
A Data Driven Scheduling Approach for Power
Management on HPC Systems

Sean Wallace∗, Xu Yang∗, Venkatram Vishwanath†, William E. Allcock†,
Susan Coghlan†, Michael E. Papka†‡, Zhiling Lan∗
∗Illinois Institute of Technology, Chicago, IL, USA
†Argonne National Laboratory, Argonne, IL, USA
‡Northern Illinois University, DeKalb, IL, USA

swallac6@iit.edu, xyang56@hawk.iit.edu, venkat@anl.gov, allcock@anl.gov,
smc@anl.gov, papka@anl.gov, lan@iit.edu

Abstract—Modern schedulers running on HPC systems tradi-
tionally consider the number of resources and the time requested
for each job that is to be executed when making scheduling
decisions. Until recently this has been sufficient, however as
systems get larger, other metrics like power consumption become
necessary to ensure system stability.

In this paper, we propose a data driven scheduling approach
for controlling the power consumption of the entire system under
any user defined budget. Here, “data driven” means that our ap-
proach actively observes, analyzes, and assesses power behaviors
of the system and user jobs to guide scheduling decisions for
power management. This design is based on the key observation
that HPC jobs have distinct power profiles. Our work contains
an empirical analysis of workload power characteristics on a
production system, dynamic learner to estimate the job power
profile for scheduling, and an online power-aware scheduler for
managing the overall system power. Using real workload traces,
we demonstrate that our design effectively controls system power
consumption while minimizing the impact on system utilization.

I. INTRODUCTION

There has been significant research into the topic of energy
efficiency. Existing studies include energy-efficient or energy
proportional hardware, dynamic voltage and frequency scaling
(DVFS), shutting down unused or unnecessary hardware com-
ponents when system utilization is low, thermal management,
and power aware scheduling of special applications [1], [2],
[3], [4], [5], [6].

Complementing the above studies, this work proposes a data
driven scheduling design for controlling the power consump-
tion of the entire system under any user defined cap. The
design combines continuous monitoring of power behaviors
of the system and user jobs, dynamic learning and prediction
of job power profiles, and timely power-aware scheduling to
realize power management. The design is data driven as it
emphasizes the dynamic monitoring and learning of power
data to guide decision making. Unlike the existing studies
targeting moldable jobs (i.e., the jobs whose running sizes
are dynamically decided by the scheduler at job allocation
time [5], [6]), this work doesn’t put any extra requirement on
workload and is applicable to general HPC jobs. Moreover,
HPC systems require a significant capital investment, hence

making efficient use of expensive resources is of paramount
importance [7]. Distinguishing from the existing studies low-
ering system utilization for power management [4], [1], this
work enforces a power cap while maintaining high system
utilization of HPC systems.

Our design leverages an important observation — HPC
jobs have distinct power profiles and these profiles can vary
significantly from job to job with the difference being as high
as 4.4 times. Built on this observation, we present three new
techniques enabled by our design. First is a dynamic learner.
Unlike public clouds and data centers, HPC resources are
provided to multiple users through allocations. Each allocation
is associated with a group of users working on a common
project. As such, HPC jobs are typically repetitive. As jobs
enter, execute, and exit the system, our dynamic learner
records power data associated with each project and job, and
estimates job power behavior by applying inferential statistics
on online and offline power data of projects and jobs. Later, we
will show that our dynamic learner is highly accurate. Second
is a window-based scheduling mechanism. In an effort to
mitigate the impact to system utilization, rather than assigning
user jobs to available resources in a one-by-one manner as
adopted by conventional job scheduling, our design makes job
allocation decisions by checking a window of jobs. Finally, a
0-1 knapsack based policy is developed for selecting jobs in
the window, with the objective of controlling the overall power
consumption while maximizing resource utilization.

We evaluate our design via extensive trace-based simula-
tions with one full year of production traces collected from
the 48-rack IBM Blue Gene/Q system, Mira, at Argonne
Leadership Computing Facility [8]. The empirical evaluation
indicates that our dynamic learner is capable of delivering and
maintaining a highly accurate estimate of job power profiles
with a short period of training (e.g., as short as 26 days).
Our trace-based experiments also indicate that the proposed
power-aware scheduling can effectively control the system
wide power consumption even when the power budget varies
dynamically. We find that when the power cap is set to 83% of
the maximum, the relative degradation caused by our design
is less than 1%. Interestingly, we notice that our power aware
scheduling is able to perform better than an unlimited powerSC16; Salt Lake City, Utah, USA; November 2016

978-1-4673-8815-3/16/$31.00 c©2016 IEEE

cap in four months out of the year’s worth of data with regards
to wait times.

The organization of the rest of the paper is a follows. We
begin by looking at related work in Section II. Section III
presents an empirical analysis of job power profiles present
in the our newly acquired workload data. Section IV gives an
overview of our design and discusses some of the challenges
associated with power aware scheduling. Section V describes
the learning process to obtain job and group power profiles
for power-aware scheduling. Section VI describes scheduling
policies. Section VII presents our methodology for evaluation,
followed by the experimental results in Section VIII. Finally,
our conclusions are discussed in Section IX.

II. RELATED WORK

The field of energy efficient computing is a diverse and
popular one. We discuss some of the more closely related
studies and point out the key differences.

As the processor accounts for a significant portion of total
power consumption (around 50% when under load [4]), DVFS
is a technique which has been widely presented for use in
controlling CPU power consumption [9]. The idea is very
simple. By running processors at a lower frequency/voltage
energy, is saved potentially at the expense of increased job
execution times. DVFS is typically applied at a period of low
system activity to meet user service level agreements (SLAs).
Additional research in this field can be found in [1], [2], [3].

