actually detect the first failure and broadcast
it. As the size of the machine increases, this probability
decreases. Such overlapping failure cases contribute to a longer
detection and notification time that can be fitted with a function
inversely proportional to the platform size, but have a low
probability to happen, introducing a measurable but small
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Fig. 5: Average Stabilization Time, with random overlapping failures in
scenario LOWNOISE (δ = 1min, τ = 1µs, η = 10s), with µind = 1year.

overhead at small scale. For general stabilization, where all
processes need to know all failures, the reliable broadcast
remains as fast as for the initial failure. However, if any failure
strikes before that broadcast phase is complete, this delays
reaching stabilization by another δ followed by a logarithmic
phase. As we observe in both figures, this shows at large scale,
where failures have a high probability to strike successively,
each introducing a constant overhead. The fitting function
thus shows the same inversely proportional property in the
beginning, then the logarithmic behavior starts to dominate at
large scale.

We conducted the same set of simulations on the LOWLAT
scenario, but cannot include them for lack of space. The
evaluation presents the exact same characteristics, shifted by
the ratio between the two values for δ.

We then consider the average case, when failures are not
forced to strike quasi-simultaneously. We set the MTBF of
independent components to a very pessimistic value (µind =
1year), making the MTBF of the platform decrease to a couple
of minutes at 256,000 nodes. Although we do not expect such
a pessimistic value in real platforms, we evaluate this case in
order to ensure that failures may occur before the initial one
is detected and broadcast (or stabilization would be reached
immediately after). Figure 5 presents the average number of
failures observed at different scales, the average time for all
nodes to know about the first failure, and the average time for
all nodes to know about all failures. Points represent values
given by the simulator, while lines represent fitting functions:
O(1) for the time for all to know the first failure, O(n) for the
average number of failures and the average time for all to know
all failures. We present here the scenario LOWNOISE, although
the result also holds for scenario LOWLAT, at a different scale.

This figure shows that, on average, and even with extremely
low MTBFs, the probability that two independent failures hit
the system in an overlapping manner (before the first failure is
known by all nodes) is very low. This happens when the MTBF
of the system becomes comparable to δ. In that case, the first
failure still takes close to a constant time to be notified to all.
This is because τ log2(n) remains very small compared to δ,
and once the broadcast is initiated, it completes in τ log2(n).
The successive failures may strike anytime between [0, δ],
delaying the time to reach the stable configuration by another

δ + τ log2(n). On average, at 256,000 nodes, this happens in
the middle of the initial failure detection interval, delaying the
completion by δ/2. Each failure, however, is independent in
that case, and each is detected almost δ time units after it
strikes.

V. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of an
operational implementation of the proposed failure detector
on the Titan ORNL supercomputer. We have implemented
the failure detection and propagation service in the reference
implementation of the User-Level Failure Mitigation (ULFM)
draft MPI standard [5], provided by OPEN MPI. ULFM is an
extension of the MPI standard that empowers MPI users (that
is, applications, library developers, or parallel programming
languages) to provide their own fault tolerant strategy. The
general design of ULFM relies on local semantics: failures
are notified to the user only in MPI calls that involve a failed
process, and a correct ULFM implementation will try to make
all operations succeed, if it can complete locally. Although
this relaxed design eases the implementation requirements
and delivers higher failure-free performance, the fact that
a failure is guaranteed to be detected only after an active
reception from the dead process can lead to an increase of
latency during failure recovery operations, because the same
process failures may be detected sequentially by multiple
processes, possibly at a much later time than when they were
first reported. Moreover, several routines imply necessarily
a communicator-wide knowledge on failures: operations like
MPI_COMM_AGREE and MPI_COMM_SHRINK need to build
consistent knowledge on (sub)sets of acknowledged failures;
a pending point-to-point reception from any source must
eventually raise an error, if it cannot complete because of the
death of a processor. Therefore, the addition of the failure
detection and propagation service provides an acceleration to
such scenarios, by eliminating delayed local observation of
the failure, which can then be immediately reported to the
upper-level, which can then act upon it quickly.

