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ON THE ABSTRACT PROPERTIES OF LINEAR DEPENDENCE.*

By HAssLER WHITNEY.

1. Introduction. Let C,,C,,- - -, Cn be the columns of a matrix M.
Any subset of these columns is either linearly independent or linearly de-
pendent ; the subsets thus fall into two classes. These classes are not arbitrary;
for instance, the two following theorems must hold :

(a) Any subset of an independent set is independent.

(b) If N, and N, are independent sets of p and p 4 1 columns respec-
tively, then N, together with some column of N, forms an independent set
of p 4 1 columns.

There are other theorems not deducible from these; for in § 16 we give
an example of a system satisfying these two theorems but not representing any
matrix. Further theorems seem, however, to be quite difficult to find. Let
us call a system obeying (a) and (b) a “matroid.” The present paper is
devoted to a study of the elementary properties of matroids. The fundamental
question of completely characterizing systems which represent matrices is left
unsolved. In place of the columns of a matrix we may equally well consider
points or vectors in a Euclidean space, or polynomials, ete.

This paper has a close connection with a paper by the author on linear
graphs; 2 we say a subgraph of a graph is independent if it contains no circuit.
Although graphs are, abstractly, a very small subclass of the class of matroids,
(see the appendix), many of the simpler theorems on graphs, especially on
non-separable and dual graphs, apply also to matroids. For this reason, we
carry over various terms in the theory of graphs to the present theory.
Remarkably enough, for matroids representing matrices, dual matroids have
a simple geometrical interpretation quite different from that in the case of
graphs (see § 13).

The contents of the paper are as follows: In Part I, definitions of
matroids in terms of the concepts rank, independence, bases, and circuits are
considered, and their equivalence shown. Some common theorems are deduced
(for instance Theorem 8). Non-separable and dual matroids are studied in

* Presented to the American Mathematical Society, September, 1934.
*“ Non-separable and planar graphs,” Transactions of the American Mathematical
Society, vol. 3¢ (1932), pp. 339-362. We refer to this paper as G.
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510 HASSLER WHITNEY.

Part II; this section might replace much of the author’s paper G. The subject
of Part III is the relation between matroids and matrices. In the appendix,
we completely solve the problem of characterizing matrices of integers modulo 2,
of interest in topology.
I. MATROIDS.

2. Definitions in terms of rank. Let a set M of elements ey, e5,- * -, €n
be given. Corresponding to each subset N of these elements let there be a
number 7(N), the rank of N. If the three following postulates are satisfied,
we shall call this system a matroid.

(R1) The rank of the null subset is zero.
(R;) For any subset N and any element e not in N,
(N 4-e) =7(N) + &, (k=0o0r1).
(Rs) For any subset N and elemenils e, e, not in N, if r(N + e;)
=7r(N 4+ e) =r(N), then r(N -4 e, 4 e;) =1 (N).

Evidently any subset of a matroid is a matroid. In what follows, M is a
fixed matroid. We make the following definitions:

p(N) = number of elements in N.
n(N) =p(N) —r(N) = nullity of N.

N is independent, or, the elements of N are independent, if n(N) =0;
otherwise, N, and its set of elements, are dependent.

LemMMa 1. For any N, r(N) =0 and n(N) =0. If NCM, then
r(N) = (M), n(N) = n ().
LeMMA 2. Any subset of an independent set is independent.

e is dependent on N if r(N 4 ¢) =r(N) ; otherwise ¢ istndependent of N.

A base is a maximal independent submatroid of M, i.e. a matroid B in
M such that n(B) =0, while BC N, B4 N implies n(N) > 0. See also
Theorem 7. A base complement A — M — B is the complement in M of a
base B. A circuit is a minimal dependent matroid, i. e. a matroid P such that
n(P) > 0, while N C P, N 54 P implies n(N) = 0.3

THEOREM 1. N is independent if and only if it is contained in a base,
or, if and only if it contains no circuit.

3 Compare G, Theorem 9.
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THEOREM 2. A circuit 18 a minimal submatroid contained in no base,
i. e. containing at least one element from each base complement. A base is a
mazimal submatroid containing no circuit. A base complement is a minimal
submatroid containing at least one element from each circuit.

The above facts follow at once from the definitions. Note the reciprocal
relationship between circuits and base complements. Note also that the
definitions of independence and of being a circuit depend only on the given
subset, while the property of being a base depends on the relationship of the
subset to M.

3. Properties of rank. Our object here is to prove Theorem 3. The
following definition will be useful:

(3.1) A(M,N)=r(M 4 N) —r(M).
LeMMA 3. A(M + e, 6) = A(M, e1).

Suppose first (M + e;) =7(M) 4 1; thenr(M + e, 4 6:) =7(M) + &,
k=1or2. Ifk=2,then r(M + e,) =r(M) 4+ 1, on account of (R.), and
the inequality holds; if k=1, r(M 4-e;) =r(M) 41, I=0 or 1, and it
holds again. If 7(M 4 e,) = (M) + 1, the same reasoning applies. If
finally r(M + e1) = r(M + ;) =r (M), -the inequality follows from (Rs).

LeMMA 4. A(M + N, e) = A(M,e).
It N—¢, +- - -+ e, the.last lemma gives
AM AN, o) SAM 4o+ F o 0) = - =AM, 0).
Trrorey 3. A(M -+ Ny, Ny) = A(M, V), o,
(38.2) (M A4 Ni+ No) =7(M + Ni) +r(M + No) —r(M).

This is true if N; contains but a single element. For the general case,
we apply the last lemma and induction, setting N, = N" 4 e:

AM + Ny Ny) — A + No + o, V) + A(M + Vs, )
é A(M+ 6,N’) + A(M: 6) =A(M:N1)'

(3.2) is evidently equivalent to:
(3.3) r(My+ M) = (M) + r(Ms) —r(M:Ms).

4. Deduction of (I,), (I,) from (R:), (R.), (Rs). The first postulate
4



512 HASSLER WHITNEY.

on independent sets below obviously holds if (R;) and (R:) hold. To prove
(1,), take N, N’ as given there; then

r(N) =p, r(N')y=p+1.

We must show that for some i, A(N, ¢’;) =1. (Then ¢’; does not lie in N.)
If this is not so, then on using Lemma 4 we find

1=7r(N)—r(N) =AW, N)
=A(N,¢\) AN+ yes) +- - +FADNF i+ F p1)
=AW, ¢) + AN, &) - - 4 AN, €pn) =0,

a contradiction.

5. Deduction of (C,), (C:) from (R:), (R:), (Rs). We shall need
here a theorem showing how the nullity (or rank) of a matroid may be de-
termined when we know what circuits it contains.

LeMMA 5. Each element of a circuit is dependent on the rest of the
circutt.