Taking DVFS one step further, a number of studies have
looked at shutting down or suspending all idle nodes during
low system utilization [4], [1]. The goal is to optimize the
number of active nodes such that it exactly meets the demand
of incoming application requests. Since this approach is highly
dependent on system workload, the key challenge with this
approach is determining when a node or its components should
be shut down.

Thermal management techniques are another approach fre-
quently found in the literature. The reasoning is that higher
temperatures have a large impact on the system reliability and
can also increase cooling costs. By using thermal manage-
ment, system workload is adjusted according to a predefined
temperature threshold: if the temperature on a given node
rises beyond that threshold, its workload is reduced. The
disadvantages of thermal management are delayed response,
high risk of overheating, and excessive cooling and recursive
cycling [10].

Sarood et al. [11] leveraged the notion that fault rates are
known to double for every 10◦C rise in core temperature to
experimentally demonstrate the potential of restraining core
temperatures and load balancing. This was done to improve the
reliability of parallel machines and reduce the total execution
time of applications. Results showed they were able to improve
the reliability of the machine by a factor of 2.3 and reduce the
execution time by 12%.

Many data centers employ power capping or power bud-
geting to reduce the total power consumption. Etinski et
al. [3] proposed a parallel job scheduling policy based on

integer linear programming under a given power profile. The
implementation of this work was realized by utilizing DVFS
at the node level to keep power consumption under a given
power cap.

This work differs from our previous work [12] in several
critical ways. First of all, our prior study focuses on reducing
the electricity bill of HPC systems, whereas this work intends
to dynamically control the overall power consumption of
HPC systems within a user-provided power budget. Second,
our previous work made an implicit assumption that job
power profiles were known a priori when making scheduling
decisions. This work provides a more practical solution that
dynamically learns job power profiles by using historical data
and online profiling of power data.

III. WORKLOAD POWER ANALYSIS

In this work we collect and analyze a year’s worth of
workload trace and power data in 2014 from the 48-rack IBM
Blue Gene/Q machine Mira at Argonne. A rack of BG/Q
consists of two midplanes with each midplane containing 16
node boards. Each node board holds 32 compute cards, for a
total of 1,204 nodes per rack. Each compute card has a single
18-core PowerAC A2 processor [13] (16 cores for applications,
one core for system software, and one core inactive) with four
hardware threads per core, and DDR3 memory. Mira consists
of a total of 49,152 compute nodes and 786,432 cores, with
the peak power consumption of 4.8MW. It is ranked 5th on
the November 2015 Top500 list [14].

Blue Gene systems have environmental monitoring capa-
bilities that periodically sample and gather environmental
data from various senses and store this information together
with the timestamp and location information in an IBM DB2
relational database, commonly referred to as the environmental
database. In addition to this environmental data collection,
there are other mechanisms which collect data from the
scheduler about jobs running on the system such as job start,
end, queue time, etc. Abstractly, the system which governs the
collection of all this data is referred to as Core Monitoring and
Control System (CMCS) [15].

By pulling data from the CMCS system and analyzing it,
we are able to make observations about jobs running on the
system. We found out that not only do jobs have distinct power
profiles, so do the projects they belong to. Table I provides the
detailed information about all of the jobs in the log. This data
shows that job power profiles per rack differ greatly with the
difference being as high as 4.4 times.

Figure 1 provides a graphical glimpse into this observation
featuring job power per rack of a random sampling of six
projects. From the box plot it’s clear that just about every
statistical aspect of power consumption varies from project to
project. Conversely, Figure 2 displays a collection of users
belonging to the same project and shows that while the jobs
that users run within a project do vary slightly, overall they
offer a pretty good representation of the power consumption
of the project on the whole. This new observation is a step

TABLE I: Statistics of job power profiles in Kilowatts per rack
on Mira

Minimum 36.48
Mean 65.76
Maximum 160.60
Percentile 05 56.60
Percentile 25 61.20
Percentile 75 71.03
Percentile 95 74.57
Percentile 99 77.99
Standard Deviation 6.18

forward from our prior study [16]. It enables us to predict a
job power profile based on its project information.

Fig. 1: Box plot of a random sample of projects and their
power consumption at the rack range. It clearly shows, dif-
ferent projects have very different medians, maximums, and
minimums.

Fig. 2: Box plot of power consumption by users in a random
project.

IV. DESIGN OVERVIEW

This section provides an overview of our design, along
with a motivational example. Our design leverages the key
observation presented in the previous section.

As shown in Figure 3 (top), HPC systems typically utilize
a batch scheduler to allocate jobs to resources. Users interact
with the batch scheduler by submitting their job into the queue
or queues (which may have different priorities) and subse-
quently wait for the requested resources to become available
for the requested amount of time. Jobs are selected by the
scheduler in a one-by-one fashion from the head of the waiting
queue. The exact methodology by which jobs are selected out

of the queue varies between schedulers; one commonly used
policy is FCFS (first-come, first-serve) with EASY-backfilling
[17]. On Mira, a policy called WFP with EASY-backfilling is
adopted for batch scheduling [18]. WFP favors large and old
jobs, adjusting their priorities based on the ratio of their wait
times to their requested runtimes. The common goal of batch
scheduling is to increase resource utilization while increasing
user’s satisfaction.