A. Implementation

The failure detector is composed of two components: the
observation ring, and the propagation overlay. The components
operate on a group of processes, which must be MPI consistent
(that is, identical at all ranks). The propagation topology
is implemented at the Byte Transport Layer (BTL) level,
which provides the portable low-level transport abstraction in
OPEN MPI.

The propagation overlay takes advantage of the Active
Message behavior of the OPEN MPI BTL’s. Each message,
with a size lesser than the “eager” protocol switch point,
contains the index of the callback function to be analyzed
by upon reception. This approach provides independence from
the MPI semantic (including matching). Upon the reception of
a propagation message, the message is forwarded according
to two possible algorithms. In the case where the overlay
is not corrected to incorporate the knowledge about failed
processes, thus the group can be considered as an invariant
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Fig. 6: Sensitivity to noise resulting from the failure detector activity for varied workloads.

during the entire execution, the message is forwarded as
is through the propagation topology which is constructed
every time a broadcast is initiated, according to the algorithm
presented in Section II, in order to guarantee the logarithmic
propagation delay. When the upper level declares, through a
runtime parameter, that it repairs its communicators after every
stabilization phase, the reliable propagation overlay can reduce
the size of the messages to include only the latest detected
failures, and the overlay is then built considering all processes
of the group.

The observation ring is also built at the BTL level. The emis-
sion of the heartbeats poses a particular challenge in practice.
The timely activation and delivery of heartbeats is of critical
importance to enforce the perfection of the detector, and the
bound on τ . Missing its η emission period deadlines puts the
emitter process at risk of becoming suspected by its observer,
even though it is still alive. If the heartbeats are emitted
from the application context, they can only be sent when the
application enters MPI routines, and consequently, a compute
intensive MPI application would often miss the η period. In our
implementation, the heartbeats are emitted from within a sep-
arate, library internal thread, in order to render their emission
independent from the application’s communication pattern.
For ease of implementation, the MPI_THREAD_MULTIPLE
support is enabled by default when the detector thread is
enabled; however, future software releases will drop this
requirement. An intricate issue also arises from a negative
interaction between the emission and the reception of heartbeat
messages. In order to check the liveliness of the emitter
process (after the δ timeout), the observer has to check if it
has received heartbeats. From an implementation perspective,
if the heartbeats are sent through the “eager” channel, the
detector thread, which is the receive thread in this case, has to
be active and poll the BTL engine for progress. However, if
the application has posted operations on large messages, the
poll operation may start progressing these (long) operations
before returning control to the detector thread, leading to an
unsafe delay in the emission of heartbeats from that same
thread. To circumvent that difficulty, the detector thread emits
heartbeats using the “RDMA put” channel. Heartbeats are thus
directly deposited by raising a flag in the registered memory

at the receiver, using hardware accelerated put operations that
do not require active polling. The observer can then simply
check that the flag has been raised during the last δ period
with a local load operation, and reset the flag with a local
store, which are mostly impervious to noise and do not delay
the η period. This approach also allows the observer to miss
δ periods without endangering the correctness of the protocol
(only increasing the time to detect and notify the failure, but
no triggering a false positive).

B. Experimental Conditions

The experiments are carried out on the Titan ORNL Su-
percomputer [27], a Cray XK7 machine with 16-core AMD
Opteron processors and the Cray Gemini interconnect. The
ULFM MPI implementation is based on a pre-release of
OPEN MPI 2.x (r#6e6bbfd), which supports the optimized
uGNI and shared-memory transports (without XPmem), and
uses the Tuned collective module. The MPI implementation is
compiled with the MPI_THREAD_MULTIPLE support. Every
experiment is repeated 30 times and we present the average.
The benchmarks are deployed with one MPI rank per core,
and all threads of an MPI process are bound to that same
core (application, detector, and driver threads when applicable,
i.e., the detector thread does not require exclusive compute
resources).