If ¢ is an element of the circuit P, then n(P) =1, n(P—e) =0;
hence r(P) = p(P) —1=p(P—e¢) =1(P—e).

LeMMA 6. If e 1s dependent on Py but on no proper subset of Pi, then
P =P, 4 ¢ is a circuit.

As A(Py,e) =0, r(P) =r(Py) = p(Py) < p(P), n(P) >0, and P
contains a circuit P. If P’ does not contain e, take ¢’ in P’; then
APy—¢,¢) =A(P—¢,¢) =0,
hence r(P, —¢’) =r(P;), and

APy —¢é,e) =r(P1— ¢ +e) —r(P1—¢)
= (Py 4 ¢) —r(P,) = A(Pyy¢) =0,

and e is dependent on the proper subset P, — ¢’ of P,, a contradiction. There-
fore P’ contains e. As P’ is a circuit, ¢ is dependent on the rest of P’; hence
P =P.

THEOREM 4. If ¢ is not in N, there is a circuit in N 4 e which contains
e if and only if ¢ is dependent on N.
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Suppose P; + ¢ = P is a circuit, Py C N. Then
A(N) 6) éA(Pn 6) =0,

and e is dependent on N. Suppose, conversely, A(N,e) = 0. Let P; be a
smallest subset of N on which e is dependent; then by the last lemma,
P — P, + ¢ is a circuit. (It may be that P —e.)

TaEOREM 5. If N is formed element by element, then n(N) is just the
number of times that adding an element increases the number of circuits
present.

Say N=¢; + - + - 4 ¢p. Then if O is the null set,
T(N) =A(0) 61) +'A(el} 62) + e +A(61 + e + 617—1) ep).

Bach A(e; 4+ - -+ €54, ;) =0 or 1, and = 0 if and only if e¢; is dependent
on ¢ -+ - -+ ey, i.e. if and only if there is a circuit in e; +- - - 4 e
containing e;. The number of terms is p = p(N), and the theorem follows.

We turn now to the proof of (C;) and (C;). The first is obvious. To
prove the second, take Py, Ps, e, ¢, as given. As

A(Pl—eg, 62) =‘A(P2—‘31, 61) =0,
we have
A(P1—|—P2—62,62) =A(P1+P2—61_62, 61) =0.

These equations give
(P14 P;—e,—e,) =7r(P; + P, —e;) =r(P, + P2).
Using (R,) gives
r(Py 4+ Py—e,) =7(Py+ Py—e1—e¢;);
hence the required circuit P; exists, by Theorem 4.

6. Postulates for independent sets. Let M be a set of elements. Let
any subset N of M be either “independent ” or “ dependent.” Let the two
following postulates be satisfied :

(I.) Any subset of an independent set is independent.

(I.) If N=e.+- - -+ epand N = ¢y + - - -+ ¢pu are independent,
then for some ¢ such that ¢’; is not in N, N -+ ¢’; is independent.
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The resulting system is equivalent to a matroid, as we now show. Given
any subset N of M, we let r(N) be the number of elements in a largest
independent subset of N. Obviously Postulates (R;) and (R.) are satisfied;
we must prove (R;). Say

r(N 4 e) =7r(N 4 e;) =r(N)=r.

Then r(N + e+ e6,) =7 or r+4 1. If it equals r - 1, there is an in-
dependent set NV =¢’; + -+ €’riyin N + e, 4 €5 Let N =¢e," +- -+ e
be an independent set in N. By (I,) there is an ¢ such that N 4 ¢’; is an
independent set of r 4 1 elements. But N” + ¢’; liesin N + ¢, or in N + e,
and hence 7(N 4-e,) or r(N +e;) =741, a contradiction. Therefore
r(N + e, + ;) =r, as required.

We have shown how to deduce either set of postulates (R) or (I) from
the other. Moreover the definitions of the rank and the independence or
dependence of any subset of M agree under the two systems, and hence they
are equivalent.

7. Postulates for bases. Let M be a set of elements, and let each subset
either be or not be a “base.” We assume

(B1) No proper subset of a base is a base.

(B:) If B and B’ are bases and ¢ is an element of B, then for some
element ¢ in B, B—e + ¢’ is a base.

We shall prove the equivalence of this system with the preceding one.
We write here e,6, - - instead of ¢, -+ ¢, + - - - for short.

THEOREM 6. All bases contain the same number of elements.

For suppose

B —6 - lplpr - Cgbqr e - Or,
B—o, oy - - €q
are bases, with exactly e;,- + -, ¢, in common, and > ¢. We might have

p=0. g > p, on account of (B,). By (B.), we can replace €., in B by an
element ¢’ of B’, giving a base B;. ¢ = ¢’;, is one of the elements e’p.y, - - -, €'y,
for otherwise B; would be a proper subset of B. Hence

4
‘B1 =, " epg iCpr2 * €qlgs1* * * Or.

If ¢ > p 4 1, we replace ¢4, in B; by an element ¢’;, of B/, giving a base B,.
Continuing in this manner, we obtain finally the base
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Bop=—t1 " " eplpu~ " Cabqu’ " * br

But this contains B’ as a proper subset, contradicting (B.).

We shall say a subset of M is independent. if it is. contained in a base.
(I,) obviously holds; we shall prove (I.). Let N, N’ be independent sets
in the bases B, B’. Say

Bt €plpr * " Cqlqur " Crlra " sy
v 4
B —o - oplpn Colgr - rbrr s,
4 s !
Ne—er g "0 N =61 eptpn *  €el g
Then N and N’ have just ¢, - -, ¢, in common, and B and B” have just these
elements and ey, * *, ¢ in common. By (B,), there is an element ¢’;,

of B’ such that
By =B —egq + ¢y

is a base. (This element cannot be any of e, - -, ep, €ri1,* =, 65, by (B1).)
If ¢; is one of the numbers p4+1,p 4 2,- - -, ¢+ 1, then N 4 ¢’;, is in a
base Bj, as required. Suppose not; then there is a base

B, =B, — Cq+2 + 3’i2:
with 6,544, I p+1=0:=q¢-+1, N+ ¢, is in a base B,. If not, we

find a base B;, etc. We can drop out each of the » — g elements ég.1,- * -, er
in turn; as there are only r— ¢ — 1 elements ¢’; with 1 > ¢ + 1, we find at
some point a base containing e;,* - -, eq, ¢; with p+1=j7= ¢+ 1. Then

¢’j isin N’, and N -+ ¢/; is in a base.and is thus independent, as required.

The definitions of base and independent sets in the two systems (I) and
(B) are easily seen to agree. Suppose (I,) and (I.) hold. (B;) obviously
holds; using (I.), we prove that all bases contain the same number of ele-
ments; (B.) now follows at once from (I;). Hence the two systems are
equivalent,

THEOREM 7. B isa base in M if and only if
r(B) =r(M), n(B) = 0.