Similar to the conventional batch scheduling, our design in-
tends to meet the same scheduling objective under a constraint
— a power budget for the entire system. There are a number
of technical challenges in such a power aware scheduling
at the system level. The first hurdle is the acquisition of
accurate power data. Fortunately, hardware manufacturers
have begun deploying various sensors on HPC systems to
monitor power usage of their components, and a number of
software libraries have been developed for users to access
these data [19], [16], [20], [21]. For instance, there are two
power monitoring capabilities deployed on Mira: one is an
environmental database and the other is a user-level power
profiling library called MonEQ which is built on the vendor-
supplied application programming interfaces [16]. They pro-
vide information about the power consumption at two different
scales: the data collected by the control system is coarse
grained at a sampling rate of every 4-6 minutes, while the user-
level power profiling library MonEQ allows users to profile
jobs every 560ms. While our design will work with any power
monitoring facility, we advocate the use of fine-grained power
monitoring, if available. The second hurdle is to estimate job
power profile before the job is actually run on the system and
to capture job power variation during the job execution. The
third hurdle is to dynamically make an optimized scheduling
decision that meets power budget constraint. Moreover, the
decision making has to adapt to variation in workload power
profile and change in the available power budget.

Figure 3 (bottom) depicts a high level overview of our
design. With our approach, we maintain the same job ordering
in the waiting queue but add two critical elements to address
the aforementioned challenges. The first is a dynamic learner
which takes power data from a power monitoring facility
to estimate job power profiles. At each scheduling instance,
the learner has two tasks: one is to estimate power profiles
of the jobs in the queue, and the other is to calculate the
available power budget for incoming jobs by estimating the
power requirements of the running jobs on the system. As
demonstrated in Section III, not only do HPC jobs have distinct
power profiles, but groups of jobs also have distinct power
profiles. Leveraging this observation, our dynamic learner
actively records power data collected by the power monitoring
tool. Any job that runs on the system will be profiled from
start to finish and the sampling data will be stored and used to
both better understand this particular job as well as the jobs in
the project it belongs to. In this sense, our design “learns” over
time and the more jobs that are run on the system the better it
gets. Furthermore, because of the continuous streaming nature
of the power data, our design can adapt to a job’s power change

Jobs

Users

Waiting Queue

J
4

J
3

J
2

J
1

Jobs are moved to the window to
preserve fairness (user-centric).

J
0

Scheduling Window

J
3

J
2 J

1
J

0
Power Aware

Scheduler

Jobs are selected for execution to
optimize system utilization

(system-centric) under the power
cap constraint.

Dynamic Learner

Pro!ling Tool

Waiting queue is sorted by an ordering
policy (e.g., FCFS or WFP).

Jobs

Users

Waiting Queue

J
4

J
3

J
2

J
1 J

0
One-by-one allocation of jobs from the head of waiting queue

Traditional Approach

Our Approach

Environmental Data

Waiting queue is sorted by an ordering
policy (e.g., WFP or FCFS)

Data used by
dynamic learner can
come from multiple

sources

HPC System

Runtime job power

estimation

Fig. 3: Comparison of the traditional batch scheduling (top half) and our power-aware scheduling (bottom half).

on-the-fly. The detailed design of the dynamic learner will be
presented in Section V.

The second key component is the power aware scheduler
which selects jobs in the waiting queue for execution to
meet the scheduling goal under the power constraint. We
propose a window-based optimization method. In contrast to
the conventional scheduling approach that allocates jobs in a
one-by-one manner, our design examines a window of jobs
in the queue for decision making. The window is adopted
to preserve job fairness [12]. Furthermore, a 0-1 knapsack
problem is formulated to describe the power aware scheduling
problem. It enables us to select jobs in the window to meet
the scheduling goal under the power budget constraint. The
detailed design of the job scheduler will be presented in
Section VI.

A. A Motivational Example

In order to better illustrate the key idea of our design,
suppose four jobs J0, J1, J2, J3 are currently in the queue
and ready to be allocated onto the system. The parameters
associated with each job are given as:

Job Job Size (Racks) Power Profile (kW/rack)
J0 3 60
J1 1 50
J2 5 30
J3 4 40

Now, suppose these jobs are to be allocated onto a
6-rack system with a total power cap of 230 kW. Us-
ing the conventional FCFS policy, it will always se-
lect < J0, J1 > as the total power consumption of
J0 + J1 = (3 · 60) + (1 · 50) = 230 kW, despite the fact there
are 2 unused racks. Our scheduling mechanism on the other
hand will select < J1, J2 > as that is the combination of jobs
which maximizes the utilization while staying under the power
cap.

V. DYNAMIC LEARNER

The dynamic learner constantly monitors power consump-
tion of user jobs, and is continually invoked to estimate job
power profiles. The jobs include those in the waiting queue as

well as those running on the system. For each job, considering
that a job’s power consumption may have temporal variation,
our learner estimates the high power requirement of the job
over a window.

For a job in the waiting queue, there are two possibilities
when determining its power profile: (1) there is no power
information for this job, or (2) there are previous power data
from this job. For case 1, leveraging the key observation
presented in Section III, our learner works as follows: if the
group’s power profile is known, we assume the group profile
is representative of this job and use the group profile for the
job; otherwise, we assume the maximum power for the job
(here, the maximum is defined as the peak power value of
the underlying device). For case 2, we use the job’s previous
profile as its current power profile.

For a job running on the system, as it executes, more power
data are generated, collected, and statistically compared to
its old values. Our learner constantly updates power profiles
of all the jobs and the groups by applying a two-sample
T-test for runtime power learning and adaptation. The T-
test is a commonly used method for assessing whether the
means of two populations are statistically different from each
other [22]. Mathematically, assume that Y1 and Y2 are two
lists of power measurements collected, N1 and N2 are the
sample sizes, Ȳ1 and Ȳ2 are the sample means, and sp is
the sample variances (equal variances assumed). The T-value
measuring the difference between group means is calculated
as T = Ȳ1−Ȳ2

sp
√

1
N1

+ 1
N2

where s2
p =

(N1−1)s21+(N2−1)s22
N1+N2−2 .