C. Noise and Accuracy

The first set of experiments investigate the noise generated
by the detector and its accuracy for different workloads when η
and δ vary, in a method similar to [20] that focused exclusively
on measuring the noise generated by different failure detection
strategies. The η and δ periods are set so that δ = 10× η. If
the test is successful (that is, no failure was detected, since
none was injected in this experiment), then η is reduced, and
the experiment is repeated, until a false positive is reported.
We also collect the number of times an η deadline was missed,
even when the δ timeout is still respected. We first considered
a non-communicative, compute-only MPI application where
each rank calls LAPACK DGEMM operations on local matrices,
without calling MPI routines for extended periods of time.
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Fig. 7: Detection and propagation delay, and impact on completion time of fault-tolerant agreement operation.

Without the detector thread, the non-communicative bench-
mark reports false detections for all considered values of η.
With the detector thread, this non-communicative benchmark
succeeds until η is set to one millisecond. However, starting
from η < 5 milliseconds, messages indicating a missed η
deadline are occasionally issued (although the δ timeout is
still respected). These observations are consistent with the
scheduling time quantums (sched_min_granularity is
set to 3ms), and indicate that the thread scheduling latency is
an absolute for the minimum η period. Smaller periods could
be achieved with a real time scheduler, but such capabilities
require administrative privileges, which is undesirable.

Next, in Figure 6 we present the noise incurred on a variety
of communication, and computation workloads, provided by
the Intel MPI Benchmark (version 4.1), and HPL (version
2.2), respectively. Accuracy results are similar overall in the
communicative benchmarks. All tests of the IMB-MPI1 suite
can run without false detection for η ≥ 10ms. Notably,
point-to-point only benchmarks can succeed with η value
as low as 2.5ms but occasionally report false suspicions.
Collective communication benchmarks are more sensitive and
report occasional heartbeat emission deadline misses until
η ≥ 25ms, due to contentions on the access to hardware
network resources.

The latency performance (left graph) and bandwidth perfor-
mance (center graph) are barely affected by low frequencies
of heartbeat emissions. For higher frequencies, the overhead
generated by the noise can reach approximately 10%. The
bandwidth performance is less impacted overall than the la-
tency, especially for point-to-point bandwidth, which remains
unchanged for all but the most extreme values of η. The
application performance (Linpack, right graph) exhibits no ob-
servable performance degradation for η ≥ 100ms. For higher
frequencies, the performance degradation remains contained
under 2%.

D. Failure Detection Time

Figure 7 presents the behavior observed when injecting
failures. The first graph (left) presents the time to reach
a stable state when injecting 1 to 8 failures for a varying
number of nodes. After synchronizing, the desired number of

MPI processes (whose ranks are chosen at random) simulate
a failure. All other processes post an any-source reception.
When the reception raises a process failure exception (the only
possible outcome for this non-matched any-source reception),
the process counts the number of locally known failed pro-
cesses, and if it does not contain all injected failures, repeats
the reception. The time at which all failures have been locally
observed is reported at each rank. We observe that for small
scales, the reported delay is consistently close to δ. If emitters
were sending heartbeats to their observer at random starting
time, we would expect the detection time to be closer to
δ − η/2; however, as all processes start to sending heartbeats
to their observer at the end of the MPI_Init function,
they are almost synchronized, and for all runs we observe
a consistent delay at small scale. At larger scale, processes
leave MPI_Init at a more variable date, and the average
starts to converge toward the theoretical bound. This observa-
tion matches the model, considering that in this scenario all
failures are “simultaneous”, and that the random allocation of
failures has a low probability of hurting observer/emitter pairs.
Consequently, the detection and propagation of each of these
failures progresses concurrently and do not suffer from the
cumulative effect of detecting multiple predecessors’ failures
on the ring.