Evidently B is a base under the given conditions. To prove the converse,
we note first that there exists a base with »(M) elements, as 7(M) is the
maximum number of independent elements in M (see § 6). By Theorem 6,
all bases have this many elements, and the equations follow.

TaBoREM 8. If B is a base and N is independent, then for some N’ in
B, N + N’ is a base.
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This follows from repeated application of Postulate (I.) and the last
theorem.

8. Postulates for circuits. Let M be a set of elements, and let each
subset either be or not be a “circuit.”” We assume:

(C,) No proper subset of a circuit is a circuit.

(C,) If Py and P, are circuits, e, 1s in both P, and P,, and e, is in P
but not in P,, then there is a circuit Py in Py 4 P, containing e, but not e,.

(C.) may be phrased as follows: If the circuits P, and P, have the
common element e, then P, ++ P, — e is the union of a set of circuits.

We shall define the rank of any subset of M, and shall then show that
the postulates for rank are satisfied. Let ei,- - -, e, be any ordered set of
elements of M. Set I'; = 0 if there is a circuit in e, 4+ - - - + ¢; containing
e;, and set T'; = 1 otherwise (compare Theorem 5). Let the “rank” of
(e, * 5 ¢ep) be

D
7‘(61,‘ ' ',61;) = 21‘1'.
=1
LEMMA 7. 7(ey, * *, €q2 €q15 €q) =7T(1," * *, €gz, €gs €g-1) -
To prove this, let N be the ordered set i, - -, 64, and set

T(N) =T, T(N) 6(1—1) =Ty, T(Nr%) =Ts,
(N, eq-1, €q) = T12, (N, eq; €g-1) = Ta1.
CAsSE 1. There is no circuit in N - ¢4, containing e, ,, and none in

N + ¢4 containing e, Then
r=r,=r-4+1.

If there is a circuit in N + e4; -+ ¢4 containing e,; and eg, then

Tig =11 =Ty = Ta1}
otherwise,
7‘12=7'1—|— 1 =1'2+1 == T'21.

Case 2. There is a circuit P, in N -+ ¢4, containing e, ;, and a circuit
P, in N + e4; + ¢4 containing e, , and e, Then, by (C,), there is a circuit
P, in N + ¢4 containing e,. Hence

Pio =T, =1 =171y = Ty;.
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CASE 3. There is a circuit P, as above, but no circuit P; as above., If
there is a circuit P; as above, the last set of equations hold. Otherwise,

ro=r+1l=r-4+1=1r,="7s.

CasE 4. There is a circuit in N + ¢4 containing e,. This case overlaps
the two preceding ones; the proof above applies here also.

Lemma 8. The rank of any subset N is independent of the ordering
of the elements of N.

We saw above that interchanging the last two elements of any subset does
not alter the rank; hence, evidently, interchanging any two adjacent elements
leaves the rank unchanged. Any ordering of M may be obtained from any
other by a number of interchanges of adjacent elements; the rank remains
unchanged at each step, proving the lemma. '

Postulates (R,) and (R.) are obviously satisfied. To prove (Rs),
suppose (N + e;) =r(N + ¢;) =r(N). Then there is a circuit in N 4 ¢,
containing e, and one in N - e, containing e,; hencer(N -+ e; + ;) = r(N).

The definitions of rank and of circuits under the two systems (R),
(C) agree, and hence the systems are equivalent.

9. Fundamental sets of circuits. The circuits Py, - -, Pq of a matroid
M form a fundamental set of circuits if ¢ = n (M) and the elements e,,- - -, en
of M can be ordered so that P; contains es_g.; but no eng.; (5 >1). The set
is strict if P; contains eng.i but no eng.; (0 <j <4 orj>i). These sets
may be called sets with respect t0 €n_gi1,* * *, n.

THEOREM 9. If B=¢, -+ -+ engisa base in M —=e, + -+ -+ en,
then there is a strict fundamental set of circuits with respect to en-gs1,* * * 5 €n;
these circuits are uniquely determined.

As r(B) =r(M), A(B,e;) =0 (t=n—q-+1,- - -,n). Hence, by
Theorem 4, there is a circuit P; containing e; and elements (possibly) of B.
Py_gi1,- - -, Py is the required set. Suppose, for a given 1, there were also a
circuit P’; = P;. Then Postulate (C,) applied to P; and P’; would give us
a circuit P in B, which is impossible.

This theorem corresponds to the theorem that if a square submatrix N
of a matrix M is non-singular, then N can be turned into the unit matrix
by a linear transformation on the rows of M.

THEOREM 10. If Pi,- - -, Pq form a fundamental set of circuits with
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respect t0 engi1,* * * » €n, then there is o unique strict set P'y,- - -, P'q with
respect 10 en_gu1,* * 5 €ne

Set B—=M — (éngss +° * - + en). The existence of Py, - -, Py shows
thatr(M)=7r(M —ey)=" - -=r(B). Hencep(B)=n—q=r(M)=r(B),
and B is a base, by Theorem 7. Theorem 9 now applies.

Note that a matroid is not uniquely determined by a fundamental set
of circuits (but see the appendix). This is shown by the following two
matroids, in each of which the first two circuits form a strict fundamental set:

M, with circuits 1234, 1256, 3456 ;
M’, with circuits 1234, 1256, 13456, 23456.

II. SEPARABILITY, DUAL MATROIDS.

10. Separable matroids. If M = M, + M, thenr(M)=r(M,)+ (M),
on account of (8.3). If it is possible to divide the elements of M into two
groups, M, and M,, each containing at least one element, such that

(10.1) r(M) =r(M,) + r(M,),
or, which is equivalent (as M, and M, have no common elements),
(10.2) n(M) =n(M,) + n(M.),

we shall say M is separable; otherwise, M is non-separable.* Any single
element forms a non-separable matroid. Any maximal non-separable part of
M is a component of M.°

TaEOREM 11. If

M=M,+ M, r(M)=r(M)+ (M),
M, C M, M, C M, M =M+ M.,
then
r(M) =r(My) + r(M).

Set My =M, — M, M,” = M,— M,". The relations (see Theorem 3)

(M) = A(My + M, M) + A(M, ML) + (M)
=AM, ML) + A(MY, My7) + (M)
=r(M:) —r(M) + r(My) —r(M) + (M)

¢ Compare G, Theorem 15.
5 See G, § 4.
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together with the fact that »(M) —r(M,) + r(M,) show that r(M*)
=r(M'y) + r(M’;) and hence r(M’) =r(M',) + r(M’;).

THEOREM 1R.° If M =M, + M,, r(M) =r(M,) + r(M.), M’ is non-
separable, and M’ C M, then either M’ C M, or M’ C M,.

For suppose M'=M', + M’,, M’y C M,, M’', C M,, and M’; and M’,
each contain an element. By the last theorem, r(M’) =r(M’y) + (M),
which cannot be.