The significance level α is used to reject the null hypothesis
that two means are equal if |T | > t1−α/2,v , where t1−α/2,v is
the critical value of the t distribution with v = N1 + N2 − 2
degrees of freedom. In our tests, the significance level is set
to 99%.

As jobs execute, more power data are generated and col-
lected and statistically compared to any old values. The
comparison of new data to old can have two outcomes: 1)
there isn’t a statistically significant difference between the two
samples so the power profile does not change or, 2) there is
a statistically significant difference between the two samples

and the power profile needs to change. In the case of the latter,
there are two possible values for the profile to change to. First,
the new data is compared to the group’s to see if there is a
significant difference between it and the group’s on the whole.
If there isn’t a significant difference between a job’s new data
and the group’s data, the power profile for the job is updated
to the group’s power profile. If there is a significant difference
between the job’s data and the group’s, neither is representative
of this job so the maximum possible must then be assumed.

To safe guard against such an outcome, there are a number
of precautions taken. First, no job can even begin to have
a significant profile until there are a satisfactory number of
samples collected for it. Since our simulation is based on
control system data which is collected infrequently, we have
deduced that a minimum of 20 sample points are necessary
before any job can even have a significance test run on its
data.

Based on our experience with this data, after 20 samples
are collected it takes a very drastic change in application
behavior to violate a previously computed profile and even
when violation does occur, it’s maximally bounded by the sys-
tem’s architecture. To better put this problem into perspective,
20 sample points equates to almost 80 minutes of runtime.
Consequently, a job would have to do a relatively mundane
task for 80 minutes only to ramp up computation thereafter,
not to mention completely going against the group data in
the first place. Even those applications which have stages of
data generation where power consumption is relatively low
and switch to intense computation where power consumption
is relatively high, they never do this in intervals of 80 minutes.

VI. POWER AWARE SCHEDULER

Our power aware scheduler is designed around two
key components: a window-based mechanism for improving
scheduling efficiency without violating job ordering in the
waiting queue, and a power aware scheduling policy for
meeting the scheduling objective under the power budget
constraint.

In this work, we make a distinction between the ordering of
the waiting queue and the selection of jobs from a window of
jobs in this queue to the system. In a traditional system, jobs
are allocated directly onto the system in a one-by-one manner
from the head of the waiting queue where the job ordering is
managed by a policy like FCFS or WFP. Our implementation
doesn’t modify this ordering, rather it selects some of these
jobs from the head of the waiting queue into a window. Once
in the window, our scheduler then treats this window of jobs
as an instance of the 0-1 Knapsack problem. The “solution”
to this Knapsack problem are the jobs to be dispatched to the
system for running, with the purpose of optimizing certain
scheduling objective under a power budget. This process is
fully explained in the following subsections.

A. Window-Based Scheduling

One of the most challenging aspects of any scheduling
algorithm is striking the balance between job fairness (e.g.,

first-come, first-serve or large-job-first) and scheduling per-
formance (e.g., job wait time, system utilization, etc.). In this
work while we are still trying to maximize fairness, rather
than allocating jobs one-by-one from the front of the wait
queue, we use a window-based mechanism which allocates a
window of jobs. The jobs that are selected into the window
are done so using certain user-centric metrics such as fairness.
The selection of jobs from the window to system resources
is done using system-centric metrics such as utilization and
power consumption. By maintaining this window and always
drawing jobs directly from it, we are able to best balance
fairness and performance. Regardless of the scheduling policy
used to select jobs from the window, the window is always a
fixed size collection of jobs at the head of the queue. When a
user submits a job it first enters the queue and subsequently
the window when there is enough room. In this way, even a
scheduling policy which does not allocate jobs in the absolute
order they are received can still guarantee there is job fairness.

B. Scheduling Policy

Our scheduling policy selects jobs from the scheduling
window to optimize a scheduling objective. As our primary
objective is to select those jobs from the window such that
utilization is maximal, we formulate a 0-1 Knapsack problem
based policy where both the system utilization and power con-
sumption are taken into consideration for scheduling decisions.
We now explain how the 0-1 Knapsack based policy works to
maximize utilization while staying under a given power cap.

Suppose at the current scheduling instance, there are N
nodes in the system with Nused nodes being used by the
running jobs, and the power cap is set at PB with Pused
representing the power used by the running jobs. Let w
represent the size of the scheduling window, and there are
a set of jobs in the window: job Ji requiring ni nodes and pi
power profile. The scheduling problem is then formalized as
follows: to select a subset of jobs {Ji|1 ≤ i ≤ k} such that:∑

1≤i≤k pi ≤ PB − Pused with the objective to maximize:∑
i≤i≤k ni ≤ N −Nused.
The above problem can be formalized as a 0-1 Knapsack

problem. By setting the sum of the individual power profiles
as the knapsack’s weight and the sum of the associated job’s
node requirements as the value, our scheduling problem can
be transformed into an instance of the 0-1 Knapsack problem.
Formally stated, the objective is to find a binary vector
X = {xi|1 ≤ i ≤ k} such that:

maximize
∑

1≤i≤k

xi · ni ≤ N −Nused, xi = 0 or 1

subject to
∑

1≤i≤k

xi · pi ≤ PB − Pused
(1)

The values of Pused and pi are calculated by the learner
presented in Section V. This 0-1 Knapsack problem can be
solved in pseudo-polynomial time by using dynamic program-
ming [23]. To avoid redundant computation, the memoization
technique can be used by building a 2D table T , where T [k,w]

denotes the maximum gain value that can be achieved by
scheduling jobs {ji|1 ≤ i ≤ k} which require no more than
PB−Pused power and no more than the number of remaining
free nodes N−Nused. T [k,w] then has the following recursive
feature:

T [k,w] =

0 kw = 0

T [k − 1, w] wi > w

max(T [k − 1, w],W) wi ≤ w
(2)

where:

W =

{
−∞ Npot > Nfree

Npot otherwise

and Npot = ni + T [k − 1, w − wi]. The solution to the
problem after computation is then T [J,Ntot] and its cor-
responding binary vector X determines the selection of
jobs scheduled to be run. The complexity of Equation 2 is
O
(
J ·Ntot

)
.