The second experiment (center in Figure 7) investigates the
effect of collisions on the reliable broadcast propagation delay.
The benchmark is similar to the previous experiment, except
that before a process simulates a failure, it sends its observer a
special “trigger heartbeat”, which initiates an immediate prop-
agation reporting it dead, without waiting for the δ timeout.
The rest of the observation protocol remains unchanged (i.e.,
heartbeats are exchanged between live processes with an η
period, and the observer of the injection process switches to
observing the predecessor). We then present the increase in
the average duration of the reliable broadcast when multiple
broadcasts are progressing concurrently. To simplify the proof
of the upper bound on stabilization time (Theorem 1), we have
considered that successive broadcasts are totally sequential.
This is an admittedly pessimistic hypothesis, and indeed,
performing two concurrent propagations does not significantly
increase the delay, as the two reliable broadcasts can actually
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overlap almost completely. However, starting from 4, and,
more prominently, for 8 concurrent broadcasts, the average
completion time is significantly increased. Considering the
small size of the messages, the bandwidth requirements are
small, and contention on port access is indeed the major cause
of the imperfect overlap between these concurrent broadcasts,
therefore vindicating the importance of considering a port-
limited model during the design of the failure detector and
propagation algorithms.

The last experiment (right in Figure 7) presents the per-
formance of the agreement algorithm after failures have been
injected. The authors of [14] presented a similar performance
result for their agreement algorithm. In their results, the
agreement performance was severely impacted when failure
were discovered during the agreement (with the failure free
performance of 80µs increasing to approximatively 80ms), an
effect the authors claim is due to failure detection overhead.
In their work, failure detection was delegated to an ORTE
based RAS service, responsible for detecting and propagating
failures. In this experiment, we strive to recreate as closely
as possible this setup, except that we deploy our failure
detector in lieu of the ORTE RAS service. We consider the
same implementation of the agreement, on 6,000 Titan cores
(the same number of cores they deployed on the generally
similar Cray XC30 Darter system). Some in-band detection
capabilities are active, in particular, failure of shared-memory
sibling ranks are reported by the node’s local operating system.
With the replacement of the ORTE RAS service by our failure
detector algorithm, the time to completion of the agreement
algorithm decreases to below 1.5ms (a 50x improvement). This
is due to the faster propagation of failure knowledge among
the agreement participants: instead of waiting for (long) in-
band timeouts or ORTE RAS notification, a process whose
parent or children have failed can observe the condition much
earlier, and start the on-line mending of the fan-in/fan-out tree
topology at an earlier date. Interestingly, previously hidden
performance issues become visible, as failure detection is
not the dominant cost anymore: we observe that the perfor-
mance of the agreement decreases linearly with the number
of detected failures, a behavior that can be attributed to the
agreement algorithm performing a linear scanning of the group
when a failure is reported.

VI. RELATED WORK

In this section, we survey related work on failure detectors
and then on fault-tolerant broadcast algorithms.

A. Failure detectors

A number of failure detection (FD) algorithms have been
proposed in the literature. Most current implementations of
FDs are based on an all-to-all communication approach where
each node periodically sends heartbeat messages to all nodes.
Because they consider a fully connected set of known nodes
that communicate in an all-to-all manner, these implementa-
tions are not appropriate for platforms equipped with a large
number of nodes. Several efforts have been made towards

scaling up failure detectors implementations [2], [22]. An al-
ternative approach for implementing scalable failure detectors
is to use gossip-like protocols where nodes randomly choose
a few other nodes with whom they exchange their failure
information [29], [12], [13], [18], [28]. Targeting HPC compu-
tations at scale, a scalable failure detector is propsoed in [19],
based on observing random nodes and gossiping information.
In their protocol, each ping message transmits information on
all currently known failures, either via a liveness matrix or in
compressed form.