TrEOREM 13. If M, and M, are non-separable matroids with a common
element e, then M — M, ++ M, is non-separable.

For suppose M = M’y + M’,, (M) =r(M’,) +r(M’;). By the last
theorem, M, C M’; or My C M’,, and M, C M’; or M, C M, ; this shows that
either M’, or M’, is void.

THEOREM 14. No two distinct components of M have common elements.
This is a consequence of the last theorem. From this follows:

THEOREM 15.7 Any matroid may be expressed as a sum of components
in ¢ unique manner.

THEOREM 16.° A non-separable matroid M of nullity 1 is a circuit, and
conversely.

If M, is a proper non-null subset of the non-separable matroid M, and
M, =M —M,, then r(M) < r(M,) + r(M,). Hence
1=n(M) > n(M,) 4 n(M,),

and n(M,) =0, proving that M is a circuit.
Conversely, if M — M, + M, is a circuit, and M, and M, each contain
elements, then
(M) +r(Ms) = p(My) + p(M2) —n(My) —n(My)
=p(M) > r(M),

showing that M is non-separable.
¢ Compare G, Lemma, p. 344.

7 Compare G, Theorem 12.
8 Compare G, Theorem 10.
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LemMA 9. Let M = M, + M, be non-separable, and let M, and M,
each contain elements but have no common elements. Then there is a circuit
P in M containing elements of both M, and M,.

Suppose there were no such circuit. Say M,=—e; 4+ - -+ ¢. Using
Theorem 4, we see that

AMid e+ - e, e) =A(er +- - F e e) (I=1,- ),
and hence r(M) =r(M,) + r(M,), a contradiction.

THEOREM 17.° Any non-separable matroid M of nullity n> 0 can be
built up in the following manner: Take a circuit M,; add a set of elements
which forms a circuit with one or more elements of M, forming a non-
separable matroid M, of nullity 2 (if n(M) > 1); repeat this process till
we have M, = M.

As n > 0, M contains a circuit M,. If n>1, we use the preceding
lemma n — 1 times. The matroid at each step is non-separable, by Theorems
16 and 13.

THEOREM 18.1° Let M =M.+ - - + My, and let M., - -, M, be non-
separable. Then the following statements are equivalent :

(1) My,- - -, M, are the components of M.

(2) No two of the matroids My, - - -, M, have common elements, and
there is mo circuit in M containing elements of more than one of them.

(3) r(A) = (M) +- - -+ (M),

We cannot replace rank by nullity in (3); see G, p. 347.
() follows from (1) on application of Theorems 13 and 16.

To prove (1) from (2), take any M;. If it is not a component of M,
there is a larger non-separable submatroid M’; of M containing it. By Lemma
9, there is a circuit P in M’; containing elements of M; and elements not in
M;; P must contain elements of some other M;, a contradiction.

Next we prove (3) from (1). If p > 1, M isseparable; say M = M’; + M,
r(M) =r(M’) + r(M’;). By Theorem 12, each M; is in either M’, or M’,;
hence M’; and M’, are each a sum of components of M. If one of these

°See G, Theorem 19; also Whitney, “2-isomorphic graphs,” American Journal
of Mathematics, vol. 55 (1933), p. 247, footnote.
1 Compare G, Theorem 17.
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contains more than one component, we separate it similarly, etc. (3) now
follows easily.

Finally we prove (1) from (3). Let M’ be a component of M, and
suppose it has an element in M;. As

r(M) =r(Mi) + 27 (M),
isi
M’ is contained in M;, by Theorem 12; as M; is non-separable, M’ — M.

THEOREM 19.1* The elements e, and e, are in the same component of M
if and only if they are contained in a circuit P.

If e, and e, are both in P, they are part of a non-separable matroid,
which lies in a single component of M. Suppose now e, and e, are in the
same component M, of M, and suppose there is no circuit containing them
both. Let M, be e; plus all elements which are contained in a circuit con-
taining e;. By Lemma 9, there is a subset M* of M,— M, which forms with
part of M, a circuit Ps. Ps does not contain e,. If ¢/, is an element of P;
in M,, there is a circuit P, in M, containing e, and ¢’,. Let e; be an element
of M*. Then in M, 4+ M* there are circuits P, and P; which contain ¢, and
es respectively, and have a common element. ‘

Let M’ be a smallest subset of M, which contains circuits P’y and P’s
such that one contains e,, the other contains e;, and they have common ele-
ments. Then P’; and P’; are distinct, and M" = P’y 4+ P’s. Let es be a
common element. By Postulate (C,), there is a circuit Py in M’ — e, con-
taining e;, and a circuit P; in M’ — e, containing e;. By the definition of
M’, P, and P, have no common elements. By Postulate (C,), P, is not con-
tained in P’;; hence it contains an element e; of M — P’,. P; does not
contain e;. As P; is not contained in P’;, it contains an element ¢s of P’y.
But now P, contains e;, P; contains es, P’y + Ps have a common element e,
and P’; + P; does not contain e; and is thus a proper subset of M”, a contra-
diction. This proves the theorem.

11, Dual matroids. Suppose there is a 1—1 correspondence between
the elements of the matroids M and M’, such that if N is any submatroid of
M and N’ is the complement of the corresponding matroid of M, then

(11.1) r(N) =r(M') —n(N).

11 Compare D. Kﬁnvig, Acta Litterarum ac Scientiarum Szeged, vol. 6, pp. 155-179,
4. (p. 159). The present theorem shows that a “glied ”” is the same as a component.
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We say then that M’ is a dual of M.*2
THEOREM R0. If M’ is a dual of M, then
r(M’) =n(M), n(M')y =r(M).

Set N =M ; then n(N) =n(M). In this case N’ is the null matroid,
and 7(N’) =0. (11.1) now gives r(M") = n(M). Also

(M) = p (M) — (M) = p(M) — (M) = (D).
TuEOREM 21. If M’ is a dual of M, then M is a dual of M'.
Take any N and corresponding N” as before. The equations

r(N) =r(M) —n(N), (M) =n(M),
p(N) + p(NV) = p(H)
give
r(N) — p(N) —n(N) = p(N) — [r(M') — r(N")]
— p(N) — (M) + [p (V") — n(N")]
— p(I) —n (M) —n(N’) — (M) —n(N),
as required.

THEOREM 22. Every matroid has ¢ dual.

This is in marked contrast to the case of graphs, for only a planar graph
has a dual graph (see G, Theorem 29).

Let M’ be a set of elements in 1 — correspondence with elements of M.
If N’ is any subset of M’, let N be the complement of the corresponding subset
of M, and set r(N) =n(M) —n(N). (R:i), (Rz), (Rs) are easily seen to
hold in M’, as they hold in M ; hence M’ is a matroid. Obviously r(M’) =n(M),
and M’ is a dual of M.