VII. EVALUATION METHODOLOGY

To validate our design, we conduct a series of experiments
using trace-based simulations.

A. StreamQSim: Trace-Based Scheduling Simulation

We developed a simulator named StreamQSim to evaluate
our design. StreamQSim is an extension of the open-source
simulator CQSim [24] with the primary difference being
that unlike CQSim which requires all data for simulation be
provided at execution time in a flat-file format, StreamQSim
“streams” data as it is necessary. This additional development
was vital as the overall size of the data we had to process
in order to simulate our job traces was far too large to fit
into main memory and impractical to process as a flat file.
For this reason, it aggressively prefetches relevant power data
from a database instance into memory as it is necessary and
removes it when it is not. In this way, no more data than
what is absolutely vital to make a scheduling decision with
the current subset of jobs is contained in memory.

StreamQSim uses data obtained entirely from a database
we created as a result of analysis of the control system data.
This data includes the job events such as job submission, job
start, job end, etc. Another primary difference from CQSim,
StreamQSim has to work in “real time” fetching data just as if
it were actually a scheduler making decisions for a production
system at a given time. This means that StreamQSim cannot
skip from event to event (such as from job start to job end) as
it must gather data throughout execution of jobs as this could
have an impact on scheduling decisions. As such, it works
incrementally–by a given interval (scheduling quantum)–to
schedule jobs onto the system. StreamQSim is available at
[25].

B. System Traces

System traces of production systems are not easily acces-
sible. In order to assess power aware scheduling, we need
both workload traces and corresponding power data for the
traces. While many production systems collect and archive
their workload traces [26], far fewer systems gather and store
their power data. Making matters worse, even if workload
traces and power data are obtainable for a given system, there
needs to be some way to link the trace to the power data. In this
study, we have collected a year long system trace from Mira,
including both workload (i.e., jobs) log and the corresponding
power data (i.e., watts in use for the whole system broken
down by component), for the experiments.

Fig. 4: Distribution of job sizes (log scale) and average
runtimes at each scale.

There are 24,565 valid jobs in the job log, and Figure 4
summarizes the distributions of job sizes and runtimes. As
shown in Section III, the corresponding power data is obtained
from the environmental log on Mira. Since the job log and the
power data are collected by different tools, a critical challenge
is the linking of power data to jobs. The process of accurately
assigning power data to jobs is a multi-step process.

To get power data for a job, one must join the Cobalt (the
job scheduler on Mira [27]) database to the control system
database to find the control system job ID’s, use these control
system job IDs to gather the complete list of compute nodes
the job is actually using, and finally join this list of nodes to the
control system’s power database bounded by the time during
which the job was actually run. Since there is no notion of
sharing of hardware on Mira, it is guaranteed that this power
data is for a single job. In this way, given just a Cobalt job
ID, one can acquire the complete list of power data for that
job.

C. Evaluation Metrics

In this study, we evaluate our design in three aspects. First,
we quantify learning accuracy achieved by the dynamic
learner. Next, we define a metric capping success rate
(CSR) measure the proportion of scheduling intervals which
the total power consumption is controlled within the cap.
Specifically, CSR is defined as the ratio of the number of
scheduling intervals within the power cap to the total number
of scheduling intervals. A score of 1.0 indicates an ideal case

where the power cap is never violated. Finally, we use two well
established metrics for comparison analysis of job scheduling:
(1) resource utilization rate which measures the ratio of
the node-hours that are used for useful computation to the
elapsed system node-hours, and (2) average job wait time
which measures the average time between the moment a job
is submitted to the queue to the moment it is actually running
on the system across all the jobs.

VIII. EXPERIMENTAL RESULTS

A. Learning Accuracy
One of the interesting questions that can be asked of a policy

such as ours is, how does the ratio of known power profiles to
unknown power profiles (referred to here as “learning rate”)
change over time? As mentioned previously, jobs submitted
to HPC systems are typically repetitious and, at least within
the project, tend to use similar code bases. Consequently, our
policy, which starts out not knowing any profiles, is capable of
achieving and sustaining a very high learning rate very quickly.
Figure 5 shows our learning rate over the course of the year
of simulation. After just 26 days of execution our policy has
learned 94% of the power profiles.

Fig. 5: Learning rate over time. 94% after just 26 days of
execution.

The learning rate is entirely proportional to the diversity rate
in jobs. As time progresses, it’s reasonable to expect that the
workload on the system would change or evolve. This happens
because new projects are added thereby introducing entirely
unknown power profiles to the mix, or, existing projects make
modifications to their codes which alters their power profiles.
Regardless of the reason, our dynamic learning is capable of
maintaining as good of a learning rate as the diversity of the
workload on the system allows it to be. For other systems
where repeat job running is rare, our learning scheme would
certainly struggle to achieve a high learning rate. As mentioned
earlier, resource access in HPC is provided through allocation
[28], [29]. Each allocation is associated with a group of users
working on a common project for a fixed period of time.
As such, jobs are highly repetitive and have distinct power
profiles. Hence our learner is able to perform exceedingly well.