Practically, gossip approaches bring along redundant failure
information which degrades their scalability. Furthermore, the
randomization used by gossip protocols makes the definition
of timeout values difficult, since the monitoring sets change
often over time. In order to eventually avoid false detections,
these techniques tend to oversize their timeouts, which results
in longer detection times. Theoretically, gossip approaches
introduce random detection and propagation times, whose
worst-case with a prescribed risk factor are hard to bound3.
In contrast, our algorithm follows a deterministic detection
and propagation topology with (i) constant-size heartbeats and
well-defined delays, (ii) a single observer, (iii) a logarithmic-
time propagation, and (iv) a guaranteed worst-time to stabiliza-
tion, thereby achieving all the goals of randomized methods
with a deterministic implementation.

B. Fault-Tolerant Broadcast

Fault-tolerant broadcasting algorithms have been exten-
sively studied, and we refer the reader to the surveys in [24],
[16]. A key-concept is the fault-tolerant diameter of the inter-
connection graph, which is defined as the maximum length
of the longest path in the graph when a given number of
(arbitrarily chosen) nodes have failed [21]. The main objective
in this context is to identify classes of overlay networks
whose fault-tolerant diameter is close to their initial (fault-
free) diameter, even when allowing a number of failures
close to their minimal degree (allowing more failures than
the minimal degree could disconnect the graph). Furthermore,
these overlay networks should provide enough vertex-disjoint
paths for broadcast algorithms to resist that many failures.

Research has concentrated on regular graphs (where all
vertices have the same degree): hypercubes [21], [25], [11],
binomial graphs [1] or circulant networks [23]. For all these
graphs, efficient broadcast algorithms have been proposed.
These algorithms tolerate a number of failures up to their
degree minus one, and execute within a number of steps
(in the one-port model) that does not exceed twice their
original diameter. However, to the best of our knowledge,
such algorithms require the number of nodes in the graph
to be a power of two, or a constant times a power of two,
while we need an algorithm for an arbitrary number of nodes.
This motivates our solution based upon a double diffusion (see
Section II).

3Absolute worst-case times are infinite, as some nodes could be observed
only after an unbounded delay. To give a simple example, after an observation
round with n nodes randomly selecting their targets, in expectation, n/e nodes
will not be observed (where e = 2.718 is Euler’s number).
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VII. CONCLUSION

Failure detection is a critical service for resilience. The
failure detector presented in this work relies on heartbeats,
timeouts, and communication bounds to provide a reliable
solution that works at scale, independently of the type of
faults that create permanent node failures. Our study reveals
a complicated tradeoff between system noise, detection time,
and risks: a low detection time would demand a low latency
in the detection of failures, thus a tight approximation of the
communication bound, increasing the risk of a false positive,
and a frequent emission of heartbeat messages, increasing the
system noise generated by the failure detector. We proposed
a scalable algorithm capable of tolerating high frequency
failures, and proved a theoretical upper bound to the time
required to reconfigure the system in a state that allows
new failures to strike; therefore the algorithm can tolerate
an arbitrary number of failures, provided that they do not
strike with higher frequency. The algorithm was implemented
in a resilient MPI distribution, which we used to assess its
performance and impact on applications at large scale. The
performance evaluation shows that for reasonable values of
detection time, the ring strategy for detection introduces a
negligible or non-measurable amount of additional noise in
the system, while the high performance reliable broadcast
strategy for notification allows for quickly disseminating the
fault information, once detected by the observing process.

Implementation considerations lead us to advocate that the
detection part of the service should be provided at a lower
levels of the software stack, either inside the operating system,
or inside the interconnect hardware: active heartbeats to probe
the activity of remote nodes could be handled by these lower
levels without measurable noise, and with tighter bounds, since
the other levels of the software stack would not introduce
additional components to the noise. Future work should focus
on providing this capability, and on evaluating the approach
to address the tradeoff between detection time and risk.
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