THEOREM 23. M and M’ are duals if and only if there 1s a 1—1
correspondence between their elements such that bases in ome correspond to
base complements in the other.

Suppose first M and M” are duals. Let B be a base in either matroid,

say in M, and let B be the complement of the corresponding submatroid of the
other matroid, M’. Then

2 Compare G, § 8. Theorems, 20, 21, 24, 25 correspond to Theorems 20, 21, 23, 25 in G.
Note that two duals of the same matroid are isomorphic, that is, there is a 1—1
correspondence between their elements such that corresponding subsets have the same
rank. Such a statement cannot be made about graphs. Compare H. Whitney, “ 2-iso-
morphic graphs,” American Journal of Mathematics, vol. 55 (1933), pp. 245-254.
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r(B) = r(M') —n(B) —=r(M’),
n(B") =r(M) —r(B) =0,

and B’ is a base in M’, by Theorem 7.

Suppose, conversely, that bases in one correspond to base complements in
the other. Let NV be a submatroid of M and let N’ be the complement of the
corresponding submatroid of M’. There is a base B’ in M’ with r(N’) ele-
ments in N’, by Theorem 8. The complement in M of the submatroid corre-
sponding to B” in M’ is a base B in M with p(N’) — r(N’) = n(N’) elements
in M — N, and hence with 7(M) — n(N’) elements in N. This shows that

r(N) =r(M) —n(N") + &, E=0.
In a similar fashion we see that
r(N) =+(M") —n(N) + ¥, ¥ =0.
As B contains r (M) elements and B’ contains r(M”) elements, »(M) + r (M)
= p(M). Hence, adding the above equations,
b W = r () 4 (V') + n(N) + (V) —r(3) —r(}")
=p(N) +p(NV) —p(M) =0.

Hence k¥ — 0, and the first equation above shows that M and M’ are duals.
There are various other ways of stating conditions on certain submatroids
of M and M’ which will ensure these matroids being duals.!s

THEOREM 24. Let My,- - -, My and M’y,- - -, M’y be the components
of M and M’ respectively, and let M’; be a dual of M; (i—=1, - -, p). Then
M’ is a dual of M.

Let N be any submatroid of M, and let the parts of N in My, - - -, M,
be Ny, - - -, Np. Let N’; be the complement in M’; of the submatroid corre-
sponding to N;; then N'=N’; +- - - 4 N’; is the complement in M’ of the
submatroid corresponding to N. By Theorems 18 and 11 we have

r(N) =r(N) +- -+ (W), n(N) =n(N) 4 - -+ ().
Also
(M) =r (M) +- (M), (W) =r (M) —n(No);
adding the last set of equations gives r(N’) =r(M’) —n(N), as required.
*® See for instance a paper by the author “Planar graphs,” Pundaementa Mathe-

maticae, vol. 21 (1933), pp. 73-84, Theorem 2. Cut sets may of course be defined in
terms of rank.
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THEOREM 25. Let M and M’ be duals, and let M, - - -, M, be the com-
ponents of M. Let M'y,- -+, M’y be the corresponding submatroids of M’.
Then M’y,- - -, M’y are the components of M’, and M’; is a dual of M;

(i=1- 7).

The complement in M of the submatroid corresponding to M’; in M’
is X M;. Hence, as M and M’ are duals and the M; (j==1) are the com-

p01]1;eénits of X M; (see Theorem 18),
i
P = r() —n( T M) — (W) — ().
Adding gives ~ g
2 (M) = pr(M') — (p—1) % n(M;) = pr(M') — (p—1)n(H)
—=pr(M') — (p—D)r(M') = r ().

Therefore, by Theorem 12, each component of M’ is contained in some M’;.
In the same way we see that each component of M is contained in a matroid
corresponding to a component of M’; hence the components of one matroid
correspond exactly to the components of the other.

Let N; be any submatroid of M;, and let N” and N”; be the complements
in M" and M’; of the submatroid corresponding to N;. The equations

r(M') = Ejl (M),  r(N) =r(N%) -I-jEif‘(M’j),
rQV) =1 () —n(¥),
give
r(N's) =r(M") —n(N:),

which shows that M’; is a dual of M,.
THEOREM 26. A dual of a non-separable matroid is non-separable.

This is a consequence of the last theorem.

ITI. MATRICES AND MATROLDS.
12. Matrices, matroids, and hyperplanes. Consider the matrix

Q11 " Qan

we

M=|. . . .
’ aml..‘a/mn
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let its columns be Cy,- + -, Cy. Any subset N of these columns forms a
matrix, and this matrix has a rank, 7(I¥). If we consider the columns as
abstract elements, we have a matroid M. The proof of this is simple if we
consider the rank of a matrix as the number of linearly independent columns
in it. (R,) and (R.) are then obvious. To prove (Rs), suppose (N -+ C)
=r(N+4 C;) =r(N); then C, and C. can each be expressed as a linear
combination of the other columns of IV, and hence 7(N + C; + C,) = r(N).
The terms independent and base carry over to matrices and agree with the
ordinary definitions; a base in M is a minimal set of columns in terms of
which all remaining columns of M may be expressed.

We may interpret M geometrically in two different ways; the second is
the more interesting for our purposes:

(a) Let En be Buclidean space of m dimensions. Corresponding to each
column C; of M there is a point X; in E,, with codrdinates a4, * -, adms. The
subset Cs,,- - -, C;, of M is linearly independent if and only if the points
0= (0, --,0), Xi, - -, X, are linearly independent in E,, i.e. if and
only if these p 4+ 1 points determine a hyperplane in F, of dimension p.
A base in M corresponds to a minimal set of points X;,,- + -, Xy, in Em such
that each X; of M lies in the hyperplane determined by O, X5, - -, X4,. Then
p is the rank of M. )

(b) Let E, be Euclidean space of n dimensions. Let Ry,* - -, R be the
rowsof M. I£ Yy, - -, ¥ are the corresponding points of By : ¥y =(ai1, " **, @in),
then the points O, Y, - -, Ym determine a hyperplane H = H (M), which
we shall call the hyperplane associated with M. The dimension d(H) of H
is r(M). Let N=Ci,+- - -4 Cs, be a subset of M, and let E’ be the
p-dimensional codrdinate subspace of E., containing the z;, and ... and the
;, axes. The j-th row of N corresponds to the point ¥”; in B with cordinates
(@jiy, - * *,ai,); this is just the projection of ¥; onto E’. If H’ is the
hyperplane in E” determined by the points O, ¥”y,- * -, ¥’n, then H’ is exactly
the projection of H onto F’, and

(12.1) d(H’) = r(N).

Let N—= (Ci,- - -, Cs,) be any subset of M, and let E’, H' correspond
to N. Then N s independent if and only if

d(H') = p,
and 1s a base if and only if

d(H') — d(H) = p.
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THEOREM 27. There is a unique matrotd M associated with any hyper-
plane H through the origin in E,.