B. Capping Success Rate
The peak power consumption of Mira is 4,800 kW. We

conduct two sets of experiments to evaluate whether our design

is capable of controlling the system-wide power consumption.
The first set of experiments is to assess whether our design
can control the overall power consumption under a fixed cap.
Figure 6 shows the power consumption of the workload with
the power cap set to 3,000 kW or about 62.5% of the peak
power. There are two curves in the figure: one without power
management (light gray), and the other using our design (red).
As can be seen, the majority of the power consumption when
our policy is used is well under the power cap. Our capping
success rate is maintained over 99% for the entire year.

There are a few exceptions shown in the figure. As the
power cap is set to a lower value (like this case), none of
the jobs in the scheduling window can be allocated onto the
system because each of them individually would violate the
power cap and the scheduler is stuck in a state of deadlock
and unable to schedule any jobs to the system. For example,
a job requesting the full system of 48 racks would absolutely
consume more than 3,000 kW of power, so this job is held
until the power cap is raised to a level which would be greater
than or equal to that required by the job. If the window is
entirely full of jobs which would all violate the power cap, the
first job which entered the window is allowed to temporarily
violate the cap and run. There are other alternatives to handle
this deadlock situation. One is to let the system be idle
until the power cap is raised. Or we could have chosen to
increase the size of the window allowing other jobs with lower
power profiles to run, but this would have unnecessarily hurt
average job wait time. Obviously, there are trade-offs with
each approach. In this study, we chose to temporarily allow
an explicit violation of the power cap by allowing the jobs in
the queue to run.

Fig. 7: Variable power cap scenario. The power cap is changed
four times over the course of the year.

In the second set of experiments, we simulated a scenario
where the power cap is changed several times throughout
execution (in our case, over the year). In this scenario the
power cap is changed four times during the year (from 2000
kW to 3000 kW to 4000 kW back to 2000 kW), but the number
of changes could be many more. Figure 7 shows the result of
this simulation. As can be clearly seen, with the exception
of several jobs which had to be run to prevent deadlock, the
scheduler is capable of keeping jobs under the power cap when

Fig. 6: Power consumption using the original Mira scheduler (light gray) without power capping and our power-aware scheduler
(red) with the power cap set to 3,000 kW and window size of 20. Those points violating the power cap with our scheduler
denote jobs which had to be run in order to free the window from deadlock. This is discussed in more detail in Section VIII-B.

the cap is dynamically changed. Our capping success rate for
this experiment was 99.2%.

C. Scheduling Performance

It’s impossible to say that scheduling performance will never
be impacted with our design or any power cap based policy
simply because if the power cap is set to a low enough
level, few (if any) jobs will be allowed to run. Since there is
no known related scheduling studies, in our experiments, we
compare our design against a naive power capping method.
This naive method is a simple augmentation of the traditional
one-to-one scheduling design such that it is able to know what
the current power consumption of the system is. It assumes that
the power consumption of a job is the theoretical maximum. In
the experiments, we compare the performance impact brought
by our design as against the naive capping. We evaluate the
impact on both system utilization and average job wait time. In
addition, we examine both FCFS and WFP based job ordering
mechanisms to evaluate whether our design is influenced by
different job orderings.

Figures 8 and 9 compare the average job wait time with
power caps of 41.7% of maximal power (2,000 kW), 62.5%
of maximal power (3,000 kW), and 80% of maximal power
(3,000 kW) for both the WFP and FCFS job ordering strate-
gies. For each of the figures presented, we show the change
relative to an un-power capped system with either FCFS or
WFP job ordering (depending on the experiment). Therefore,
the further away from 0, the greater the relative change to an
un-capped system.

Looking at Figures 8a and 9a, it’s clear that the difference
between naive power capping and our capping approach is
very pronounced on a heavily power-capped system. The naive
approach is always significantly worse on average than our
approach. Similarly, in Figures 8b and 9b, we see this is
also the case. Most interestingly, on a modestly power-capped
system (83.3% of maximal power), Figures 9c and 8c show
that our approach has very little negative impact on wait times

as compared to an un-capped system. The same cannot be said
for naive capping however as it still has a pronounced impact
on wait times for the majority of months. In Figures 9a and
9b we see that our approach is able to actually provide better
average wait times compared to an un-capped system.

This most likely has to do with the fact our knapsack based
solution is free to pick from any job in the window. An un-
capped system on the other hand enforces strict job ordering,
which means it could get stuck in a situation where there was
a job which would not fit in the available resources at the
head of the queue. Thus, on average, it’s possible our capping
solution will perform better by reducing the wait times of jobs
other than those at the head of the queue.

The results clearly show our capping always outperforms
the naive approach, with the potential average relative change
in wait time being as high as 15 which was the case in month
5 of Figure 9a. The absolute improvement of job wait time
introduced by using our capping over naive capping ranges
from 42% to 188% with FCFS, and from 36% to 177% with
WFP. With a power budget, our design can make intelligent
decisions based on not only job size and runtime, but also job
power profile. Job power profiles vary greatly, which enables
our design to meet the budget while minimizing the impact
on wait time.

It is extremely important to remember that we are not dis-
carding any jobs simply because they will never fit under the
power cap. As such, 48 rack jobs, in particular, constitute the
vast majority of outliers with respect to wait time. Remember
that the only time we allow those jobs to run and violate the
power cap is when we have no other options. As such, they will
incur extremely unrealistic delays driving the average much
higher than normal. Therefore, these wait time results should
be thought of as a sort of “worst case” scenario.