Let M contain the elements e, * -, es, one corresponding to each -codrdi-
nate of F,. Given any subset e, - -, e:,, we let its rank be the dimension
of the projection of H onto the corresponding codrdinate hyperplane E of E..
It was seen above that if M is any matrix determining H, then M is the
matroid associated with M.

13. Orthogonal hyperplanes and dual matroids. We prove the fol-
lowing theorem :

THEOREM 28. Let H be a hyperplane through the origin in E., of di-
mension r, and let H' be the orthogonal hyperplane through the origin, of
dimension n—r. Let M and M’ be the associated matroids. Then M and M’
are duals.

We shall show that bases in one matroid correspond to base complements
in the other; Theorem 23 then applies. Let

Q11 " by "'bm
M=1|. . . .|, M —
Qry* * " Orn . bn—r,l o b'n—r,n

be matrices determining H and H’ respectively. Say the first » columns of M
form a base in M, i. e. the corresponding determinant 4 is = 0. As H and H’
are orthogonal, we have for each ¢ and j

ai1bj1 —+ aizbjz 4+ ainbjn =0.

Keeping j fixed, we have a set of r linear equations in the b;;. Transpose

the last n —r terms in each equation to the other side, and solve for bj.
We find '

4 Gy " @y c - dar i
bjk=—A— lglbjl o= _2 Ckzbjz (k=1,’ . ',1").
=r+ Qry* * " Qpy* *  Qpp l=r+1
This is true for each j =1, - -, n—r, and the cx: are independent of j.
Thus the %-th column of M’ is expressed in terms of the last n —r columns.
As this is true for k=1, - -, r, the last n — 7 columns form a base in M’,

as required.

14. The circuit matrix of a given matrix. Consider the matrix M of
§ 12. Suppose the columns C,, - - -, €'y, form a circuit, i. e. the corresponding
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elements of the corresponding matroid form a circuit. Then these columns
are linearly dependent, and there are numbers by, - -+, b, such that

@iths + - - -+ ambn =0 (i=1>"'>m)>

14.1 . . . . . .
( ) bj=0 (.77&7'1/":7’17)’ bj %0 (.7=7’1>"'>7'p)-

The b; are all 40 (j =1, * -, %), for otherwise a proper subset of the
columns would be dependent, contrary to the definition of a circuit. (They
are uniquely determined except for a constant factor; see Lemma 11.) Sup-

pose the circuits of M are Py, - -, Ps. Then there are corresponding sets of
numbers biy, -+ ¢, bin (1=1,- - -,s), forming a matrix
(PR bin
M=iy. . . .|,
ber* *  ben

the circuit matriz of the matrix M.

THEOREM 29. Let Py,- - -, Py be a fundamental set of circuits in M
(see § 9). Then the corresponding rows of the circuit matric M’ form a base
for the rows of M’. Hence r(M’) = q=n(M).

Suppose the columns of M are ordered so that P; contains Chp_g.i
but no column Crg.j (§>1%). Then if the corresponding row of M’ is
Ry = (biy,* * *,bin), we have bimgsi 5= 0 and bimgiy =0 (j > ¢). Hence
the rows R'y,- - -, R’g of M’ are linearly independent, and r(M’) = q. Hence
r(M’) =n(M) =gq, and each row of M’ may be expressed in terms of
K-, R,

TurorEM 30. If M’ is the circuit matriz of M and H’, H are the
corresponding hyperplanes, then H’ is the hyperplane of mawimum dimension
orthogonal to H.

This is a consequence of (14.1) and the last theorem.

THEOREM 31. The matroids corresponding to a matriz and its circuit
matric are duals.

This follows from the last theorem and Theorem 28.

15. On the structure of a circuit matrix. Let M be any matroid,
and M’, its dual. If there exists a matrix M corresponding to M, it is perhaps
most easily constructed by considering it as the circuit matrix of a matrix M’

5
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corresponding to M’. Tet H and H” be the hyperplanes corresponding to M
and M’. We shall say the set of numbers (as, - - -, m) isin Zs, . oy, if

a,j.?é() (j=1:1,,1,1,), aj=0 (]5&1’1:)1’17)

If (@, - -, an) isin H and in Z;, ., then the columns Cy,- - -, Ci, of M’
are dependent, evidently.

Lemma 10. Let (bs,- - -, ba) be a point of H. If it isin Zi, . s, then
the matroid N' — e;, -+ - - + ey, s the union of a set of circuits in M.

Here e; in M’ corresponds to C; in M. We need merely show that for
each 15 there is a circuit P in N’ containing e;,. Let by — s, ks, - -, kg be a
minimal set of numbers from (iy,- - -, 14,) containing ¢; such that there is a
point (¢i,- - +,¢u) of H in Zy, . x,; then ey, 4 - - -+ ex, is the required
circuit. For if it were not a circuit, there would be a proper subset (I, - - -, 1,)
of (ki,- - -, k) and a point (di,* * -, dw) of H in Zy, . .1, Nol;—1F, on
account of the minimal property of (ky,- - -, k¢). Say I, — k¢, and set

a; = dg,¢i — Cx,ds (t=1,- - -,n).
Then (@i, -,ax) is in H and in Zm,. .. m, With (my -+ -, m,) a proper
subset of (ky,- - -, kq) containing k;, again a contradiction.

Lemma 11. If P=e; + - - - 4 e, is a circuit of M" and (b, - -, by)
and (b's, -, 0") are in H and in Zs, . i,, then these two sets are proportional.

For otherwise, (ci,* * -, cn) With ¢; = b",b; — by,b’; would be a point
of H in some Zy, .. .x, with (k- - -, k¢) a proper subset of (¢4, - -, 4,), and
P would not be a circuit.

It is instructive to show directly that Postulate (C,) holds for matrices:
P, and P, are represented by rows (by,- -+, b,) and (b, - -, %) of M,
lying in Zisi,...4, and Zuw, .., respectively, where k- - -, kqg%2. Set
¢i ="b"1bi —b:b"; then (¢, -, ¢a) isin H and in Zsy, .. 1, with (Iy,- - -, 1)
a subset of (41, - -, 4, ki, - -, kg); the existence of P; now follows from
Lemma 10.