When comparing the FCFS and WFP job orderings, we
find that for the entire year WFP performs better than FCFS
by almost 100 seconds on average with month-by-month
variations having the potential to be much more. Surprisingly

With naive capping With our capping

(a) 2,000 kW (41.7% of maximal power) (b) 3,000 kW (62.5% of maximal power) (c) 4,000 (83.3% of maximal power)

Fig. 8: Average relative change from an un-capped system of job wait times for different scheduling policies using WFP job
ordering.

(a) 2,000 kW (41.7% of maximal power) (b) 3,000 kW (62.5% of maximal power) (c) 4,000 (83.3% of maximal power)

Fig. 9: Average relative change from an un-capped system of job wait times for different scheduling policies using FCFS job
ordering.

however, when compared to an un-capped system, we see
that the relative change in wait time has the ability to be
significantly greater with the WFP job ordering. It turns out
this has to do with those large jobs which are forced to
wait around until they simply have to be run and violate the
power cap. This also has another more subtle effect: because
WFP prefers larger and older jobs, those jobs which violate
the power cap just sit occupying precious window space just
waiting for their turn to run. This means that the window can
get plugged up with mostly big jobs thereby hurting smaller
jobs which haven’t even had the opportunity to enter the
window yet. This is also why the relative change in average
wait time decreases dramatically in Figures 8b and 8c, those
bigger jobs are actually able to run without having to violate
the power cap thereby making room in the window for smaller
jobs.

The average relative change in utilization to an un-capped
system per month is shown in Figures 10 and 11. Clearly,
our capping greatly outperforms naive capping. The absolute
improvement of utilization introduced by our capping ranges
from 3% to 21% with FCFS, and from 8% to 21% with WFP.
The reasoning for this comes down to the learning aspect of
our solution. Since we are able to learn from power data to
form power profiles, we are usually able to use less of the cap
than if we made the naive assumption that a job would use as

much power as it possibly could.
Considering our Knapsack based policy is designed to

select any job in the scheduling window to maximize system
utilization without violating the power cap, it is expected that
this solution would have better average utilization than with
naive capping regardless of the job ordering in the waiting
queue. Looking at both of the figures, it’s clear that this is in
fact always the case. Also evident, and as expected, utilization
improves relative to an un-capped system as the power cap is
increased. These figures also show that utilization for capping
of any sort increases with respect to the cap.

The relative differences between FCFS and WFP job order-
ing are much less pronounced when it comes to utilization as
they were with wait times. This is mainly due to the fact that
sizes of jobs fit a fairly normal distribution. Therefore, which
jobs are available in the scheduling window make less of a
difference to utilization on the whole as the available “holes”
in the system where jobs could be scheduled are very likely
plugged with what is in the window.

IX. CONCLUSIONS

In this paper, we have proposed a practical power-aware
scheduler which is capable of dynamically learning job power
profiles and intelligently allocating user jobs to enforce a
power cap without degrading resource utilization unnecessar-

With naive capping With our capping

(a) 2,000 kW (41.7% of maximal power) (b) 3,000 kW (62.5% of maximal power) (c) 4,000 kW (83.3% of maximal power)

Fig. 10: Average relative change from an un-capped system of system utilization rates for different scheduling policies using
WFP job ordering.

(a) 2,000 kW (41.7% of maximal power) (b) 3,000 kW (62.5% of maximal power) (c) 4,000 kW (83.3% of maximal power)

Fig. 11: Average relative change from an un-capped system of system utilization rates for different scheduling policies using
FCFS job ordering.

ily. Our design is based on the observation that not only do
HPC jobs have distinct power profiles, so do the groups to
which they belong. As our design is on-line, it can react
to changes in power profiles as jobs execute and schedule
subsequent jobs accordingly.

To the best of our knowledge, this is the first runtime
power aware scheduling design which leverages individual
job power profiles as well as group power profiles to make
runtime scheduling decisions. In contrast to existing power-
aware scheduling studies, our design doesn’t put any extra
requirement on workload and is applicable to general HPC
applications/jobs. Our key contributions and findings are:

• Empirical analysis of a full year of production workload
from a leadership supercomputer. This analysis led to the
discovery that HPC jobs have distinct power profiles and
these power profiles can vary significantly from job to
job.

• Dynamic learning of the power profiles of jobs and
groups for making scheduling decisions. Use of this
dynamic learning resulted in a 94% learned job power
profile rate after just 26 days.

• A job power aware scheduler to keep the total system
power under a given power cap while minimizing im-
pact on system utilization. Our design doesn’t degrade
scheduling performance when the power cap is above

83% of maximum and was surprisingly able to perform
better than no capping in 4 out of the 12 months studied
in terms of wait time.

This design is generally applicable to other systems as
long as the underlying platform has some power monitoring
facility for which data are available for specific portions of
hardware. So long as this is the case, one could use this
existing monitoring facility to get power data for a particular
job and feed it into our design. Further, the repetitious nature
of jobs we have demonstrated in this work isn’t just limited
to Mira, most HPC jobs at DOE and XSEDE facilities are
repetitive and therefore predictable. Our design works with
various job ordering policies, hence being applicable at most
if not all of the supercomputing facilities.

ACKNOWLEDGMENTS

The work at the Argonne Leadership Computing Facility
at Argonne National Laboratory is supported by the Office
of Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357.

Zhiling Lan is supported in part by US National Science
Foundation grants CNS-1320125 and CCF-1422009.

The authors thank the ALCF staff for their help. They are
especially thankful to Bowen Goletz and Eric Pershey for their
assistance in obtaining the data critical for this work.

REFERENCES

[1] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Load balancing
and unbalancing for power and performance in cluster-based systems,”
2001.