THarOREM 32. Let M be the circuit matric of M'. Let Py, - -, Pq form
a strict fundamental set of circusts in M’ with respect to en_gu, - * , €n, and
let the first q rows in M correspond to Py,- - -, Py. Let (4, - -,1s) be any
set of numbers from (1, - -, q),let (ji,"  *, js) be any set from (1, ,n—gq),
and let (V'y,- -, 7qs) be the set complementary to (iy,- - -,4s) in (1, - -, q).
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Then the determinant D in M with rows iy, - -, 1s and columns ji,- - *, js
equals zero if and only if the determinant D" with rows 1,- - -, q and columns
Ji,0 0 s fe, M—q F 71,0 - 1, n—q + Vqs equals zero, or, if and only if
there exists a circuit P in M’ containing none of the columns ej,- - -, €j,,

Cn-qsity® " 7 en-q+i'q—:'

In the matrix of the last ¢ = r(M) columns of M, the terms along the
main diagonal and only those are 5% 0. If we expand D" by Laplace’s ex-

pansion in terms of the columns n—q 44, -+, n—q + V¢, We see at
once that D’ = 0 if and only if D = 0.
Suppose D = 0. Then there is a set of numbers (ay,- - -, @), not all
zero, with a; =0 (1541, * -, 4s), such that
by — sy ++ + 4 dgbae =0 (B=1ju" "5 7s);
(bis,* * -, bin) being thei-th row of M., by — 0 also for k —=n —q + 4, - -,
n—q + Vg, as each term is zero for such k. The point (b, - -,bs) is

in H. Any circuit given by Lemma 10 is the required circuit P.

Suppose the circuit P exists. Then it is represented by a row (by,- - -, ba)
in M. As the first ¢ rows of M are of rank ¢ =7(M), (b;,- - -, bs) can be
expressed in terms of them ; say by = Saibix. Asby=0(k=n—q 4+, -,
n—q + Vqs), certainly ap =0 (k =1"y,* + *,7¢). D =0 now follows from
the fact that by =0 (k=145 - -, Js).

16. A matroid with no corresponding matrix.!* The matroid M’ has
- seven elements, which we name 1,- - -, 7. The bases consist of all sets of
three elements except

(16.1) 124, 135, 167, 236, 2B7Y, 347, 456.

Defining rank in terms of bases, we have: Each set of & elements is of rank
kif k=2 and of rank 3 if ¥ = 4; a set of three elements is of rank 2 if the
set is in (16.1) and is of rank 3 otherwise. It is easy to see that the postu-
lates for rank are satisfied. (R,) in the case that N contains two elements is
satisfied vacuously. For suppose (N + ¢,) =1r(N + ¢;) =r(N) =2. Then
N + ¢, and N + e, are both in (16.1); but any two of these sets have but
a single element in common.

14 After the author had noted that M’ satisfies (C*) and corresponds to no linear
graph, and had discovered a matroid with nine elements corresponding to no matrix,
Saunders MacLane found that M’ corresponds to no matrix, and is a well known
example of a finite projective geometry (see O. Veblen and J. W. Young, Projective
Geometry, pp. 3-5). .
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If there exists a matrix M’, corresponding to M’, then let M be its circuit
matrix. 123 is a base in M’, and hence

(16.2) 124, 135, 236, 1237

form a fundamental set of circuits in M’. Let R,, R., R;, R4 be the corre-
sponding rows of M. By multiplying in succession row 1, column 2, rows
2, 3, 4, and columns 4, 5, 6, 7 by suitable constants % 0, we bring M into
the following form:

(16. 3) M—

O
S O
QU TR O
o o O -
o o R O
o H O O
- o o O

a, b, c and d are 5= 0. We now apply Theorem 32 with
('il:' C s jb T :js) = (1:45 1, 2): (2; 4; 1, 3): (35 4; 2, 3):
i. e. using the circuits 347, 257, 16%. This gives

1 a
1 d

1 1
1 ¢

1 b
c d’=0’

and hence ¢ =1, ¢ = d = b. Using the circuit 456, with sets (1,2, 3; 1,2, 3)
gives 2a =0, a = 0, a contradiction.
In regard to this example, see the end of the paper.

APPENDIX.

MATRICES OF INTEGERS MOD 2.

We wish to characterize those matroids M corresponding to matrices M
of integers mod 2,%° i. e. matrices whose elements are all 0 or 1, where rank
ete. is defined mod 2. We shall consider linear combinations, chains:

(A. 1) aer + 0 Anln (’s integers mod )

in the elements of M. The o’s may be taken as 0 or 1; (A.1) may then be
interpreted as the submatroid N whose elements have the coefficient 1. Con-
versely, any N C M may be written as a chain. Submatroids are added

18 See O. Veblen, “ Analysis situs,” 2nd ed., American Mathematical Society Collo-
quium Publications, Ch. I and Appendix 2.
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(mod ?) by adding the corresponding chains (mod?2). For instance,
(61 + €2} + (62 + €5) ==e, + €5 (mod 2).

Any sum (mod 2) of circuits in M we shall call a cycle in M. N is the
true sum of Ni,- - -,N, if these latter have no common elements and
N=N,+-- -+ Ns. We consider matroids which satisfy the following
postulate:

(C*) Each cycle 1s a true sum of circuits.

Postulate (C,) is a consequence of (C*). For the cycle P, | P, is a
submatroid containing e, but not e,; The existence of P; now follows
from (C*).

A simple example of a matroid not satisfying (C*) is given by the
matroid M” at the end of § 9.

THEOREM 33. A circutt is a mintmal non-null cycle, and conversely.
This is proved with the aid of Postulates (C;) and (C*).

THEOREM 34. Let Py, - -, Pq be a strict fundamental set of circuits
i M with respect 10 en-gi1,* * *, n. Then there are exactly 22 cycles in M,
formed by taking all sums (mod ) of Py, - -, Pq.

First, each sum P;, +- - -+ P;, (mod 2) is a cycle, containing
n-gripy® * * 5 €n-gsi, aDnd elements (perhaps) from B =e¢;, - -, enq; Obviously
distinct sums give distinet cycles. Now let @ be any cycle in M; say
Q contains 6m-guy, © ° 5 fn-gsk, and elements (perhaps) from B. Set
Q' =Py, +- - -+ Px,; then @ + Q" is a cycle containing elements from B
alone. But B is a base (see the proof of Theorem 10), and hence contains
no circuits. Consequently @ + @ is the null cycle, and @ = @".

THEOREM 35. As soon as the circuits of a strict fundamental set are
kEnown, all the circuits may be determined.

This is a consequence of the last two theorems. It is to be contrasted
with the final remark of § 9.

Remark. The word “strict” may be omitted in the last two theorems.

THEOREM 36. Let e,- - -, en be a set of elements, and let Pi,- - -, Py
be any subsets such that P; contains es_q.; and possibly elements from
€1," * *, enq alone. Then there is a unique matroid M satisfying (C*), with

Py, - -, Py as a strict fundamental set of circuits.
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We form the 2¢ cycles of Theorem 34. Those cycles which contain no
other non-null cycle as a proper subset we call circuits; in particular,
P,,- - -, Py are circuits. To prove (C*), let ¢ be a non-null cycle. If it
is not a circuit, it contains a circuit P as a proper subset. @ and P are
sums (mod 2) from Py, - -, Pg hence the same is true of Q — P, and
@ — P is one of the 27 cycles. If it is not a circuit, we again extract a
circuit, ete.