[2] Y. Liu and H. Zhu, “A survey of the research on power management
techniques for high-performance systems,” Softw. Pract. Exper.,
vol. 40, no. 11, pp. 943–964, Oct. 2010. [Online]. Available:
http://dx.doi.org/10.1002/spe.v40:11

[3] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Parallel job
scheduling for power constrained hpc systems,” Parallel Comput.,
vol. 38, no. 12, pp. 615–630, Dec. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2012.08.001

[4] J. Hikita, A. Hirano, and H. Nakashima, “Saving 200kw and $200 k/year
by power-aware job/machine scheduling,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, April
2008, pp. 1–8.

[5] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing
throughput of overprovisioned hpc data centers under a strict power
budget,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 807–818. [Online].
Available: http://dx.doi.org/10.1109/SC.2014.71

[6] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz,
V. W. Freeh, and T. Bletsch, “Adagio: Making dvs practical
for complex hpc applications,” in Proceedings of the 23rd
International Conference on Supercomputing, ser. ICS ’09. New
York, NY, USA: ACM, 2009, pp. 460–469. [Online]. Available:
http://doi.acm.org/10.1145/1542275.1542340

[7] Z. Zhou, Z. Lan, W. Tang, and N. Desai, Job Scheduling Strategies for
Parallel Processing: 17th International Workshop, JSSPP 2013, Boston,
MA, USA, May 24, 2013 Revised Selected Papers. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, ch. Reducing Energy Costs for IBM
Blue Gene/P via Power-Aware Job Scheduling, pp. 96–115. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-43779-7 6

[8] “Argonne leadership computing facility.” [Online]. Available:
https://www.alcf.anl.gov

[9] Z. Cao, L. T. Watson, K. W. Cameron, and R. Ge, “A power aware
study for vtdirect95 using dvfs,” in Proceedings of the 2009 Spring
Simulation Multiconference, ser. SpringSim ’09. San Diego, CA, USA:
Society for Computer Simulation International, 2009, pp. 107:1–107:6.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1639809.1639922

[10] E. K. Lee, I. Kulkarni, D. Pompili, and M. Parashar, “Proactive
thermal management in green datacenters,” J. Supercomput.,
vol. 60, no. 2, pp. 165–195, May 2012. [Online]. Available:
http://dx.doi.org/10.1007/s11227-010-0453-8

[11] O. Sarood, E. Meneses, and L. V. Kale, “A ’Cool’ Way of Improving
the Reliability of HPC Machines,” in Proceedings of The International
Conference for High Performance Computing, Networking, Storage and
Analysis, Denver, CO, USA, November 2013.

[12] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and M. E.
Papka, “Integrating dynamic pricing of electricity into energy aware
scheduling for hpc systems,” in Proceedings of SC13: International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013, pp. 60:1–
60:11. [Online]. Available: http://doi.acm.org/10.1145/2503210.2503264

[13] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Suga-
vanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara,
G.-T. Chiu, P. Boyle, N. Chist, and C. Kim, “The IBM Blue Gene/Q
compute chip,” Micro, IEEE, vol. 32, no. 2, pp. 48 –60, march-april
2012.

[14] “The Top500 List,” November 2012. [Online]. Available:
http://www.top500.org/list/2012/11/

[15] IBM Redbooks, IBM System Blue Gene Solution: Blue Gene/Q System
Administration. Vervante, 2013.

[16] S. Wallace, V. Vishwanath, S. Coghlan, J. Tramm, Z. Lan, and M. E.
Papka, “Application power profiling on IBM Blue Gene/Q,” in Cluster
Computing (CLUSTER), 2013 IEEE International Conference on, 2013,
pp. 1–8.

[17] D. Feitelson and A. Weil, “Utilization and predictability in scheduling
the ibm sp2 with backfilling,” in Parallel Processing Symposium, 1998.
IPPS/SPDP 1998. Proceedings of the First Merged International ... and
Symposium on Parallel and Distributed Processing 1998, Mar 1998, pp.
542–546.

[18] W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware, utility-based
job scheduling on blue, gene/p systems,” in Cluster Computing and
Workshops, 2009. CLUSTER ’09. IEEE International Conference on,
Aug 2009, pp. 1–10.

[19] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci,
“A portable programming interface for performance evaluation
on modern processors,” Int. J. High Perform. Comput. Appl.,
vol. 14, no. 3, pp. 189–204, Aug. 2000. [Online]. Available:
http://dx.doi.org/10.1177/109434200001400303

[20] M. Rashti, G. Sabin, D. Vansickle, and B. Norris, “Wattprof: A flexible
platform for fine-grained hpc power profiling,” in Cluster Computing
(CLUSTER), 2015 IEEE International Conference on, Sept 2015, pp.
698–705.

[21] J. H. L. III, D. DeBonis, R. E. Grant, S. M. Kelly, M. Levenhagen,
S. Olivier, and K. Pedretti, “High performance computing - power
application programming interface specification version 1.2,” Feb 2016.

[22] Engineering Statistics Handbook, “Two-sample t-test for equal means,”
http://www.itl.nist.gov/div898/handbook/eda/section3/
eda353.htm.

[23] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[24] “CQSim: An event-driven simulator,” http://bluesky.cs.iit.edu/cqsim.
[25] “StreamQSim.” [Online]. Available:

https://bitbucket.org/SeanWallace/streamqsim
[26] “Parallel Workloads Archive.” [Online]. Available:

http://www.cs.huji.ac.il/labs/parallel/workload/
[27] “Cobalt scheduler.” [Online]. Available: https://www.alcf.anl.gov/cobalt-

scheduler
[28] “XSEDE allocations overview.” [Online]. Available:

https://www.xsede.org/allocations
[29] “DOE INCITE program.” [Online]. Available:

http://www.doeleadershipcomputing.org