This theorem furnishes a simple method of constructing all matroids
satisfying (C*).

We turn now to the study of matrices of integers (mod 2)

Ay ° ° c Q1n
M=|. . . . (each a;; =0 or 1).
Amy1® ° ° Qmn

Any linear combination (mod 2) of the columns
(A.2) 01+ -+ @l (@’s integers mod 2)

is a set of numbers (@i, * -, 3®imi), which we call a chain (mod 2) in M.
As before, we may take each coefficient as 0 or 1, and we may consider any
chain merely as a submatrix of M. The chain is a cycle if each of the corre-
sponding numbers is =0 (mod 2). The columns C;,- - -, C;, are inde-
pendent (mod ?) if there exists no set of integers oy, * -, @, not all==0 (mod 2),
with @; =0 (¢5% 14, * *, %), such that Se;C; is a cycle, i. e. if no non-null
subset of 0, - -, C;, is a cycle. Using this definition, the terms base, circuit,
rank, nullity etc. (mod 2) can be defined as in Part I.

Let M be a set of elements e, - - -, e, corresponding to Cy,- - -, C, in M,
and let ey, 4 - - + e;, be a circuit in M if and onmly if C;,- - -, (4, is a
circuit in M. We shall show that M is a matroid satisfying (C*) and the
definitions of cycle in M and M agree.

We show first that each circuit is a cycle in M. If Cy,- - -,C;, is a
circuit, then these columns are dependent; hence Z;C0; is a cycle, with
;=0 (£5% 14, - *,1p). Moreover aj =1 (i=1y, * *, %), for otherwise a
proper subset of Cy,- - -, C;, would be dependent. Hence Cy, +- - -+ C4,
is a cycle. Next, any sum (mod 2) of circuits is a cycle, evidently. Next we
prove (C*). Suppose @ = Cy, + - - -+ C4, is a cycle. Let (ky,- - -, k) be
a minimal subset of (4s,- - -,%) such that P = Ck, 4 - - - + Cg, is a cycle;
then P is a circuit. @ — P is a cycle; from it we extract a circuit, just as
above, etc. It follows from (C*) that the definitions of cycle in M and M
agree. Theorems 33, 34 and 35 now apply to M also.

We are now really to prove the final theorem:
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TuroreM 87, Let M be any matroid satisfying (C*). Suppose
p(M) =mn, and e, 4+ + -+ enq is @ base. Then if M, is any matriz of
integers (modR) with n—q columns which are independent (mod?2),
columns Cn-g1,* -+, Cn can be adjoined in a unique manner to My, forming
a matriz M of which the corresponding matroid is M.

Let Py,- - -,Pq; be a strict fundamental set of circuits in M with
respect t0 €n-gs1,* - -, en (Theorem 9). Say P, —=ei, +- - -+ €i, + en_gu-
Set Op.gu=0Ci, 4 - -+ C;, (mod?); this determines Cn_g:; as a column
of 0’s and 1’s so that P’y = Cs, 4+ - - - 4+ Ci, + Cn_gs is a circuit. (P’; is a
cycle; (C*) shows that it is a single circuit, as C; 4+ - - 4 Cu-q contains
no circuit.) Chy_g evidently must be chosen in this manner. We choose the
remaining columns of M similarly. Let M” be the matroid corresponding to
M. Then Py, - -, P'qis a strict set of circuits in M’. These same sets form
a strict set in M ; hence, by Theorem 35, the circuits in M’ correspond to those
in M. Consequently M’ = M, completing the proof.

We end by noting that the matroid M’ of § 16 satisfies Postulate (C*)
but corresponds to no linear graph. For letting 123 be a base and (16.2)
a fundamental set of circuits and determining the matroid as in Theorem 36,
we come out with exactly M’. A corresponding matrix of integers mod 2 is
constructed from (16.3) with a =0 =c¢=d =1; we interchange rows and
columns in the left-hand portion, leave out the last row and column of the
right-hand portion, and interchange these two parts. (The relation 2a¢ =0
is of course true mod 2.)

On the other hand, it is easily seen that if the element 7 is left out, there
is a corresponding graph, which must be of the following sort: It has four
vertices a, b, ¢, d, and the arcs corresponding to the elements 1,- - -, 6 are

ab, ac, ad, be, bd, cd.

There is no way of adding the required seventh arc.

The problem of characterizing linear graphs from this point of view
is the same as that of characterizing matroids which correspond to matrices
(mod 2) with exactly two ones in each column.

HARVARD UNIVERSITY.



	Article Contents
	p. 509
	p. 510
	p. 511
	p. 512
	p. 513
	p. 514
	p. 515
	p. 516
	p. 517
	p. 518
	p. 519
	p. 520
	p. 521
	p. 522
	p. 523
	p. 524
	p. 525
	p. 526
	p. 527
	p. 528
	p. 529
	p. 530
	p. 531
	p. 532
	p. 533

	Issue Table of Contents
	American Journal of Mathematics, Vol. 57, No. 3 (Jul., 1935), pp. 463-702
	Cyclotomy, Higher Congruences, and Waring's Problem II [pp. 463-474]
	The Equivalence of Non-Singular Pencils of Hermitian Matrices in an Arbitrary Field [pp. 475-490]
	On the Rational Canonical Form of a Function of a Matrix [pp. 491-502]
	On Certain Types of Hexagons [pp. 503-508]
	On the Abstract Properties of Linear Dependence [pp. 509-533]
	On the Asymptotic Distribution of the Remainder Term of the Prime-Number Theorem [pp. 534-538]
	On the Exact Value of the Bound for the Regularity of Solutions of Ordinary Differential Equations [pp. 539-540]
	On Symmetric Bernoulli Convolutions [pp. 541-548]
	On Uniform Convergence [pp. 549-561]
	On the Momentum Problem for Distribution Functions in More than One Dimension [pp. 562-568]
	A Note on a Propety of Fourier-Stieltjes Transforms in More Than One Dimension [pp. 569-572]
	The Theory of the Second Variation for the Non-Parametric Problem of Bolza [pp. 573-586]
	Concerning Some Methods of Best Approximation, and a Theorem of Birkhoff [pp. 587-614]
	Groups Containing Five and Only Five Squares [pp. 615-622]
	Correction and Addition to "Complements of Potential Theory" [pp. 623-626]
	On a Certain Class of Orthogonal Polynomials [pp. 627-644]
	Metabelian Groups and Pencils of Bilinear Forms [pp. 645-667]
	A Metrically Transitive Group Defined by the Modular Groups [pp. 668-678]
	Some Intrinsic and Derived Vectors in a Kawaguchi Space [pp. 679-691]
	An Analytic Characterization of Surfaces of Finite Lebesgue Area. Part I [pp. 692-702]



